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Preface to the Second Edition

Since the publication of the first edition, the requirements for the design of concrete

structures have gone through a number of changes as reflected in the American

Concrete Institute, ACI 318 publication. The latest revision of the Code was

published in 2014 and represents the state-of-the-art of the current knowledge in

concrete and reinforced concrete design. This revision, ACI 318-14, forms the basis

of the second edition of this textbook.

The book retains the features that made it well received by students, instructors,

and practitioners alike. The popular step-by-step approach of problem solving,

augmented by flowcharts and supported by numerical solutions, clearly describes

the processes that need to be followed to provide safe and economical designs of

reinforced concrete components. The self-experiments included at the end of the

chapters help students better understand the behavior of concrete structures through

the construction and testing of scaled models.

To make the book more useful to students in Construction Engineering pro-

grams, a new chapter (Chapter 8) on formworks for monolithic concrete construc-

tion has been added. This chapter covers the fundamentals of formwork and shoring

design, and detailed step-by-step solutions of numerical problems along with

mathematical formulae and tables to help students and practitioners to design

these temporary structures. In addition, to provide more visual clarifications of

the topics discussed in the book, a new appendix (Appendix B) is added, which

includes color images of various stages of concrete construction and completed

buildings.

We gratefully acknowledge the support of the following individuals and orga-

nizations by providing images that are used in the book: Professor Jack Davis, Dean

of Virginia Tech College of Architecture and Urban Studies, Ms. Kathe Hooper

from the American Society for Testing and Materials, Mr. Charles James from the

National Information Service for Earthquake Engineering, Ms. Angela Matthews

from the American Concrete Institute, Ms. Gwen Wang from the Portland Cement

Association, and Mr. Doug Peters, PE, President of Christman Constructors, Inc.
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We also owe special thanks to the following individuals: Mr. Nadir Makhlouf, a

partner of Robert Darvas Associates, PC, for his great help in preparing the graphics

work for Chapter 8, Mr. Xiaoyao Wang, Mr. Hasheem Halim, and Mr. Sriram

Sankaranarayanan, students at Virginia Tech schools of architecture and engineer-

ing, for their efforts on updating the book and the solutions manual.

The authors would like to express their thanks to Springer International Pub-

lishing AG Switzerland, in particular Mr. Michael Luby, senior publishing editor,

and Mr. Brian Halm, project coordinator for helping us bring this second edition to

publication.

Mehdi Setareh Blacksburg, VA

Robert Darvas Ann Arbor, MI
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Preface to the First Edition

The intended audience of this book is architectural engineering, undergraduate civil

engineering, building construction, and architecture students. The manuscript com-

plies with the provisions of the ACI Code 318-05. The easy to follow style of the

text makes it valuable to engineering and nonengineering students. Furthermore,

educators and practitioners interested in the analysis and design of concrete struc-

tures based on the latest ACI Code provisions may also benefit from it.

Chapter 1 covers the topic of concrete technology. It discusses the most impor-

tant properties of the main components of reinforced concrete. This technology is

essential for both architecture and engineering students.

Chapter 2 discusses the analysis and design of rectangular beams and one-way

slabs, including a complete treatment of the Unified DesignMethod as recommended

by the ACI 318-05. Several examples demonstrate the provisions of the latest

changes in the ACI Code. It is written to benefit architecture and engineering students

as well. Depending on the main objectives of the course and class time constraints,

the instructor can select the specific topics and their details to be included for the

intended audience.

Chapter 3 “Special Topics in Flexure” covers T-beams, doubly reinforced

beams, and a discussion of the deflection of reinforced concrete beams and slabs.

These topics are more complex, but indispensable in the design of concrete struc-

tures. The detailed technical information presented is essential for engineering

students. We recommend that only a brief discussion of each topic be used in

courses for architecture students.

Chapter 4 “Shear in Reinforced Concrete Beams” covers the design of shear

reinforcements in reinforced concrete beams. We consider this chapter to be

important in both engineering and architecture courses. The depth of coverage

may be left to the discretion of the instructor.

Chapter 5 covers the analysis and design of reinforced concrete columns.

It includes a complete treatment of “short” columns with small and large eccen-

tricities. Because most reinforced concrete columns are short and a complete

treatment of slender columns is usually only covered in advanced engineering
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courses, we decided to cover that topic generally. We recommend this chapter be

covered in engineering and architecture courses.

Chapter 6 is a treatise on the different floor systems typically used in reinforced

concrete buildings. A simplified approach appropriate for both architecture and

engineering students is used.

Chapter 7 discusses foundations and earth-retaining walls. The chapter starts

with a background on some aspects of soil mechanics and geotechnical investiga-

tions for building design. These topics are not usually covered in reinforced

concrete structures textbooks. However, we are aware that many engineering

students do not take a soil mechanics course as a prerequisite for a reinforced

concrete class. Furthermore, soil mechanics and foundations courses are

unavailable in nearly all architecture curriculums. The treatment of the subjects

of foundations and earth-retaining walls are well-suited for both architecture and

engineering students.

Chapter 8 is an introduction to prestressed concrete for both architecture and

engineering students.

Chapter 9 discusses the use of the SI System in reinforced concrete design and

construction. We decided against the use of the equivalent SI System within the

main body of the book, as is done in many other textbooks. We felt that this resulted

in a clearer text. Several examples on different topics covered in other chapters are

again presented using the equivalent SI System.

Two unique features of this book are the “self-experiments” and an accompa-

nying CD with images of concrete structures. From our experience we know that

some engineering students and nearly all architecture students do not have access to

a testing laboratory. Therefore, we included these simple-to-do sets of experiments

that students can perform to learn about reinforced concrete from their own

experiences. We believe these experiments may also help students gain a better

understanding of concrete as a building material. The accompanying CD has a

number of high-quality images of reinforced concrete structures, so that students

can develop an appreciation of the potential this building material offers.

There are numerous problems at the ends of each chapter to be used as home-

work assignments. A complete Instructor’s Solutions Manual is available upon

request.

A step-by-step approach was adopted throughout the text. Most of the pro-

cedures for design or analysis are summarized in flowcharts, where all steps are

numbered, and the example solutions follow these steps. In our experience this

approach helps students try to follow the numerical solutions of various problems.

We would like to thank Professors Jay Stoeckel, Jack Davis, and Mr. Gerry

Martin from the Ceco Concrete Construction, LLC, for providing some of the

images in the accompanying CD-ROM. The continued educational support by the

Northeast Cement Shippers Association, and in particular Kim Frankin, is greatly

appreciated. We are also grateful to students at the School of Architecture +Design

of Virginia Tech for their help and comments during the development of this book,

in particular Mr. Amir Abu-Jaber for his assistance in typing and editing the

manuscript and the solutions manual.
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Finally, we wish to thank the Pearson Education editorial and production staff

for their support and assistance. Many thanks to Bret Workman, who did a great job

with text editing. In particular, the assistance of Penny Walker from Techbooks is

greatly appreciated.

Mehdi Setareh Blacksburg, VA

Robert Darvas Ann Arbor, MI
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Chapter 1

Reinforced Concrete Technology

1.1 Introduction

Concrete and reinforced concrete are extremely versatile building materials.

Concrete, which essentially is a man-made stone, can take virtually any shape

and form the designer envisions. Because concrete is like a heavy liquid when

produced, it is poured into a mold and, when hardened, will take the shape of the

pre-built form.

The skillful use of reinforced concrete opens unlimited vistas for the designer.

Working with reinforced concrete is an experience in sculpting. Any sculptor

working on the creation of an art object must be fully familiar with the possibilities

and limitations of the material be it clay, metal, glass, or something else. Likewise,

the designer must be fully cognizant of the nature of reinforced concrete. How

is it made? How does it work? How will it serve in different environments?

Figures B1.1 and B1.2 in the Appendix B demonstrate the visual and artistic

importance of reinforced concrete as a building material.

Reinforced concrete is not a homogeneous material. It is a combination of two

materials: concrete and reinforcing, which is most often steel. Concrete, while

strong in compression, is relatively weak in tension. This weakness in tension

must be corrected by adding steel reinforcing. The successful combination of

these two distinctly different materials into one successful hybrid makes reinforced

concrete the most widely used building and structural material in the world.

To gain a better understanding of the complexity underlying the construction of

a reinforced concrete structure, consider Figure 1.1, which outlines the process and

the “players” involved. Of course there are many more players (like those who

manufacture materials such as cement, steel reinforcing rods, timber products used

in form making, and so on) but their inclusion would unnecessarily complicate an

already intricate web of involvements.
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1.2 The ACI Code

The rules and regulations governing any construction in the United States are set by

different model codes. The rules of a model code become the law in a given

municipality when the legislative body (state legislature, city council, etc.) adopts

them as the governing standard for building construction under its jurisdiction.

There are many model codes, among them the Uniform Building Code (UBC) and
the International Building Code (IBC). The UBC is traditionally used in the western

states of the United States. The IBC first appeared in the year 2000 and is a joint

effort of the BOCA (Building Officials and Code Administrators), the ICBO

Design 
architect/structural 

engineer

Design drawings, 
layout and size of 
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requirements (schedules), 

and specifications 
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Figure 1.1 Concrete construction overview
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(International Conference of Building Officials), and the SBCCI (Southern Building
Code Conference International).

For the design of reinforced concrete structures, these model codes usually adapt

the requirements set forth by the American Concrete Institute (ACI), headquartered

in Farmington Hills, Michigan. Engineers, architects, concrete producers, contrac-

tors, chemists, and cement manufacturers from all over the world belong to this

organization, but membership is available to anyone wishing to join. Student

membership is also available.

There are several hundred technical committees within the ACI that deal with

any aspects of producing and designing with concrete. These technical committees

collect the vast existing (and continually forthcoming) research information and

publish it in the ACI Journal as recommended standards. The updated collection of

standards are also published every other year or so in a large six-volume set, The
ACI Manual of Standard Practice.

One of the committees (ACI Committee 318) compiles and publishes a docu-

ment, Building Code Requirements for Structural Concrete, that contains the most

up-to-date rules recommended by the collective knowledge in the Institute. In the

past a new updated edition was published about every 6 or 7 years. Now the

Institute appears to have adopted a 3-year cycle to update the Code and incorporate

the latest and best available research information. The latest edition, ACI 318-14,
appeared in 2014. This book has already been updated to contain the latest changes

in the Code. Proposed changes in any new edition are first published in the ACI
Journal for review and comments from the membership; then the final revised

document is submitted to the Institute’s membership for approval. Upon approval, it

becomes an ACI Standard that governs the design of concrete and reinforced

concrete structures.

1.3 Concrete Ingredients

Concrete is a mixture composed of a filler material (aggregate) bound together by a

hardened paste. One might call it man-made stone. The hardened paste is the result

of a chemical reaction, called hydration, between cement and water. In addition,

admixtures—various chemicals, usually in liquid form—are often used to impart

desirable qualities to the freshly mixed or hardened concrete. The paste fills the

voids between the aggregate particles, gravel or crushed stone and sand, and binds

them together. The aggregate size distribution is carefully controlled to minimize

the resulting voids that must be filled with the paste. Minimizing the amount of

paste helps to minimize the amount of cement, which is the most expensive

ingredient of the mixture, because it requires a large amount of energy in its

manufacture. The usual proportion of the aggregate in normal-weight concrete is

about 65–75% by volume, while the paste makes up about 33–23%. The remaining

volume is air.

1.3 Concrete Ingredients 3



Thus the four ingredients of concrete (see Figure 1.2) are (1) cement (i.e., the

binder); (2) fine and coarse aggregates, which fill the bulk of the volume; (3) water

and air; and (4) admixtures, which are used to impart certain desirable properties.

These ingredients, carefully proportioned, are combined in a mixer.

1.3.1 Portland Cement

Mankind has used natural cements since ancient times. The magnificent stone

structures built by the Romans all used finely ground cementitious materials

(pozzolans) in the mortar. Other materials may be used to bind aggregate particles

together (asphalts are used in making asphaltic concrete for road construction), but

in the making of structural concrete, hydraulic cements are used without exception.

Hydraulic cements harden by reacting with water. The most important hydraulic

cement is the one first made by an English mason, Joseph Aspdin, who received an

English patent in 1824 for the composition and the process. He called it portland
cement because the concrete made with the cement had the color of natural

limestone quarried on the Portland peninsula. Portland cement is a fine powdery

material, composed mainly of calcium silicates and aluminum silicates. The mate-

rials needed to make cement are found in virtually every part of the world:

1. Limestone, which provides calcium oxide (CaO)
2. Clays, shales, and so on, which supply silicon dioxide (SiO2) and aluminum

trioxide (Al2O3)

Figure 1.2 Concrete ingredients (Courtesy of Portland Cement Association)
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The materials are pulverized, mixed in the right proportions, then baked in a

rotary kiln at very high (about 2,300 �F) temperatures. The product from the kiln, a

glassy-looking ceramic, is called clinker. During the baking, chemical changes

occur in the original materials, which form four important compounds (among

others of somewhat lesser importance). These are dicalcium silicate, tricalcium
silicate, tricalcium aluminate, and tetracalcium aluminoferrite. The relative pro-

portions of these compounds influence the characteristics of different cements.

The clinker is then ground into a fine powder. The average size of the particles is

only 0.0004 in. This is just an average; there are many smaller size particles.

Actually there are about seven trillion particles per pound of cement. The particles’

combined surface area is about 2,000 ft2/lb. Usually, small amounts of gypsum and

various other minerals are mixed with the ground clinker to adjust the setting time

of the cement or to impart some desirable properties to the final product. Different

types of cement are used for various jobs and conditions. For building structures in

most cases, Type I—normal portland cement, or Type III—high-early-strength

portland cement are used.

While the basic raw materials of cement (limestone, clay, shale, etc.) are

relatively cheap, the making of cement, chiefly the previously described baking

process, requires large amounts of energy (e.g., natural gas). Thus the cement is by

far the most expensive component of concrete. To save cement, other materials that

have hydraulic properties can be substituted for some part of the cement. Substitu-

tion of up to 35% to 45% by weight may be permitted. Fly ash, a by-product of

coal-fired power plants, and ground blast furnace slag are two such commonly used

substitutes.

1.3.2 Fine and Coarse Aggregates

Aggregates, such as the filler material, make up the bulk of the volume in concrete.

Thus it is important that the aggregates be of good quality, strong and resistant to

the environmental forces (physical and chemical) that will affect the concrete

throughout its intended life. Aggregates should not contain chemicals or materials

that might lead to the destruction of the inner structure of the concrete.

As mentioned before, approximately 65–75% of the total volume of concrete is

aggregates. In a somewhat arbitrary way they are divided into two classes. The

particles that pass a #4 sieve, that is, less than 0.25 in. are called fine aggregates or
sand. Coarse aggregates—natural gravel or crushed stone—are particles that are

larger than 0.25 in. Aggregates are mostly dug or dredged from a pit, river, lake, or

seabed. They are also produced by crushing rocks (limestone, dolomite, etc.) and

boulders.

Producers usually wish to fill most of the volume with the cheaper ingredients,

that is, the aggregates, so they first carefully separate the different grain sizes (the

fine and the coarse), then mix them in desirable proportions. In the resulting particle
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distribution, the successively smaller particles fill the voids between the larger

parts. This is referred to as good gradation.
At a certain point however, the smallness of a fine aggregate particle becomes

deleterious to the quality. The cement paste must coat all the particles to bind them

together. The smaller the particle, the larger is its surface-to-volume ratio. Thus

particles less than 0.006 in. are undesirable. If necessary, aggregates are carefully

washed to rid them of adhered clay or mud particles.

On the other end of the scale, the maximum size of the coarse aggregate must be

controlled as well. The gravel in the concrete mix must pass between closely spaced

reinforcing bars, and the concrete must smoothly fill often-intricate forms. In

general, the maximum-size aggregate should be no larger than one-fifth of the

narrowest dimension of the concrete form. Furthermore, in building structures,

where the minimum allowable clear spacing between reinforcing bars is 1 in., the

maximum size of coarse aggregate particles is usually limited to about 3/4 in. in the

concrete mix.

The unit weight of concrete made with gravel (or crushed stone) and sand

aggregates varies between 140 and 150 pounds per cubic foot (pcf). In calculations

an average weight of 145 pcf is used for unreinforced concrete, while for the weight

of reinforced concrete structures a value of 150 pcf is used. The difference between

these two values tends to account for the greater unit weight of the embedded steel

reinforcement.

The last 50 years has also seen a growing development in the use of lightweight

aggregates. In concrete structures, because the self-weight of the structure is a much

larger component of the total loads than in steel or wood-framed structures, it is

often desirable to use lighter aggregates than gravel or stone. Concretes made with

lightweight aggregates also have better insulating properties. Most of these aggre-

gates are artificially produced. For structural purposes expanded shales and clays

are used almost exclusively. Their use enables the production of structural

(as opposed to insulating) concretes with only 110–115 pcf unit weight. Light-

weight structural concrete is more expensive than normal weight concrete, but its

lighter weight often reduces the overall cost of the structure.

1.3.3 Water and Air

WaterWater is an important and necessary part of making concrete. The water used

to make concrete has to be free of chemicals and unwanted elements. In general, if

the water is drinkable, it can be used to make concrete, although some waters that

are not fit for drinking may also be suitable for concrete. Two important aspects

about the role of water in concrete need to be discussed: the hydration process and

the water/cementitious materials ratio.

The Hydration Process When water is mixed with cement, a chemical reaction

starts between them. This is called hydration, which creates the binding quality of

the paste. The two calcium silicates that make up about 75% of portland cement

6 1 Reinforced Concrete Technology



react with water to form two new compounds: calcium hydroxide and the more

important calcium silicate hydrate. The latter compound first appears as a gel,

which later turns into a solid. The surface area of the calcium silicate hydrate is

enormous. Its crystals can be discerned only in a scanning electron microscope.

These crystals adhere to each other, as well as to the grains of sand and gravel,

cementing (gluing) all parts together.

The hydration process develops in three stages. These are setting, hardening, and
strength development. They all are related to the rate of reaction between the

cement and the water. This rate of reaction must be carefully determined and

regulated to allow sufficient time for the concrete to be transported, placed, and

finished. When the hydration advances to a certain stage of setting, the concrete

becomes difficult or impossible to handle. Thus the concrete must be placed and

consolidated in the forms, usually within 2 hours after batching (the mixing of

ingredients with the water). Temperature also has a major influence on the rate of

the hydration, so various chemical admixtures may be added to either retard or

accelerate the process.

From the age of about 2 hours to about 6–8 hours, the hardening stage takes

place. After hardening, one may step on the concrete without leaving an imprint on

the surface. The concrete is far from being strong at this stage, however. Thereafter

begins the third stage, that is, the strength development that is quite rapid in the

early days and gradually becomes slower.

Hydration continues throughout the life of a concrete structure as long as free

moisture is available to react with unhydrated parts of cement particles.

Water/Cementitious Materials Ratio The water/cementitious (w/cm) materials

ratio is of paramount importance. It greatly influences the quality of the paste,

hence the quality of the concrete. It is defined as the weight of the total water to the

weight of the cement (or cementitious products) in the mix. The total water must

also account for the water contained by moist aggregates. The free water adhering

to the aggregates can be significant, so it must be carefully determined, and the

weight of the additional water into the mix must be adjusted accordingly.

For complete hydration only an approximate w/cm ratio of 0.25 (25 lb of water

for every 100 lb of cementitious material) is needed. This is a theoretical value only.

Evaporation of water from the mix cannot be prevented, thus reducing the amount

available for the hydration process. Furthermore, concrete made with such a small

w/cm ratio is too dry and unworkable. More water (higher w/cm ratio) is needed to

produce a concrete that is workable. Therefore, a minimum w/cm ratio between

0.35 and 0.40 is usually required.

Workability is not a scientifically definable term. It refers to the ease of placing,

consolidating, and finishing fresh concrete. It is true that more water in the mix

tends to increase the workability, but excess water creates all sorts of problems.

Practically all desirable properties of concrete, such as strength and durability, are

adversely affected by high w/cm ratios.

To begin with, concrete with excess water has a tendency to segregate. When the

fresh concrete is too fluid the heavier particles (coarse aggregate) settle on the

bottom of the form, that is, they segregate from the ideal distribution of particles.
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Then the excess water migrates to the surface in a process called bleeding,
producing a weak top layer. Large amounts of bleed water also make it difficult

to properly finish the top surface of floors. In the later stages of hardening and

strength gain, the excess water, that is, the water that was not used during hydration,

will evaporate from the concrete through tiny capillaries. This results in voids that

weaken the concrete. Figure 1.3 illustrates the dramatic strength loss with increas-

ing w/cm ratio while all other parameters, such as total cement content, are kept

constant in a given mix.

A balance must be struck between having too little water and an unworkable

mix, and having too much water that results in loss of strength and durability. Thus

an optimum water content must be used. Optimum water content is the minimum

amount necessary in a mix to maintain good workability. As will be discussed in the

section on admixtures, there are certain chemical compounds that, when added to

the fresh concrete, temporarily increase its fluidity. These are called water reducing
agents (plasticizers) or high-range water reducing agents (superplasticizers). The
former agents reduce the water requirement by 5–10%, while the latter ones reduce

it by as much as 20–30% without the loss of workability.

Air All concrete, even after the most careful consolidation, contains some air. Two

types of air may be present in a concrete mix: unwanted or “bad air,” and wanted or

“good air.” Bad air is basically large bubbles of air entrapped inside the mix. These

bubbles create discontinuity in the concrete’s texture and weaken its strength. Every

effort is made to minimize this type of air in hardened concrete. At the time of

placement the aim is to consolidate the concrete to the maximum possible density

and bring these unwanted air bubbles to the surface. Unfortunately, even with the

best consolidation efforts, these large air bubbles (well visible to the naked eye) get

stuck in the concrete by adhering to aggregates, reinforcing bars, and most often to
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Figure 1.3 Changes of concrete compressive strength with w/cm ratio and age
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the inner surface of the formwork, especially in columns and sides of deep beams.

There they become visible on the surface of the hardened concrete and are com-

monly referred to as “bug-holes.” In well-consolidated concrete, these may repre-

sent about 1% or less of the total volume. Their presence is not a source of major

weakness.

The second type of air, good air, is deliberately introduced into the concrete.

This process is called air entrainment. Properly used air-entraining agents distribute
tiny (microscopic) air bubbles uniformly in the concrete. The size of the bubbles

ranges between 0.0004 and 0.004 in., in excess of three billion air bubbles per cubic

foot of concrete. The chemicals used to create them are added to the concrete using

special admixtures. Air-entrainment makes the concrete mix more workable (thus

requiring less water), slightly decreases the weight of the concrete, and, most

importantly, increases the durability of the concrete.

1.3.4 Admixtures

Admixtures are chemicals added to the concrete batch during mixing or just prior to

placement to enhance properties such as rate of setting, hydration, workability,

strength, and so on. Four main types of admixtures are discussed here.

Air-entraining Admixtures Air entraining agents are hydrophobic, that is, they
repel water. Thus a film (e.g., soap film) forms on the surface of the bubbles that

prevents them from collapsing or coalescing. The film also keeps water out of the

bubbles. These bubbles are finely dispersed throughout the concrete during mixing.

They do increase the workability of the concrete, but their most important role is to

increase concrete durability. Durability in this context refers to concrete’s resis-

tance to the destructive process of freeze and thaw cycles that occur in certain

climates.

Hardened concrete contains fine capillaries that enable moisture to penetrate. As

free water in moist concrete freezes, it expands. The expansion is significant. Ice

takes up about 9% more volume than unfrozen water. This expansion exerts

hydraulic pressure on the yet unfrozen water, which in turn exerts pressure on the

surrounding paste structure. If this pressure is too great for the tensile strength of

the paste to withstand, the paste structure will rupture and collapse to provide the

excess room needed for the ice. This creates more volume the next time around for

the penetrating water, thus even more room is needed to accommodate the

expanding ice. This cyclic phenomenon continues, resulting in scaling and crum-

bling of the concrete.

Entrained air voids act as relief reservoirs in the paste structure. The expanding

water in the capillaries can enter the storage space provided by these well-dispersed

tiny bubbles by overcoming the air pressure existing within the bubbles. On

thawing, the water, driven out by the compressed air, returns to the capillaries.

To impart proper freeze/thaw resistance to building structures the accepted range

is to have about 5–7% entrained air in the hardened concrete volume. Air content of
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the freshly mixed concrete can be measured right at the job site prior to placement.

This ensures that the hardened concrete will have an appropriate amount of

entrained air. The actual air content can also be established on core samples

taken from the already hardened concrete. The two different tests may give

different results, because some air inevitably will be lost during placement and

consolidation.

Accelerating Admixtures (Accelerators) This admixture hastens the setting of

concrete by speeding up the hydration process, which in turn makes the concrete

gain strength faster, especially at an early age. Similar results may be obtained by

using Type III, or high-early-strength portland cement, by lowering the w/cm ratio,

or by curing the concrete at higher temperatures. Accelerators are traditionally used

in cold weather construction. Cement hydration is an exothermic process, that is, it
generates heat. The use of accelerators reduces the setting and hardening times. The

accelerated hydration produces a larger amount of heat, which helps to prevent the

concrete from freezing. In the past, calcium chloride was used as an accelerator, and

some products on the market still contain calcium chloride. This chemical, how-

ever, has many potentially dangerous side effects (e.g., chloride ions in the presence

of moisture enhance corrosion of the reinforcing), so its use is strongly discouraged.

Several, non-chloride–based and noncorrosive accelerators are available for use.

Superplasticizers This admixture reduces the water needed to create a flowing

concrete as well as the water that otherwise would be needed for proper workability.

The reduced w/cm ratio results in a higher strength concrete with the same amount

of cement. Superplasticizers are indispensable when concrete is pumped between

the point of discharge from the delivery truck and the point of placement. Normal

structural concrete is said to be workable when the slump is about 3 in. (see

Section 1.5.1 for the slump test that is used to check consistency and workability).

Such concrete is too stiff to flow through a 5-in. or 6-in. diameter hose. Adding a

superplasticizer will temporarily increase a 3 in. slump to 8 or 9 in.; thus the

concrete behaves like a liquid for a short time.

Retarding Admixtures (Retarders) As the name implies, retarders have an effect

opposite to that of accelerators. They slow down concrete hydration and increase

the setting time. Retarders are used for hot weather construction because the

hydration process is much faster at elevated temperatures. Their use enables

the contractor to place and finish the concrete before advancing hydration makes

the concrete difficult to handle. Retarders are also used to make exposed aggregate

elements in the precast concrete industry. A layer of retarder paste is smeared on the

inside of the form prior to the placement of the concrete. In about 12–24 hours

(depending on the curing technique used), the precast concrete element is removed

from the form and the retarder paste is washed away, exposing the surface of the

underlying aggregate structure. (Note: For additional information, refer to ACI
212.3R: Chemical Admixtures for Concrete, reported by ACI Committee 212.)

10 1 Reinforced Concrete Technology



1.4 Curing

Freshly placed concrete is consolidated to bring large entrapped air bubbles and

excess water to its surface. This is usually done by high-speed vibrators. The

vibrating action reduces the friction between the particles and makes the concrete

behave like a thick fluid. At the same time, entrapped air bubbles and excess water

are forced to rise to the surface. Vibrators are elongated cylinders with an unbal-

anced weight rotating inside at a high frequency. Vibrators are of different diam-

eters, from about 3/4 up to 6 in.; the most frequently used ones are 2 to 2�1/2 in. in

diameter. Frequencies may vary from 5,000 to 15,000 cycles per minute. Vibrators

should be rapidly lowered into the concrete and then slowly withdrawn for best

effect.

After the freshly placed concrete is finished, it is necessary to create the best

possible environment for the concrete to harden and gain strength. This process is

called curing. Hydration and strength gain will continue as long as unhydrated

cement particles and adequate moisture are present for the chemical reaction. Thus

the moisture in the concrete after the consolidation and finishing processes must

remain in the concrete. If the concrete dries out (i.e., the relative humidity inside
drops below 80%), the hydration stops. Similarly, if the moisture in the concrete

freezes, the hydration will stop and the expansion of ice will destroy the paste

matrix, which is at its early stages of formation.

So the concrete should be kept moist and comfortably warm. Concrete is kept

moist by covering it to prevent evaporation from the surface, or sprinkling it several

times daily. Chemical curing compounds also are available. These are sprayed on

the concrete to form a film that prevents moisture from escaping.

In the wintertime, freshly placed concrete is covered with insulation blankets. It

is also a usual practice to enclose the space below the fresh concrete and heat the

space with propane space heaters. This process not only prevents the freshly placed

concrete from freezing but enhances the speed of the hydration. (Note: Detailed

information may be found in the ACI Standards, ACI 305—Hot Weather Concret-
ing and ACI 306—Cold Weather Concreting. These contain state-of-the-art recom-

mendations regarding the topics). Figures B1.3 and B1.4 in the Appendix B show

two different methods of concrete placement.

1.5 Testing Concrete

Testing of concrete aims (1) to ensure that it has the required properties called for in

the design documents and specifications, and (2) to determine the properties of

concrete in an existing structure.

Many tests can be performed to evaluate certain properties of fresh or hardened

concrete. The three most commonly used tests are as follows.
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1.5.1 Slump Test

The slump test measures the consistency and workability of concrete. This test is

performed on fresh concrete either as it is discharged from the truck (known as

testing at the point of delivery), or after it has been conveyed to the point of

placement. The distinction is sometimes important, for significant slump loss may

occur during conveyance. The device used in this test is a 12 in. high truncated

metal cone, 4 in. wide at the top and 8 in. wide at the base (see Figure 1.4a). The

method of sampling the fresh concrete, and of filling and consolidating the concrete

inside the slump cone is standardized in the ASTM (American Society for Testing

and Materials) C143 standard.

4 in.

12 in.

8 in.

Ruler

Slump

Slump cone
Settled concrete 

a

b

Figure 1.4 (a) Slump cone. (b) Slump test
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The cone is filled with concrete in three equal-volume layers, and each layer is

consolidated within the cone by 25 strokes of a 5/8-in. diameter rod with a rounded

end. After the third layer is filled, the excess concrete is struck off with the steel rod,

and the cone is carefully lifted off. The cone is then placed upside down next to the

concrete, and the steel rod is placed across its top. The distance measured from the

bottom edge of the rod to the original center of the slumped concrete mass is the

slump (Figures 1.4b and 1.5). The slump recommended for good workability and an

acceptable w/cm ratio depends on the type of construction. The common range of

slump in building structures is 3–4 in. (unless superplasticizers are used).

Figure 1.5 Slump test (courtesy of Portland Cement Association)
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1.5.2 Cylinder Test

The most important property of hardened concrete is its compressive strength, fc
0.

This value refers to the cylinder compressive strength of the concrete at the age of

28 days and forms the basis of the design of a structure. In the United States

compressive strength of concrete is measured on 6 in. diameter by 12 in. high

cylinders. (Note: The sampling of the fresh concrete is governed by ASTM C172,

“Method of Sampling Freshly Mixed Concrete.” The making and curing of the

cylinders are governed by ASTM C31, “Practice for Making and Curing Concrete

Cylinder Test Specimens”.)

The architect or design engineer specifies the number of cylinders cast for

testing. Typically one set of cylinders is made from about every 50–100 yd3 of

concrete, but not less than one set from each day’s pour. Usually three cylinders

comprise one set. After the concrete is hardened, the cylinders are transported to a

testing laboratory where they are placed in a curing chamber. The temperature

inside the curing chamber is kept at 72 �F (room temperature) with 100% relative

humidity. These cylinders thus treated are called lab-cured cylinders. They indicate
how good the concrete mix was, not how good the concrete is in the structure, as the

contractor may not maintain ideal curing conditions on the site. To determine the

strength development of the concrete in the field, extra cylinders may be cast and

kept in the field to cure under the same conditions as those of the structure. These

are known as field-cured cylinders. Comparing the strength of field-cured cylinders

to that of lab-cured cylinders helps to determine how successful the contractor’s

efforts were in providing good curing.

The strength test is performed in accordance with ASTM C39, “Test Method for

Compressive Strength of Cylindrical Concrete Specimens.” Compression force is

applied to the prepared concrete cylinder by a hydraulic jack (Figures 1.6 and 1.7).

The load is increased progressively at a rate of 35� 5 psi (pounds per square inch)

per second until the concrete cylinder fails. The load required to break the cylinder

is noted, then divided by the cross-sectional area of the cylinder. The result gives

the breaking stress, or cylinder strength. A strength test is the average strength of

two cylinders cast from the same sample.

The acceptance of the concrete (from the strength point of view) is regulated by

the ACI Code. The strength of the concrete is considered satisfactory when:

▪ The arithmetic average of any three consecutive strength tests equals or exceeds

fc
0, (i.e., the specified design strength)

▪ No individual strength test (the average of two cylinders) falls below fc
0 by more

than 500 psi when fc
0 is 5,000 psi or less; or by more than 0.10 fc

0 when fc0 is more

than 5,000 psi

Often extra cylinders are cast and tested at an earlier age (7 days) to evaluate the

development of strength. Although different cements may gain strength at some-

what different rates depending on the relative proportions of the main chemical

compounds, the 28-day strength can be estimated by extrapolating early test data.
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The problem with the 28-day strength test is that if the results are unsatisfactory,

the remedy is usually difficult and expensive. In any major project, construction

progresses far in 28 days, often resulting in two or three additional floors. Thus,

removing the weak concrete and replacing it is rarely an option. The various

strengthening methods of the structure are generally very expensive. So it is of

paramount importance to have good quality control throughout the process from

Concrete cylinder

6 in.

12 in.

Figure 1.6 Cylinder test

Figure 1.7 Cylinder test (Courtesy of Portland Cement Association)
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mixing (making sure that all the required ingredients are there in the right

proportions), to transporting, placing, finishing, and curing.

1.5.3 Core-Cylinder Test and In Situ Tests

Core-cylinder tests are used to evaluate the strength of the concrete in an existing

structure. The sample is obtained by coring the hardened concrete. The size of the

sample is typically 2 in. in diameter and 4 in. high, and its compressive strength is

determined in a manner similar to that for a normal cylinder test. Larger-diameter

and longer cylinders may be cored; however, the ratio of height to diameter should

preferably equal 2.

Nondestructive tests exist, that is, tests that do not require the removal of a

sample. The most popular is the rebound hammer test. This test uses a calibrated

spring-loaded device that shoots a rod against the concrete surface. A dial gage

measures the rebound that is correlated to the concrete’s modulus of elasticity, from

which an estimate of the compressive strength can be made.

1.6 Mechanical Behavior of Concrete

1.6.1 Concrete in Compression

Concrete is very strong in compression. In the United States, cylinder tests are used

to study the behavior of concrete in compression. In other parts of the world,

compression testing is typically done on 20-cm cube samples. Results obtained

from the two different tests are different for samples made of the same concrete.

This is due to the shape and proportions of the samples.

The deformation of the sample under load during testing may also be measured

to establish the stress-strain diagram. Axial compression stress is defined as the

force divided by the cross-sectional area f ¼ P
A

� �
, which has units of psi (pounds

per square inch) or ksi (kips per square inch). In SI (International System) units, the

stress may be measured in KPa (kilopascal) or MPa (megapascal) units. Strain is the

deformation of a unit length of the member and is defined as ε ¼ Δ‘
‘

� �
, where Δ‘ is

the change in the length, and ‘ is the original length. Strain is a dimensionless

number, for example, inch/inch.

It must be emphasized that the cylinder test used to evaluate the strength of

concrete is only a representative sample and provides only an indicative and

correlative value of how the concrete may behave in the structure. The cylinder,

when tested, is free to expand laterally. The concrete in a structure may be confined

by its surrounding. A confined sample of concrete is much stronger. Note also that

the cylinder test determines the strength of the concrete under short-term loading.
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Research indicates that under long-term loading (e.g., within building structures),

the strength of the concrete is less than that exhibited by the cylinder testing.

Different concrete mixes exhibit not only different strengths, but very different

deformation characters. Figure 1.8 shows the stress-strain diagrams of typical

concrete mixes.

A study of the stress-strain curves leads to important observations. At small

strain levels there seems to be a straight-line relationship between strain and stress,

that is, concrete seems to follow Hooke’s law (stress is linearly proportional to

strain). This almost elastic relationship is valid up to about 30–50% of the ultimate

strength. The relationship then starts to deviate from this reasonably assumed

straight line, that is, with increasing strain the stress grows, but at a slower rate.

The peak stress level in typical concretes used in construction occurs near a strain

value of 0.002. Then the stress in the cylinder starts to decrease with increasing

strain until an ultimate strain value is reached, at which point the sample fails. The

ultimate strain is different for different strength concrete mixes, as shown in

Figure 1.8. In general, weaker concrete has greater ultimate strain. Note that in

reinforced concrete design an ultimate useful strain of 0.003 is assumed. This will

be further discussed in following chapters where we deal with the design of

reinforced concrete members.

Most building projects utilize concrete with fc
0 in the range of 3,000–6,000 psi.

The last couple of decades have seen the industrial development and utilization of

ultra-high-strength concretes. Concretes with 10,000 to 12,000 psi compressive

strength are routinely available from many suppliers, and even higher-strength

concretes, some exceeding 20,000 psi, can be manufactured. Ultra-high-strength

concretes are used mainly in columns of high-rise buildings.

The compressive strength of concrete, fc
0, varies with time. Figure 1.9 shows this

variation. Well cured concrete gains most of its potential compressive strength

within the first 28 days. After that, the strength gain proceeds at a much slower rate,

fc (psi) 
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0 ec
0.001 0.002 0.003 0.004

Figure 1.8 Stress-strain diagram of concrete in compression
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although the hydration process between cement and water may continue in the

presence of available free water.

Modulus of Elasticity of Concrete In elastic materials (or materials that behave in

an elastic way up to a certain stress level), a definite linear relationship exists

between stress and strain. The coefficient in the relationship is called the modulus of
elasticity. The capital letter E is used to denote this modulus, and the relationship is

defined as stress¼modulus of elasticity� strain.
The behavior of concrete, as described by the typical stress-strain curves in

Figure 1.8, is not this simple. The diagrams are not linear; thus, the E value (i.e., the

slope of the tangent to the curve at any point) is changing continuously. To simplify

the matter and establish a value that can be used in calculations, a substitute E value

is used. The E value used is the secant modulus, which is the slope of a line

connecting the point of zero stress and zero strain to the stress point of 0.45 fc
0

and its corresponding strain (Figure 1.10). By definition, this value is the modulus

of elasticity of concrete.

This value is different for different strength concretes: Stronger concretes have

greater E. Furthermore, concretes made with different aggregates (normal-weight

concrete, lightweight structural concrete, etc.) also exhibit different moduli of

elasticity.

The value for the modulus of elasticity is needed when calculating instantaneous

(also called elastic) deformations of structures under load, such as the deflection of

a beam. This is justified, for at stress levels that exist during normal use of

structures, the concrete responds in a quasi-elastic manner to short-term loads.

After studying the results of hundreds of tests and applying statistical analysis

(fitting a mean curve to the values), researchers have determined that Equation (1.1)

provides a reasonable approximation for the modulus of elasticity of concrete, Ec

for wc between 90 and 160 pcf (ACI Code, Equation 19.2.2.1.a).
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Figure 1.9 Compressive strength versus time for concrete
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Ec ¼ 33w1:5
c

ffiffiffiffi
fc
0p

ð1:1Þ

where wc¼ the weight of the concrete in pounds per cubic foot and fc
0 ¼ the

ultimate cylinder strength, or specified compressive strength of concrete in pounds

per square inch. The resulting unit for Ec is psi, and substitution into the equation

must be made using the units as defined.

Unreinforced normal-weight concrete is about 145 pcf. When wc¼ 145 pcf is

substituted in Equation (1.1), the result, after rounding, is Equation (1.2) (ACI

Code, Equation 19.2.2.1.b):

Ec ¼ 57,000
ffiffiffiffi
fc
0p

ð1:2Þ

As discussed above, there are two ways of determining the modulus of elasticity:

(1) by testing, and (2) by using the approximate equation provided by the ACI

Code. Because the concrete that will go into the structure has not been made,

placed, and cured at the time of design, the designer is invariably forced to use the

accepted approximate equation.

Example 1.1 Find the modulus of elasticity of a concrete mix with the compres-

sion strength, fc
0 ¼ 3,500psi. Assume the mix is lightweight structural concrete

with a unit weight of 110 pcf.

Solution The ACI approximate equation for Ec is:

fc

Esecant

f �c

0.45f �c

e

Figure 1.10 Concrete secant modulus
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Ec ¼ 33w1:5
c

ffiffiffiffi
fc
0p

Substituting wc¼ 110 pcf and fc
0 ¼ 3,500psi:

Ec ¼ 33 110ð Þ1:5 ffiffiffiffiffiffiffiffiffiffiffi
3,500

p
Ec ¼ 2,252,356psi

or

Ec ¼ 2,252ksi

1.6.2 Concrete in Tension

The strength of concrete in tension is only about 8–12% of its compressive

strength, fc
0, that is, it is a very weak material in tension. The ratio of tensile to

compressive strength is greater in low-compressive-strength concrete than it is in

high-compressive-strength concrete. In fact the tensile strength of concrete is

completely disregarded when designing reinforced concrete structures in flexure

(bending). It is somewhat cumbersome to make reliable concrete samples that could

be tested in pure tension, so substitute tests are often used. One such test determines

the tensile strength of the concrete in an unreinforced beam by testing it in flexure.

Because the tensile strength of concrete is much less than its compressive strength,

the beam will fail on the tension side of the cross-section. If we know the load, span,

and cross-section of the beam, we can calculate the maximum moment on the beam

and, consequently, the ultimate tensile stress at failure. This tensile stress value is

called the modulus of rupture, or fr.
From statistical analysis of data, an empirical formula (Equation (1.3)) evolved

and has been adopted by the ACI Code (ACI Code, Equation 19.2.3.1).

f r ¼ 7:5λ
ffiffiffiffi
fc
0p

ð1:3Þ

In this equation fc
0 and fr are in psi units. (Substitution of fc

0 must be made in psi,

otherwise the formula will produce erroneous results). λ is a modification factor to

adjust the equation when lightweight aggregates are used and varies depending on

the type of aggregates. λ is equal to 0.75 for the “all-lightweight” concrete;

0.75–0.85 for the “fine blend-lightweight” concrete; 0.85 for the “sand-lightweight”

concrete; 0.85–1.0 for “coarse blend sand-lightweight” concrete; and 1.0 for the

“normal weight” concrete. This formula is simple to use, but in most cases, it

overestimates the true tensile strength of a concrete element.
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Example 1.2 A test was performed to determine the modulus of rupture of a

concrete. A concrete beam 3 in.� 6 in. in cross-section and 90–000 long was cast

and supported at the ends on masonry blocks. The beam was loaded at the one-third

points of the span with “concentrated” loads. The beam failed when it cracked on the

bottom face at a load of 150 lb at each location (which led to an immediate collapse).

The applied load and test setup is shown in Figure 1.11. The compressive strength of

the concrete was determined as 4,000 psi via a cylinder test. The concrete weight was

wc¼ 150 pcf (normal weight). Calculate the modulus of rupture of the concrete

using (a) the results of the test, and (b) the ACI approximate equation.

Solution

(a) Test Results The beam is subjected to two loads: its weight, and the two

concentrated loads as shown in Figure 1.11. The beam self-weight is a

uniformly distributed load, with a magnitude of

(3)(6)
w = (150) = 18.75 lb/ft

(12)(12)

Conversion factor for in2 to ft2

The maximum moment for the beam occurs at the midspan. The equations for

the maximum moments are as follows:

Mmax ¼w‘2

8
for the beam with uniform loadð Þ

Mmax ¼P‘

3
for the beam with concentrated loadsð Þ

Mtotal ¼w‘2

8
þP‘

3

Mtotal ¼ 18:75 9ð Þ2
8

þ150 9ð Þ
3

Mtotal ¼ 190þ450¼ 640 ft-lb

P = 150 lb P =150 lb 

3'-0" 3'-0" 3'-0"

P = 150 lb P = 150 lb w = 18.75 lb/ft 

Figure 1.11 Beam loading for Example 1.2
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Mtotal is the internal moment at the mid-span of the beam. This moment creates a set

of compression stresses at the top, and tensile stresses at the bottom of the beam as

shown in Figure 1.12. The maximum bending stress occurs at the top (compressive)

and the bottom (tensile) of the cross section. The equation for the maximum

bending stress is:

fb ¼
Mc

I
¼ M

Sm

where c is the distance from the neutral axis (where stress is zero) to the top or

bottom of the beam, I is the moment of inertia of the section about its neutral axis,

and Sm is the elastic section modulus. For a rectangular shape, Sm is:

Sm ¼ bh2

6

Therefore,

Sm ¼ 3ð Þ 6ð Þ
6

2

¼ 18 in:3

Conversion factor for feet to inches

(640)(12)
18

M
fr = fb = Sm

= = 427 psi

(b) ACI Approximate Equation

λ¼ 1:0 normal weight concreteð Þ
fr ¼ 7:5λ

ffiffiffiffi
fc
0p ¼ 7:5 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

4,000
p

fr ¼ 474psi

b =3 in.
P = 150 lb 

w = 18.75 lb/ft A

h =6 in.

Section A–A 
A

4'-6" 

M total = 640 ft-lb 
Neutral
axis

fb

Figure 1.12 Internal forces and stresses for Example 1.2

22 1 Reinforced Concrete Technology



1.7 Volume Changes in Concrete

Concrete is not an inert material, so its dimensions change in response to environ-

mental influences. The most important ones are temperature change, concrete

shrinkage, and concrete creep.

1.7.1 Temperature Change

Concrete, like most other materials, expands with rising temperature and contracts

with falling temperature. Suppose a concrete element with the length ‘ is restrained
at only one end (A) (see Figure 1.13a). Under an increase in temperature of ΔT
(degrees of Fahrenheit), the element expands and has an increase in length equal to

Δ‘. This increase in the length can be calculated using Equation (1.4).

Δ‘ ¼ αΔT‘ ð1:4Þ

where α is the coefficient of thermal expansion, which depends on the type of

material. For normal weight concrete, α is about 5.5� 10–6 to 6� 10–6 in./in./�F.
The length change caused by thermal expansion/contraction in a concrete

element can be calculated using Equation (1.4). For example, due to a 100 �F
temperature change, a 200-ft-long building will change its length Δ‘¼ αΔT‘¼
(6� 10–6)(100)(200� 12)¼ 1.44 in., a very significant length change indeed.

Now, if both ends of the concrete element (Figure 1.13b) are restrained, the

length cannot grow at any increase in temperature, and the restraint causes longi-

tudinal compression stresses.

B A

a

B A

b

D

Figure 1.13 Effects of temperature on concrete: (a) free to move, (b) restrained

1.7 Volume Changes in Concrete 23



Because f ¼ Ecε and ε ¼ Δ‘=‘, Equation (1.5) can be used to calculate the

change in length in terms of the stress f.

Δ‘ ¼ ε‘ ¼ f

Ec
‘ ð1:5Þ

Combining Equations (1.4) and (1.5) yields Equation (1.6).

f

Ec
‘¼ αΔT‘

f ¼ EcαΔT ð1:6Þ

where Ec is the modulus of elasticity of the material in psi (or ksi), and f is the

resulting stress in psi (or ksi) developed in the restrained element due to a change in

temperature equal to ΔT.
As shown by Equation (1.6), large stresses can build up if the length change is

restrained. The buckling of pavements often seen on hot days is the result of two

neighboring pavement slabs pressing each other (in the absence of a wide enough

expansion joint) while trying to expand. The buckling relieves the prevented

expansion. On the other hand, tensile stresses will build up when concrete tries to

shorten with dropping temperatures if the free contraction is somehow hindered.

For example, for an fc
0 ¼ 4,000psi concrete:

f ¼ EcαΔT

f ¼ 57,000
ffiffiffiffiffiffiffiffiffiffiffi
4,000

p� �
6� 10�6
� �

1:0ð Þ ¼ 21:6psi

for each degree of temperature change (ΔT¼ 1 �F), if the length change is fully

prevented. If the concrete in the above example has an ultimate tensile strength of

7:5
ffiffiffiffiffiffiffiffiffiffiffiffi
4,000

p ¼ 474psi, the theoretical value of the temperature drop that will crack

this concrete is only 474/21.6¼ 21.9 �F, a rather small temperature change.

Admittedly it is very rare that concrete is fully restrained against movement due

to temperature change. But the unsightly cracking of concrete structures all around

us provides ample testimony to the results of restrained volumetric changes.

The value of α for concrete is quite similar to that of steel (6.5� 10–6 in./in./�F).
Thus, the reinforcing steel inside the concrete will expand or contract at about the

same rate as the surrounding concrete, without significant stresses resulting from

expanding or contracting at a different rate. Aluminum, for example, has a coeffi-

cient of expansion roughly twice that of steel. Thus, the use of aluminum as

reinforcement for concrete is not a good idea; for when the temperature rises, the

aluminum rod expands at twice the rate of the surrounding concrete at the interface

between the two materials. The conflicting expansion rates cause all kinds of

“weird” stresses at the interface, breaking down the necessary bond between the

two materials.
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1.7.2 Concrete Shrinkage

Shrinkage means that the concrete becomes smaller in volume. There are many

causes of shrinkage, but the most significant contributor to this phenomenon is the

loss of water.

As previously discussed, more water is needed in a concrete mix than the cement

uses for hydration. Some of this excess water bleeds and evaporates during and

immediately following consolidation while the concrete is still plastic. The heavier

parts in the still-fluid concrete tend to settle, causing what is known as setting
shrinkage or plastic shrinkage. Reinforcing bars or large aggregates near the

surface obstruct the uniform settlement of the concrete, thus enhancing the forma-

tion of thin hairline cracks on the surface. These hairline cracks look like cobwebs:

lots of relatively short, thin cracks in all directions. Their depth is usually limited to

small fractions of an inch.

After the concrete hardens, it still contains free water in the capillaries and water

adsorbed on the surface of particles. As this water slowly evaporates, the concrete

continues to shrink, not unlike a sponge shrinks as it dries. This causes what is

known as drying shrinkage. The rate of the drying shrinkage is tied to the speed of

the evaporation, which in turn depends on the porosity of the concrete and the

environment, that is, temperature and relative humidity. Concrete in highly humid

climates shrinks less than corresponding concrete does in arid climates.

More than 90% of the drying shrinkage happens within the first few weeks after

casting. Drying shrinkage, however, is partially reversible. Thus, if the concrete

gets soaked it swells, and when it dries out again it shrinks. If the drying shrinkage

could take place without any restraint whatsoever (a theoretical proposition rather

than what really occurs), no stress buildup would result. Because, however, free

shrinkage is usually restrained (i.e., something prevents the concrete from shorten-

ing in any direction), tensile stresses start to develop and build up. In moderate

climates the average dimensional change is about 300 millionths (300� 10–6 in./

in.). Compared to the length change due to a decrease in temperature, the effect of

the average shrinkage value is similar to that of a 50 �F temperature drop. If the

developing tensile stress is greater than the tensile strength of the concrete at any

point, the concrete will crack. The crack should be thought of as a relief from

tension caused by the prevention of free movement.

An example is a long wall that has been cast on top of its footing. The footing has

already cured and hardened. When the wall tries to shrink, the footing restrains its

bottom edge from moving. The top of the wall, however, is free to shrink length-

wise. Thus, a tug of war results between the top and the bottom of the wall, resulting

in one or more cracks with diminishing width from top to bottom (Figure 1.14a).

Another example is a floor that is cast over walls placed earlier, thus hardened.

As the floor shrinks and tries to change its long dimensions, it cannot because the

walls restrain it. The buildup of tensile stresses results in cracks, especially in the

corners, where the edges of the slab try to move in two different directions. The

relief comes as diagonal cracks in the corners (Figure 1.14b).
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Plastic shrinkage cracks are characterized as random surface cracks, that is, they

do not penetrate the full thickness of the concrete element. Drying shrinkage cracks,

on the other hand, are usually full depth and quite wide (1/8 in. or more is not

unusual).

The mitigation of the effects of shrinkage requires good design and construction

practices. The following actions help to minimize cracking in slabs and walls due to

shrinkage:

▪ Use the minimum amount of water in the concrete mix. The concrete should

have not only the smallest w/cm ratio, but also the smallest amount of water in

absolute terms. This also means using the smallest amount of cement necessary

to achieve the desired concrete strength, because more cement introduces more

excess water in the mix. Such a tactic is also good for keeping costs down.

▪ Use good curing technique. Moist curing helps keep the excess water from

evaporating too soon (i.e., before the concrete has a chance to develop its tensile

strength).

▪ Limit the size of the pour to about 60–80 ft maximum length in any direction.
The construction is broken up into segments by the use of construction joints
(Figure 1.15a). If the second pour is 3–4 days after the first pour, some

shrinkage has already taken place in the first pour. On some projects the pouring

sequence may follow a checkerboard pattern. Other construction techniques

leave a gap between two neighboring pours (12–24 in.) that is filled in when the

larger pours have undergone most of their shrinkage.

▪ Provide reinforcing steel (shrinkage reinforcement). Because steel bars are

bonded to the concrete, they restrain and limit the change of length of the

concrete.

▪ Use shrinkage compensating cement (Type K). This particular cement type

expands during the early stages of hydration, before any drying shrinkage

occurs due to moisture loss. Reinforcing is also provided in both directions in

a wall or a slab, and the expansion of the concrete at the early stage of hardening

Crack

Footing 

a

Cracks

Walls below 

b

Figure 1.14 Shrinkage cracks: (a) Concrete wall; (b) Concrete floor
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induces tension in the steel (i.e., the expanding concrete tries to elongate the

reinforcing bars). If we recall Newton’s law on action and opposite and equal

reaction, it is easy to understand that the steel in turn will compress the concrete.

When shrinkage sets in and causes tension in the concrete, it first will have to

overcome the precompression in the concrete. Thus, the forces will either

completely cancel each other out, or at least the resulting tensile stresses will

be greatly reduced.

▪ Provide expansion/contraction or control joints (Figure 1.15b, c, respectively).
At an expansion joint the longitudinal reinforcing is interrupted. The joint is filled
with an elastomeric material that can be compressed when the concrete expands,

and permits the free movement of the two parts relative to each other when the

concrete shrinks. A key-way (or a dowel that is greased on one side of the joint to

prevent bonding) forces the two parts to stay together in the out-of-plane sense

while still allowing them to move freely longitudinally. This prevents one side

from moving higher or lower than the other and thus creating a trip hazard or a

step. The role of the control joint is different. A weakening groove, usually 1/8 in.

wide and about one-fourth to one-fifth of the slab thickness, is either tooled into the

freshly finished concrete, or cut with a saw into the concrete as soon as it hardens

enough so as not to leave an imprint on the surface. This allows the shrinking

concrete to crack along that straight line where the section is weakened. Control

joints essentially locate shrinkage cracks along predetermined paths instead of

letting them naturally meander all over the slab or wall.

1.7.3 Creep of Concrete

A structure deforms when it is subjected to loads. For example, beams and slabs

deflect, columns become shorter, and so on. For every stress level, there is a

corresponding strain. Strain is nothing else than the deformation of a unit length

of the material.

Steel bars 
First pour Second pour 

Dowel, greased on 
the second pour side 

First pour Second pour

Expansion
joint material 

T/4 

T

Saw cut or tooled joint c

ba

Figure 1.15 (a) Construction joint, (b) expansion joint, (c) control joint
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Concrete structural elements experience two types of deformations under loads:

(1) instantaneous or elastic deformation, and (2) long-term deformation, or creep.
Instantaneous deformations occur as soon as the member is subjected to load.

This is similar to what happens in other construction materials such as steel.

Creep, on the other hand, is the gradual long-term deformation of concrete under

a sustained load. Nearly 75% of the total creep happens during the first year, and

the total creep can be two to three times the instantaneous deformation

(Figure 1.16).

The causes of creep are complex. Interestingly, one contributor is the loss of

adsorbed water. In drying shrinkage the loss occurs due to the lower relative

humidity of the ambient atmosphere, and this loss leads to the shrinkage. In the

case of creep, the sustained compression on the concrete squeezes some of the

moisture out of the concrete. This in turn lets the solids consolidate even more.

The second major cause of creep is thought to be microfracturing in the hardened

paste around sharp edges of aggregates under the effect of compression.

Creep deformations can be very significant. They are caused mainly by dead

loads or sustained loads, because the self weight and some permanently attached

superimposed dead loads are dominant in most concrete structures, whereas the

transitory (live) loads are less significant. Creep could account for an additional

100–300% of the instantaneous deformations. Thus, a beam’s original deflection of

1 in. may grow to anywhere between 2 and 4 in. If this additional deformation is not

accounted for in the detailing of attached items, such as partitions, it may cause

serious distress in them.

1.8 Reinforcing Steel

Reinforcing steel is used to overcome the weakness of concrete in tension. The role

of the reinforcing is to resist the tension in structures. Thus, a hybrid structural

composite called reinforced concrete is created, where each material does the work

it is well suited for. Concrete takes care of the compression, while the steel takes

care of the tension.

Creep (long-term deformation) Instantaneous deformation

Figure 1.16 Instantaneous and long-term deformation in a concrete beam
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1.8.1 Behavior of Steel Under Stress

To better understand the material that will be discussed in the following chapters,

we review the behavior of steel under stress. This review will also help to famil-

iarize the reader with the terminology that will be used later.

Consider Figure 1.17, which is a typical stress-strain diagram for steel in tension.

There are four distinct zones in the stress-strain diagram for steel. First is the

elastic zone, where steel under stress will go back to its original length if it is

released. In this zone the stress in the material is linearly proportional to the strain.

(Robert Hooke formulated this relationship, so we refer to it as Hooke’s law. Hooke
worked with Christopher Wren on the construction of St. Paul’s Cathedral in

London, England.) When steel is pulled beyond the elastic zone (elastic or propor-

tional limit) it yields. Yielding is an elongation of the steel with no appreciable

change in stress. The onset of yielding (elastic or proportional limit) is the begin-

ning of the plastic zone. When the steel is pulled beyond the proportional limit it

will not return to its original length, but remain permanently deformed.

The stress at which steel yields is called yield stress and it is noted as fy. The
corresponding strain is called yield strain or εy. By the time yielding ends, the

corresponding strain is about eight to ten times the strain at the proportional limit.

After yielding, the steel’s stress/strain curve starts to “climb again” in a curvilinear

mode until it reaches a plateau called the ultimate strength ( fu). This curvilinear
zone of the stress/strain curve is called strain hardening.

fs

Elastic
zone Plastic zone 

Strain- 
hardening

zone
Failure 

zone

fu
Failure 

fy

Es = f ⁄

ey
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e

Figure 1.17 Stress-strain diagram for steel
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Another important mechanical property of steel is its modulus of elasticity (Es).

For steel the modulus of elasticity corresponds to the slope of the stress-strain

diagram in the elastic zone (see Figure 1.17). Es is about 29,000 ksi.

Three forms of reinforcements are commonly used in concrete structures:

(1) steel bars, (2) welded wire reinforcements (WWR), and (3) prestressing steel.
(A fourth is short steel, glass, or plastic fibers mixed into the fresh concrete. Bars

manufactured from advanced composite materials, such as fiberglass and carbon

fibers, are also used in special cases. Discussion of these reinforcing methods,

however, falls beyond the scope of this text).

1. Steel BarsModern reinforcing bars are round, rolled sections. In the past, square

bars were also used and may be encountered in old buildings built before World

War I or shortly thereafter.

Round reinforcing steel comes in two different variations: deformed and plain.
Deformed bars have a pattern of ribs, or deformation, rolled on them. These

deformations provide better relative slip resistance between the steel bar and

concrete. In addition to the chemical bond that exists between the cement paste

and the steel surface, these ridges provide a mechanical anchorage as well. Fig-

ure 1.18 shows a few examples of deformed bars. The ACI Code mandates the use

of deformed bars in all new reinforced concrete structures.

Plain bars do not have any deformations and rely on surface bonding only to

prevent relative slippage. These are no longer in use, although they may be

encountered in old structures.

Different grades of steel are used, typically made from either new steel, scrap

metal, or a mixture of both. Grades of steel represent their guaranteed minimum

yield stress in ksi units. For example, Grade 60 steel refers to reinforcing steel with

a guaranteed minimum yield stress of fy¼ 60 ksi. ACI Section 20.2.1.3 provides

the various types of steel that are used for the production of deformed bars.

Table A1.1 in Appendix A lists the different types of steel used as reinforcing

bars along with their mechanical properties. Each type of steel in Table A1.1 has an

ASTM designation such as A615. Different types of steel in Table A1.1 are:

▪ Carbon steel (A615)—This is the most common type. (Type S steel).

▪ Low-alloy steel (A706)—This type of steel provides enhanced weldability.

(Type W steel).

Figure 1.18 Examples of deformed bars
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▪ Stainless steel (A955)—This type of steel has application where high corrosion

resistance or controlled magnetic permeability is required. Their property

requirements are the same as those for carbon steel. (Type SS steel).

▪ Rail steel (A996)—This is made of recycled railroad track. (Type R steel).

▪ Axle steel (A996)—Similar to rail steel, but made from axle as scrap metal.

(Type A steel).

▪ Low-carbon chromium steel (A1035)—This is a high-strength material that is

permitted for use as transverse reinforcement in special earthquake–resistant

structural systems and spirals in columns. (Type CS steel).

Of all these reinforcing steels, most construction uses A615 Grade 60 (carbon)

steel. Grades 75 and 80 are sometimes used in columns. Grades 100 and 120 are

mainly used for transverse reinforcements of structures in seismic prone regions.

Grade 50 has not been around for quite a while. Grade 40 is almost never used, for it

has only two-thirds of the strength of Grade 60 steel, and its cost in place per lb is

the same.

Bar Sizes Steel bars are made in different sizes. Bar size, in general, represents the

diameter of the steel bar in inches. From #3 to #8 (#1 or #2 bars do not exist), each

number represents the diameter of a bar in fractions of 1/8 in. For example, #3 bar

means that the diameter of the bar is 3/8 in., and #8 is 8/8 in.¼ 1 in. diameter.

The heavier (larger-diameter) #9, #10, and #11 bars do not precisely follow the

1/8 in. rule, but they are close.

In addition, there are #14 and #18 bars, which are very large, heavy bars. They

are used mostly in large columns in high-rise construction and are available on

special order.

Table A1.2 includes the diameters and areas of the available steel bars.

Identification of Steel Bars Steel bars used in concrete construction have special

identification marks rolled on them. These marks provide information such as where

the bars were produced, the bar size, type of steel, and their grade (see Figure 1.19).

60 Grade of steel 

H Initial of producer mill

10 Bar size 

Steel
type 

S:   A615

SS: A955
R:   A996
A:   A996

CS: A1035

W:  A706

S

Figure 1.19 Identification marks for steel reinforcement
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Epoxy-Coated Bars The highly alkaline environment that the concrete provides for

the embedded reinforcing usually protects it from corrosion. Some structures,

however, such as bridge decks, parking structures, coastal structures, and so on

are often exposed to moisture containing chloride salts. The deicing salts (road

salts) that are used on roads and bridges, and carried into parking structures by the

automobiles, contain large amounts of soluble chlorides. When such solutions get

into contact with the reinforcing, the result is corrosion (oxidization or rusting) of

the steel.

The rust (ferrous oxide) grows to about eight to tenfold the volume of the

original steel. Thus, as the rust tries to create “elbow room” for itself, the internal

pressure starts to crack, split, and spall the concrete around it. This in turn provides

more access to the dangerous chloride-laden moisture.

One way to protect reinforcing in this kind of environment is the use of epoxy-
coated bars. Epoxy resin is an excellent adhesive and protects the steel from

chloride attacks. A note of caution is in order, however: Such bars must be handled

carefully to prevent nicks or cracks in the coating. Such places are especially

attractive to chloride ions and often become nodes of violent and rapid corrosion

in the reinforcement.

2. Welded Wire Reinforcements (WWR) In certain situations it is more econom-

ical to use welded wire reinforcements (WWR) in lieu of a series of small-diameter

bars. WWR are thin wires spaced at certain distances in two orthogonal directions

and fabricated in either large sheets, or in long rolls in the case of light-gage wires.

They are welded together at intersection points, usually by the electric resistance

welding method. The chief advantage of using WWR is the labor saving. Individual

reinforcing bars are placed one by one and are secured by tying them together at

every intersection. This ensures that they will remain at the desired location

throughout the concrete placement, consolidation, and finishing process.

WWR are available in commonly standardized wire sizes and spacing. Table 1.1

lists some of the commonly used styles of WWR. The standard designation of the

reinforcement represents the spacing and the wire sizes. In the modern designation

system the W-number represents the approximate cross-sectional area of the wire in

multiples of 0.01 in.2. Thus, the cross-sectional area of a W4.0 wire is about

0.04 in.2. As an example, 6� 12�W4.0�W2.5 represents wires with cross-

sectional areas of 0.04 and 0.025 in.2 in a rectangular grid of 6 in.� 12 in. as

shown in Figure 1.20.

Table 1.1 Some commonly

stocked styles of welded wire

reinforcements
Reinforcement designation

Steel area (in.2/ft)

Longitudinal Transverse

6� 6�W1.4�W1.4 0.028 0.028

4� 12�W2.9�W2.5 0.087 0.025

6� 6�W2.5�W2.5 0.050 0.050

4� 4�W1.4�W1.4 0.042 0.042

6� 6�W2 .9�W2.9 0.058 0.058

6� 6�W4. 0�W4. 0 0.080 0.080

4� 4�W4.0�W4.0 0.120 0.120
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3. Prestressing SteelWhen we discussed the mechanical properties of concrete, we

noted that the tensile strength of concrete is small. Early users of reinforced

concrete soon realized that if compressive stresses were induced into regions

where the loads (dead and live) caused tension, this tension would have to over-

come the pre-existing compressive stresses before inducing tensile stresses that

could result in cracking or failure. Hence the concept of prestressing was

developed.

Two different techniques are used to achieve prestressing. One is known as

pretensioning, the other is posttensioning. (These will be discussed in detail in

Chapter 9).

A much stronger steel product than ordinary reinforcing steels is needed for

prestressing purposes. Most of the time, seven-wire strands are used (six wires

wrapped around a core wire in a helical form; see Figure 1.21). The wires are cold-

drawn (i.e., the wires are pulled through a series of smaller and smaller round

openings without any preheating). The cold working increases the toughness and

the strength of the steel. Because the wires are stretched way beyond yield during

manufacturing, the strands manufactured from them have no yield levels compa-

rable to those of ordinary reinforcing bars. The most commonly used prestressing

strands have a nominal ultimate strength of 270 ksi.

A = 0.040 in2

12 in.

A = 0.021 in2

12 in.

6 in. 6 in. 6 in. 6 in.

Figure 1.20 6� 12�W4.0�W2.1

A

A–A
A

Figure 1.21 Seven-wire strand for prestressing
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Some special applications use either smooth or deformed prestressing bars of

varying diameters from 3/4 to 2�1/2 in. These are available with ultimate strengths

of up to 160 ksi.

Problems

1.1. What is hydration in concrete?

1.2. What is the significance of compression strength of concrete, and how is it

measured?

1.3. What are the applications of air-entraining admixtures?

1.4. What is the modulus of elasticity of concrete (Ec) and how is it determined?

1.5. Define the modulus of rupture, fr, for concrete.
1.6. What are the differences between deformed bars and welded wire

reinforcements?

1.7. Draw the bending moment and shear force diagrams for a 12 in.� 24 in.

concrete beam made of lightweight concrete with the unit weight of 110 pcf,

subjected to a uniformly distributed load of 1.0 kip/ft. Assume the beam is

simply supported and has a 100–000 span.
1.8. Determine the modulus of elasticity, Ec, and the modulus of rupture, fr, for a

normal-weight concrete (wc¼ 145 pcf) with a specified compressive

strength, fc
0, of 3,500 psi.

1.9. Determine the maximum concentrated load that can be applied at the center

of a 6 in.� 6 in. simply-supported plain concrete beam before it cracks in

tension. The beam has a 60–000 span and is constructed of sand-lightweight

concrete with a unit weight of 120 pcf. The specified compressive strength is

3,000 psi. Use the ACI Code recommended value for the modulus of rupture.

1.10. Determine the maximum span for an 8 in.� 12 in. simply-supported plain

concrete beam constructed of normal-weight concrete and loaded by a uni-

formly distributed load of 2 kip/ft just before it fails. The specified compres-

sive strength of the concrete is 4,000 psi. Use the ACI Code–recommended

value for the modulus of rupture.

Self-Experiments

In the self-experiments of this chapter, you learn about the different aspects of

making concrete by using simple tools.

Experiment 1 (Making a Concrete Sample)

The following materials are needed:

1. Three 20-oz empty tin cans (cylinder shape)

2. Three large bowls

3. Cement (can be obtained from a local hardware store)

4. Sand and gravel
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5. Tap water

6. A 3/8 or 1/2 in. diameter wood dowel, about 12–15 in. long

Make three samples: (1) cement sample, (2) concrete with a w/cm ratio of 1.0,

and (3) concrete with a w/cm ratio of 0.5.

1. Cement Sample
Pour 10 oz of cement with 6 oz of water into a bowl and mix them thoroughly.

Note how much effort is used to mix the cement with water. Then place the mix

in can number 1. Consolidate the mix in the can by prodding it with the dowel

about 12–15 times.

2. w/cm¼ 1.0 Concrete Sample
Pour 3 oz of cement, 10 oz of sand, 10 oz of gravel, and 3 oz of water into a bowl,

and mix them thoroughly. Again note how much effort is needed to mix the

materials. Then place the concrete in can number 2. Consolidate the mix in the

can by prodding it with the dowel about 12–15 times.

3. w/cm¼ 0.5 Concrete
Pour 4 oz of cement, 10 oz of sand, 10 oz of gravel, and 2 oz of water into a bowl,

and mix them thoroughly. As in the first two cases, pay attention to the amount of

effort needed to make the mix. Then place the concrete in can number 3. Con-

solidate the mix in the can by prodding it with the dowel about 12–15 times.

Leave the three samples for approximately 6 hours at room temperature. Check

them every 6 hours for 3 days. Record any observations. Answer the following

questions:

▪ Which mix was easiest to make (i.e., which one was most workable)?

▪ Which mix resulted in the most bleeding?

▪ Was any sign of hydration observed?

At the end of the 3 days cut the tin cans to completely expose the samples.

Answer the following questions:

▪ What are the differences in the textures of the three samples?

▪ Which sample has the most uniformity of material?
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Chapter 2

Rectangular Beams and One-Way Slabs

2.1 Introduction

This chapter covers the analysis (checking the strength) and the design (sizing the

concrete and steel) of reinforced concrete beams and slabs that span primarily

one way.

The previous chapter emphasized that concrete is very weak in tension, but

strong in compression. As a result, reinforcements are used to supply tensile

strength in concrete members (most commonly in the form of round reinforcing

bars or rebars). Like any other building system, reinforced concrete structures have

advantages and disadvantages.

2.2 Advantages of Reinforced Concrete

1. Can be cast into any shape This is the main advantage of reinforced concrete

compared to other building materials. Concrete members can be made into any

desired shape by using forms. Figure B2.1 in Appendix B shows the pleasing

exterior of a reinforced concrete building.

2. Has great resistance to fire and water Concrete loses its structural integrity

much more slowly than wood or steel when subjected to high temperature. In

fact, concrete is often used as fireproofing material. Concrete also better resists

exposure to water, does not corrode like steel, and does not lose strength as wood

does. Certain chemicals in water, however, can harm concrete.

3. Is a low-maintenance material Concrete does not corrode, so it does not need to

be painted and regularly maintained when exposed in the environment.

4. Has very long service life Reinforced concrete structures that are well designed

and built last a very long time.
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2.3 Disadvantages of Reinforced Concrete

1. Has very low tensile strength Concrete has a very low tensile strength in

comparison to its compressive strength. Consequently, reinforcing steel bars

are needed to counteract the development of tensions in concrete structures.

2. Requires shoring and forms This is a major disadvantage of concrete because it

raises the cost of concrete structures, especially in countries such as the United

States where labor costs are high. Shoring and formwork often constitute more

than half the total cost of the structure.

3. Has variations in properties The mechanical and physical properties of concrete

are sensitive and require careful proportioning, mixing, curing, and so

on. Eliminating large variation in these properties demands carefully monitored

procedures.

4. Results in heavy structural members Reinforced concrete structures are heavier

than similar steel or wood structures. This results in larger building dead loads,

which in turn result in larger foundations. Concrete structures are also more

sensitive to differential settlements. Thus, concrete structures require relatively

good soil conditions.

2.4 On the Nature of the Design Process

Before attending to the main topic of this chapter, which is the analysis and design

of bending members, a discussion on the concept of design is appropriate.

Ask ten people about the meaning of the word “design” and you probably will

get ten different answers. Design also has very different meanings to architects and

to engineers. And to top it all off, design is often viewed as synonymous with sizing

of members. So we hope that readers will forgive the rather loose usage of the term

design.
Structural design of reinforced concrete structures is an iterative process. It

begins with the layout of the structure or, in other words, with the selection of the

structural system. Any practitioner will admit that this initial step is by far the

hardest part of the process. It requires the designer to come up with a synthesized

whole for the building, laying out all the component elements (columns, girders,

beams (or joists), and slabs). Furthermore, the designer must also estimate the sizes

of the elements within the space in order to go to the next step, that is, to analysis.
The flowchart of Figure 2.1 presents a somewhat simplified picture of the

process. Oddly enough, it begins with a step in synthesis, or the conception of the

structure. This step is nonmathematical, for the aim of the study at this point is to

look at what the building structure should do. What spaces are required? What is the

minimum column spacing required to fit the architectural program?

But before we reach the part designated as “Analysis” or “Design,” we must

complete another exercise: identifying the loads that the structure may be subjected

to in its life span.
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Loads generally fall into two major categories: gravity loads and lateral loads.

Gravity loads are further divided into two major groups: dead loads and live
loads. One can only guess how this nomenclature came into usage. Perhaps

people originally identified loads that were stationary as “dead,” and loads that

moved as “live.” Today, we make a somewhat different distinction between these

two loads. Dead loads are those that remain permanently attached to the structure,

while other loads that are transitory in nature are referred to as live loads. Thus,

furniture and stored items as well as loads from people’s activities are in the latter

category. For example, most of the weight in a library’s stack area is from the

stored books with only a very small part of the floor loads coming from the

visitors; nevertheless, the stacks and the books are considered live loads. In

addition, environmental effects such as moisture or temperature changes may

create stresses in the structure, so they also may be loosely defined as loads that

the structure must safely withstand.

Before any meaningful analysis can be performed to calculate and appropriately

size any component element within a structure, designers must establish the

loads that such an element can safely support, or at least must reasonably

approximate them.

In a concrete structure, the self-weight is a very significant part of the dead loads.
Because self-weight depends on the size of the particular member, a reasonable

estimate must be made on the size. After the designer estimates the size, he or she

can calculate the loads from the self-weight, assuming that reinforced concrete

weighs about 150 lb/ft3. At this point we do not want to tax the student’s attention

with detailed discussion on the selection of an appropriately sized beam or slab, and

Input:
• Functional requirements (space layout, column spacing, etc.)
• Aesthetic requirements

Loads
• Self-weight
• Superimposed dead loads [floor finishes (or roofing and
  insulation as appropriate), partitions, ceilings, suspended
  mechanical and electrical equipment]
• Live loads (building code requirements)

• Economy
• Serviceability (short- and long-term deflections)
• Durability requirements
• Fire rating requirements

Analysis

Sizing of all individual elements

Structure is conceived

Figure 2.1 The iterative nature of structural design
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all of the reasons thereof. This subject will be discussed later in this chapter. In any

case, if during the design process the designer determines that an initial estimate of

the member’s size, and thus the self-weight, was significantly in error, he or she has

to re-analyze the member, taking into account the newly adjusted size; thus, the

iterative nature of the design and sizing.

Superimposed dead loads (SDL) are somewhat ambiguous. Often these items

and their precise location in space are not completely known at this stage of the

design (see Figure 2.1). Partition layouts have not been decided yet, or may change

in the future. Ductwork, piping, and light fixtures may go anywhere. So the designer

is forced to make a blanket estimate on these. Most practitioners estimate that the

combination of these items will exert about 15–20 lb/ft2 of floor area. (The only

areas that need more careful attention are those where some special flooring, such as

stone or terrazzo, is planned. These items exert about 12–13 lb/ft2/in. thickness.

Thus, a 2 in. terrazzo flooring weighs about 25 psf.)

Live loads (LL) are prescribed by building codes for the particular usage of a

space. These loads are listed as uniformly distributed minimum loads and represent

the current professional wisdom. Because live loads are not uniformly distributed

except in very isolated cases, they have very little, if anything, to do with the real

loads that may occur on structures. Actual surveys show that total loads, uniformly

averaged out over the whole floor area, amount to only about 15–20% of the codes’

mandated minimums in spaces like hotels, residential buildings, and offices. These

minimums, however, represent a statistical probability of the loads that the structure

may experience in a projected lifetime of 50 or 100 years. Furthermore, these code-

prescribed live loads also try to account for the dynamic nature of many loads by

treating them as equivalent static loads.

This discussion of loads should suffice to show that any calculation made during

the load analysis phase will contain unavoidable inaccuracies and uncertainties.

These errors are inevitable no matter how carefully the designer tries to evaluate the

currently envisioned, but essentially future loads.

Example 2.1 In this simple floor plan, beams 12 in. wide and 20 in. deep are

spanning 30 ft. The beams are located 90�000 center to center. A 5-in. thick slab

spans from beam to beam. (See Figure 2.2.) The floor structure will be used in a

general office building, thus (per Code) the minimum uniformly distributed live

load is 50 lb/ft2. Calculate the dead and live loads that one interior beam has to

carry. Assume 20 psf for the superimposed dead load for the partitions, mechanical

and electrical systems, and so on.

Solution The beams are 9 ft apart, so each beam is assumed to be responsible for

the loads that occur 4.5 ft from either side of the beam’s centerline. Thus, each

linear foot of beam will support loads from 9 ft2 of floor in addition to the weight of

the stem.
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Loads from the slab:

5 in. slab self-weight (5/12)� 150 62.5 psf

Superimposed dead loads, estimated 20.0 psf

Total dead load on slab 82.5 psf

Dead loads on beam from slab: 9 ft� 82.5¼ 742.5 lb/ft

Volume of stem per foot: (12� 15)/144� 1 ft¼ 1.25 ft3/ft of beam

Weight of stem: 1.25� 150¼ 187.5 lb/ft

TOTAL DEAD LOADS: wD¼ 930 lb/ft

In addition, the beam will support live loads from 9 ft2 of floor area on each

linear foot of beam. Thus:

TOTAL LIVE LOADS: wL¼ 9� 50 psf¼ 450 lb/ft

Summary: See Figure 2.3.

2.5 Live Load Reduction Factors

We complete this discussion of loads by dealing with the concept of live load
reduction factors. These are derived from statistical analyses of the probability of

having the maximum amount of live loads everywhere on a floor of a building.

12 in.

15 in.

5 in.

Section A-A

A

9'-0" 9'-0"

A 30'-0"

9'-0"

Figure 2.2 Floor plan and section

wL 450 lb/ft
wD 930 lb/ft

30'-0"

Figure 2.3 Floor beam
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Studies indicate that the larger the floor area that contributes loads to a particular

member, the less likely it is that every square foot of that area will bear the

maximum amount of live loads.

Different codes deal with this concept somewhat differently. Some codes relate

the live load reduction to the tributary area (AT), or the area directly loading the

particular element under investigation. Other codes relate the live load reduction to

the so-called influence area (AI), the area in which a part, however small, of any

load may contribute to the loading of a particular element under investigation. In

other words, the influence area for a structural member is the part of the building

structure that may fail if that member is removed.

As an example consider Figure 2.4, which shows the floor framing plan for

a reinforced concrete building. To determine the influence area for beam B-1,

assume that this beam is removed. This will cause the slabs supported by B-1 to

fail. As a result, the influence area for B-1 is (AI)B-1, the area between column

lines 1, 2, A, and B. Following this logic, if we remove girder G-1, the beams it

supports will fail, and consequently the slabs supported by the beams. Thus, the

area between column lines 1, 2, B, and D (AI)G-1 will collapse. A similar study will

show that the influence area for column C-1 is the area between column lines

1, 3, D, and F.

One variation of the live load reduction formula is given in Equation (2.1):

Lred ¼ L0 0:25þ 15ffiffiffiffiffi
AI

p
� �

ð2:1Þ

where

Lred¼ the reduced design live load per square foot of area supported by the member

L0 ¼ the unreduced design live load per square foot of area supported by the

member

AI ¼ the influence area of the member in square feet

B-1

(AI)B-1 (AI)G-1 (AI)C-1

1-C1-G

A B C D E F

1

2

3

Figure 2.4 Influence areas for different structural members
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Equation (2.1) is applicable whenever AI> 400 ft2. The usage of live load

reduction is limited in that the reduction cannot exceed 50% (Lred� 0.5 L0) for
members supporting one floor and cannot exceed 60% (Lred� 0.4 L0) for members

supporting two or more floors. Live load reductions do not apply for live loads in

excess of 100 psf, except for members supporting two or more floors, in which case

the live load can only be reduced up to 20%.

Example 2.2 For the interior beam of Example 2.1, determine the reduced

live loads.

Solution The influence area, AI, for the beam is:

AI ¼ 2� 9� 30 ¼ 540ft2

Because this area is larger than 400 ft2, a reduced live load may be used in the

design of the beam. The reduced design live load is:

L ¼ 50 0:25þ 15ffiffiffiffiffiffiffiffi
540

p
	 


¼ 50� 0:895 ¼ 44:8psf

Thus, the reduced design live load on this beam is:

wL ¼ 44:8� 9 ¼ 403 lb=ft

rather than the previously calculated load of 450 lb/ft.

2.6 Continuity in Reinforced Concrete Construction

Many readers may have encountered only statically determined structural elements.

These are simply supported beams (with or without cantilevers at their ends),

cantilevers fixed at one end and free to move at the other, simple posts, and so

on. These elements are all characterized by needing only the equations representing

static equilibrium
P

H ¼ 0,
P

V ¼ 0,
P

M ¼ 0ð Þ to solve for the reactions.

A review of what “reactions” means may be needed here. A building element

does not exist in a stand-alone vacuum. It is connected to other elements. At a point

of connection the free relative displacement between the element under study and

the rest of the structure is denied. This denial of free movement results in the

transmission of a force (or moment) at the connection between the supporting and

the supported elements. Look at Figure 2.5a for example. Here a beam end is

supported on a wall. Elsewhere within the span the beam is free to deflect, or move

vertically. But this ability to displace vertically is denied at the place of the support.

Figures 2.5b, c show the symbols of a hinge type of support and a roller. In the

hinge support, the two relative displacement components (vertical and horizontal)

are denied between the beam (the member under investigation) and the support
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below it. Thus, vertical and horizontal forces could be transmitted at the point

between the beam and the support. (The forces coming from the support to the

supported member are called reaction forces.) At a roller support (Figure 2.5c) only
relative vertical displacement is denied; the beam could still freely roll horizontally

without resistance. Correspondingly only a vertical force could be transmitted

between the beam and the support. Figure 2.5d shows a beam end built into a

large mass. The beam end cannot move horizontally or vertically, and it cannot

rotate with respect to the mass. This condition is called fixity. The usual symbol of

fixity is shown in Figure 2.5e. In this condition, horizontal force, vertical force, and

a moment may be transmitted between the member and the support at that location.

All of these support conditions are quite familiar to students who have had a first

course in structures. These support conditions represent what may be called abso-
lute conditions: The displacement (vertical, horizontal, or rotational) is either freely

available, or completely denied. As will be pointed out later, there is an infinite

number of conditions in between, especially as related to rotations. Consider, for

example, a flexible joist supported by a wall or beam at its ends (Figure 2.6). The

mere supporting certainly precludes vertical displacement of the joist, thus a force

transfer occurs. An action force is transmitted from the joist to the wall or beam, and

an equal but opposite reaction force is transmitted from the supporting element to

the joist. As the joist deflects under load, its supported ends can rotate freely; thus,

the moments at the ends are zero.

Reinforced concrete construction is monolithic, which means that members are

intimately built together with neighboring members. Slabs are continuous over

supporting beams and girders; beams and girders are continuous over supporting

interior columns, and so on.

Figure 2.7 illustrates the point. The slab in the beam and slab structure is

continuous in both horizontal directions over the beams. The beams are continuous

over other beams or columns.

A simple problem is presented here to clarify the concept. Admittedly, this

problem does not occur in reinforced concrete structures, but it serves to illustrate

the concept. A continuous structural member is represented by an imaginary center

a b c

d e

Figure 2.5 The meaning of the different support conditions: (a) wall supporting a beam (roller),

(b) a hinge support, (c) a roller support, (d) wall supporting a beam (fixed), (e) a fixed support

End rotationFigure 2.6 Joist before and

after deformation
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line (see Figure 2.8). On this two-span beam, Span 2 is larger than Span 1. If the

loads are about the same, Span 2 will deflect more. Consequently this deflection

will try to force Span 1 to curve upward slightly near the center support to follow

Span 2. (The tangent to the deformation curve will rotate toward Span 2.) Study of

the deformation curve shows that the beam bends into an upward curvature, that is,

tension develops at the top of the beam, between the two points of inflection (where

the moment in the beam is zero), whereas elsewhere the beam bends downward,

resulting in tensions at the bottom. The moment diagram is shown below the

deformation line of the beam. The moments are referred to as positive when tension

is on the bottom, and negative when tension is on the top.

Figure 2.7 Beam and slab floor framing

a b c

w1

Span 1

Points of inflection 

Moment diagram

Deformed line

Angle of rotation

Span 2

w2

Figure 2.8 Deformations and moments in a two-span beam
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The deformation line in Figure 2.8 shows that the longer span (Span 2) will force

the beam to rotate toward itself at the center support. The resistance against this

rotation comes from the bending stiffness of the member in Span 1. Stiffness is the

ability of a member to resist deformation. There are several different types of

stiffness, such as flexural, shear, axial, and torsional. Each type refers to a specific

ability to resist a certain type of deformation. The greater the stiffness, the more is

the effort required to bring about the specific deformation.

The flexural stiffness of a member is linearly related to the moment of inertia, I,
which is a cross-sectional property, and to the modulus of elasticity, E, the ease of
extendibility or compressibility of the material; and is inversely related to the

length, ‘, of the member. Thus, if K represents the flexural stiffness, K ¼ k
EI

‘
,

where k is a numerical constant that depends on the support conditions of the other

end of the member.

In the simple beam shown in Figure 2.8, if the flexural stiffness of Span 1 is

infinitely large, it will resist any attempt by Span 2 to rotate the section over the

center support toward itself. Hence the condition for Span 2 will approach that of

full fixity at its left end. On the other hand, if the stiffness of Span 1 is very small, it

will offer very little resistance against the efforts of Span 2 to rotate freely at the

center support. Thus, as far as Span 2 is concerned, such a condition might be a

“simple support,” regardless of the continuity.

2.7 Propagation of Internal Forces

The free-body diagrams that resulted from the continuity are shown in Figure 2.9.

Double subscripts identify the locations of shears and moments. Thus, if the first

span is from a to b then Vab represents the shear in that span at end a, and so on.

The two-span continuous beam is dissected to show the propagation of loads and

moments. Each “cut” shows every force and every moment as they act on the part

under consideration. For example, Mba is shown as a clockwise arrow on Span

1, whereas it is shown as a counterclockwise arrow on the small part over the

b support. These are two manifestations of the same moment, a concept well known

from Newtonian physics (action and reaction). Similarly, Vba is shown at the same

cut as an upward force on Span 1 that comes from the support to the beam, as well

as a downward force that comes from the beam to the support.

a b c

Ra

Vab

Vab

Mab

w1

Span 1 Span 2

w2

Vbc

Mbc

Rb

Vba

Vba

Mba

Rc

Vcb

Vcb

Mcb

Vbc

Figure 2.9 Propagation of internal forces on a two-span beam
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Consider now the following self-evident statement: When a structure is in

equilibrium, every part must be in equilibrium. Thus the well known equilibrium

conditions of
P

H ¼ 0,
P

V ¼ 0, and
P

M ¼ 0 apply for each individual part that

is arbitrarily cut out of the structure. For example, the reaction force on the left-

hand support, Ra, must equal the shear force, Vab, transferred by the beam to that

support. If we consider that
P

M ¼ 0 on the same piece, we conclude thatMab must

equal zero, for there is no other moment on the piece to maintain equilibrium. On

the small piece just above the b support, the reaction force from the support Rb must

equal the sum of Vba and Vbc. Note also that Mba¼Mbc in order to satisfy equilib-

rium conditions.

Figure 2.10 shows a three-story-high, three-bay-wide reinforced concrete frame

with all the joints numbered. The two outer bays are shown as somewhat wider than

the inner bay. Thus, when they are all loaded in an approximately uniform way,

the larger spans will try to rotate the ends of the inner bay (between column lines

B and C) toward themselves. Thus, the joints on line B will rotate counterclockwise,

and the joints on line C will rotate clockwise. At the exterior ends, the loads on

the beams will rotate the joints on line A clockwise, and the joints on line D

counterclockwise.

From the study of the deformation lines, we can draw some important general

conclusions. The beams will have two curvature reversals (inflection points or

points of counterflexure). They curve downward in their midspans, resulting in

tensions at the bottom (positive moment region). They will curve upward near their

ends, resulting in tensions at the top (negative moment region).

4321

DCBA

13

9

5 6

10

14 15

11

7 8

12

16

Figure 2.10 Deformations of a three-bay and three-story monolithic structure
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The columns on the two upper floors, due to the forced rotations of their ends,

will bend into a double curve (S curve). Depending on the amount of fixity available

at the footing level, the lower columns will bend either into a double curve when the

fixity at the base is significant, or into a single curve when the resistance against

rotation at the base approaches that of a hinge.

Figure 2.11 shows free-body diagrams for part of the frame. Again
P

H ¼ 0,P
V ¼ 0, and

P
M ¼ 0 apply for each individual part. Thus, the axial force in

beam 13–14 must equal the shear at the top of column 9–13 for Node 13 to be in

equilibrium. The axial force in the column equals the shear at the left end of beam

13–14. And the moment at the end of column 9–13 must maintain equilibrium with

the moment at the left end of beam 13–14. Mathematically:

For
X

H ¼ 0 V13-9 � P13-14 ¼ 0

For
X

V ¼ 0 P13-9 � V13-14 ¼ 0

For
X

M ¼ 0 M13-14 �M13-9 ¼ 0

The reader may want to study and write out the equilibrium equations for other free-

body parts.

P13-14

V13-14 V14-13

M14-13 M14-13

V14-10

V14-10

M14-10

M14-10

M14-15V14-15

V14-13V13-14

M13-14
M13-14

13

9
10

14
P14-13

P14-10

P14-15

M14-15

P9-10

V9-10 V10-9

M10-9 M10-9

V10-9V9-10

M9-10M9-10

P10-9

P9-13

V14-15

V13-9

M13-9
V13-9

M13-9

M9-13

V9-13

V9-13

M9-13

P13-9

M9-5
V9-5

P9-5

P10-14

M10-14

M10-14

V10-14

V10-14

V10-11

M10-11

M10-6V10-6

P10-6

P10-11

Figure 2.11 The propagation of forces and moments between beams and columns
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2.8 On the “Fickleness” of Live Loads

As stated earlier, loads permanently attached to the structure are referred to as dead
loads, and transitory loads are referred to as live loads. The nature of live loads is
that sometimes they are there and sometimes they are not, so it is entirely possible

that the live loads are fully present in one bay, while completely missing in other

bays. Figures 2.12a–d show the effects of loading one span at a time on a four-bay

continuous beam. In each case the deformation and the moment diagram are shown

schematically under different live loading conditions. Deformations are shown as

dashed lines.

A study of the deformation lines and the moment diagrams of these four different

cases leads to the following conclusions:

1. The largest positive moments due to live loads in a given span occur when live

loads are on that span and on every second span on either side. This is known as a

checker-board pattern loading. See Figure 2.13a, b.

2. The largest negative moments due to live loads near a support occur when live

loads are on neighboring spans and on every other span on either side. See

Figure 2.13c–e.

Thus, on a continuous beam the number of live loading patterns that result in

maximum moment effects equals the number of supports. For example, in a four-

span beam with five supports, five different live loading patterns need to be

considered to find the possible absolute maximums in each of the positive and

negative moment zones.

These are only the moments that are due to the effects of the live loads. The

cases, shown in Figure 2.13a–e must be combined with the moments resulting from

the dead loads, that is, the loads that are permanently present on the structure,

whose effects are not variable. The combinations of the dead load moments and the

live load moments will result in a maximum possible moment at every location

along the beam. The live and dead loads, when plotted into a graph such as the one

shown in Figure 2.14, produce a diagram that represents all these combinations.

This is called the diagram of maximum moments or the moment envelope.
Two important points must be noted here. Figure 2.14 shows that in some

portions of each span, only positive moments occur, and in others, only negative

moments, regardless of the distribution of the live loads. There are portions of each

span, however, where either positive or negative moments may occur. This fact is

significant in that it affects how a continuous beam must be reinforced.

The second point is that so far we have assumed that the continuous beam is

similar to a mathematical line supported on knife-edge supports. The result of such

a simplified assumption is that the reactions appear as concentrated forces and the

moment diagram has a sharp peak (cusp) at those points. This result, however, is not

in conformance with the physical reality. Supports (columns) have a width over

which the reactions are distributed. This modifies the moment diagram within

the width of the support to something similar to the sketch shown in Figure 2.15.
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The exact shape of the moment diagram at this location is quite immaterial, for both

theoretical studies and numerous test results clearly show that the critical negative

moments in the beam occur at the faces of the supports. (Refer to ACI Code,

Section 7.4.2.1 and Section 9.4.2.1)

A B C D E

A B C D E

A B C D E

A B C D E

a

b

c

d

Figure 2.12 (a) The effects of live loads on span A-B. (b) The effects of live loads on span B-C.

(c) The effects of live loads on span C-D. (d) The effects of live loads on span D-E
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b

c
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e

Figure 2.13 (a) Live loads in the first and third bays. Largest positive moments in first and

third spans. (b) Live loads in the second and fourth bays. Largest positive moments in second and

fourth spans. (c) Live loads in the first, second, and fourth bays. Largest negative moments

at second support. (d) Live loads in the second and third bays. Largest negative moment at

third support. (e) Live loads in the first, third, and fourth bays. Largest negative moment at

fourth support
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2.9 The ACI Code Moment and Shear Coefficients

The complexities involved in the design of a very simple continuous beam may

seem quite bewildering. In practice, however, a vastly simplified procedure is

available in most cases.

Any moment along a span may be expressed as follows:

Mu ¼ coefficient � wu‘
2
n ð2:2Þ

where

wu is the intensity of the total factored load (see Section 2.10), or the load per unit

length. This variable should be evaluated and applied separately for each span

if the live loads are different in each one

‘n is the net (clear) span for positive moment or shear, or the average of adjacent

net (clear) spans for negative moment

Live loads

Dead loads

Figure 2.14 Maximum moments due to dead loads and different combinations of live loads

Design moment 
required by the 
ACI Code

Some likely
distribution

Moment calculated 
with knife-edge 
support

Width of 
support

Figure 2.15 The true moments in beams at columns
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When certain conditions are satisfied, the ACI Code permits the use of approx-

imate moments and shears in the design of continuous beams and one-way slabs in

lieu of the detailed analysis for maximummoments outlined in the previous section.

Approximate moments and shears usually provide reasonable and sufficiently

conservative values for the design of these horizontal flexural elements.

ACI Code Section 6.5.1 requires the following conditions for the use of these

coefficients:

▪ There are two or more spans The beam or slab is continuous; that is, the

approximation does not apply to a single span only.

▪ Spans are approximately equal, with the longer of two adjacent spans not
greater than the shorter by more than 20% The larger span tends to pull the

shorter neighboring span upward if there are significant differences between

adjacent spans.

▪ Loads are uniformly distributed.
▪ Unit live load does not exceed three times the unit dead load This is usually the

case with reinforced concrete structures.

▪ Members are prismatic This means that the cross section is constant along the

length of the span.

The ACI Code design moments and shears are applicable when these precondi-

tions are satisfied. Table A2.1 and the accompanying figure list the coefficients for

the moments and shears according to the end conditions and number of spans. In the

authors’ experience, the ACI coefficients are somewhat more conservative than

values obtained from detailed computerized analysis; thus, their use will result in

additional safety for the structure.

In actual practice the use of simplified methods to find the design moments and

shears is in decline. Many proprietary computer programs are available that not

only help evaluate all the most critical loading combinations, but also aid in the

design of the required reinforcing. These programs require the sizes of the members

as input, for the analysis of an indeterminate structure. (The result, or the output,

depends on the relative stiffnesses of the members.) Thus, the application of these

coefficients is still very useful for obtaining quick results that can be used in

preliminary sizing of the members, which in turn enables the development of

input data for a more detailed computerized analysis.

2.10 The Concept of Strength Design

The first design theory of reinforced concrete, developed near the end of the

nineteenth century, simply borrowed its approach from the prevailing theory of

elasticity. The method assumed that reinforced concrete elements at usual actual

loads will have stress levels that might be considered to fall within the elastic zone.

Figure 1.8 indicates that concrete in compression may follow an approximately

linear stress/strain relationship as long as the stress level does not exceed 50% of its
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ultimate strength level. Steel reinforcing behaves elastically below its yield point.

So the concept of working stress design (WSD) was not an unreasonable method-

ology, and the underlying calculation technique is still used when estimating

deformations (deflections) in structural elements. (See Section 3.3 for a more

detailed discussion.)

The WSD method, however, has many conceptual drawbacks. First and fore-

most, it does not account for differences between dead and live loads. Rather, it

simply lumps them together and assigns a “collective” margin of safety, regardless

of the origin of the load. Dead loads can be estimated much more accurately than

can live (transitory) loads; thus, logic dictates that the part of the load that comes

from dead loads could use a much smaller safety factor against failure. On the other

hand, the magnitude and the distribution of the live loads are much more uncertain.

Another, and equally important, drawback of the WSD method is that it inac-

curately assumes that concrete behaves in a linear fashion with increasing stress

levels. Merely knowing a stress level does not ensure a correct prediction of an

undesirable level of stress (i.e., failure), because steel has a linear stress response to

strain whereas concrete has a nonlinear one.

The third, and perhaps the most significant, drawback of the WSD method is that

it is unimportant to know the stress level in a structure at a given loading. What is

important is to know how much overload the structure can take before it fails.

Strength is needed to have a safe design, or adequate strength, so that the

structure does not fail whether the actually occurring loads were underestimated

or excess load is placed on the structure. Thus, load factors (i.e., values used to

magnify the actual loads [called working or service loads]), or moments or shears

therefrom, are used so as to create a demand on the strength. The concept of demand

states, for example, that the structure (or, more precisely, a given element under

investigation) must have an ultimate strength (i.e., before it fails) not less than those
given by Equation (2.3a) (ACI Code, Section 5.3.1).

U ¼ 1:4D

or U ¼ 1:2Dþ 1:6Lþ 0:5 Lr or SorRð Þ
or U ¼ 1:2Dþ 1:6 Lr or S or Rð Þ þ 1:0L or 0:5Wð Þ
or U ¼ 1:2Dþ 1:0W þ 1:0Lþ 0:5 Lr or S or Rð Þ
or U ¼ 1:2Dþ 1:0Eþ 1:0Lþ 0:2S

or U ¼ 0:9Dþ 1:0W

or U ¼ 0:9Dþ 1:0E

ð2:3aÞ

where

U ¼ required (ultimate) strength

D ¼ effect from dead loads

L ¼ effect from live loads

W¼ effect from wind loads

E ¼ effect from seismic (earthquake) loads
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Lr¼ effect from roof live loads

S ¼ effect from snow loads

R ¼ effect from rain loads

The multipliers applied to the effects in the various load combinations are the

load factors. These guard against accidental overloading of the structure. They also
take account of the imprecision in establishing the magnitude, or the distribution, of

the loads. Thus, for example, greater load factors are assigned to live loads (or wind

loads, or earthquake loads) than to dead loads to account for greater uncertainty.

Also, dead loads sometimes actually help to counteract the effect of wind or

earthquake loads. For these conditions a more conservative approach is to presume

that calculated dead loads are somewhat less than assumed. Such a concept is

accounted for by the sixth and seventh load combinations in Equation (2.3a). These

load combinations can be simplified by combining all live loads as L and using the

larger load factor. In addition, for U¼ 1.4D to govern the design, the condition of

D> 8L must exist, which is not very probable in most cases. Therefore, the load

combination given below will be used for the member supporting floor loads

(Equation (2.3b)), and for members supporting roof loads only (Equation (2.3c))

throughout this book (these typically include slabs, beams and girders):

U ¼ 1:2Dþ 1:6L ð2:3bÞ
U ¼ 1:2Dþ 1:6Lr ð2:3cÞ

whereD includes the effects from all the dead loads and L is due to all the live loads.

For members that support both floor and roof loads (neglecting the effects of wind

or earthquake loads), the governing load combination from Equation (2.3a) are

(these typically include columns and walls):

U ¼ 1:2Dþ 1:6Lþ 0:5Lr if L � 1:83Lrð Þ
or

U ¼ 1:2Dþ 1:6Lr þ 1:0L if L < 1:83Lrð Þ
ð2:3dÞ

The effects of fluid, F, lateral earth pressure, H, and forces due to restraint of

volume change and differential settlement, T, can also be incorporated in the load

combination with their corresponding load factors. Refer to ACI Section 5.3 for

details.

2.11 Design (Ultimate) Strength

The ultimate strength of a section within a structure (as discussed in detail later for

separate and combined cases of bending moment, shear, torsion, and axial load) is

calculated from the sizes (dimensions) of the section, the materials (steel and

concrete) employed, and the amount of reinforcing used. This calculation gives
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us the supply, or the resisting strength furnished by the section. In flexural design,

for example, this calculated quantity is designated as Mn, which is called nominal
moment strength or nominal resisting moment. Nominal strength is the calculated

strength, provided that everything goes according to plan; that is, the concrete is at

least as strong as assumed in the design, the dimensions of the beam, slab, or any

designed element is exactly as shown on the plans, the required reinforcing is

placed exactly where it was assumed in the calculations, and so on. But experience

shows that there is no such thing as perfectly executed plans, even in the best

circumstances. ACI 117-90, “Standard Tolerances for Concrete Construction and

Materials” lists tolerances that are reasonable to expect when good workmanship is

provided. Furthermore, the calculation processes employ simplified mathematical

models that should be considered as only reasonable approximations of reality. The

design methodology also tries to reflect the relative importance of different struc-

tural components. The failure of columns, for example, may result in collapse of an

entire building, but the failure of a beam typically causes only limited local damage.

In light of all these possible detrimental effects to the assumed strength, a

strength reduction factor (ϕ-factor), sometimes referred to as an under-strength
factor, is introduced to the above defined nominal strength. This factor accounts for
the fact that the section’s strength may be less than assumed in the analysis.

Thus, we arrive at the concept of useable strength (or supply), which is the

product of the nominal strength and the strength reduction factor.

Different ϕ factors are used for different types of effects. Equation (2.4) gives

some ϕ factors.

Flexure ϕ ¼ 0:90

Shear and torsion ϕ ¼ 0:75

Axial compression columnsð Þ ϕ ¼ 0:65

ð2:4Þ

Hence the ultimate strength design (USD) method can be stated as the following

inequality:

Demand � Supply

or required ultimate strength � useable design strength

or effects of loads � resisting capacity of member

And so for a beam subjected to gravity (dead and live) loads, for example,

Equations (2.5)–(2.8) represent this concept.

Mu ¼ 1:2MD þ 1:6ML ð2:5Þ

and

Mu � ϕMn ð2:6Þ
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Defining the design resisting moment, MR, as

MR ¼ ϕMn ð2:7Þ

the following must hold for the beam to be safe:

Mu � MR ð2:8Þ

On the left side of Equation (2.8) is the demand. The demand depends only on

the span, the type of support (e.g., simply supported, cantilevered, etc.), and the

loads. All this information comes from the static analysis.

On the right side of Equation (2.8) stands the supplied strength of the section

(design resisting moment, MR), which depends on the size and shape of the cross

section, the quality of the materials employed (f
0
c and fy), and the amount of

reinforcing furnished. Thus, the left side of the inequality is unique, but the right

side is undefined. An infinite number of different sizes, shapes, and reinforcing

combinations could satisfy a given problem. The only rule is that the supplied
useable strength be larger than (or at least equal to) the required strength.

Example 2.3 Assume that the beam in Example 2.1 is simply supported. Calculate

the required ultimate flexural strength (factored moment from the loads). Use the

permitted reduced live load.

Solution

MD ¼ 930� 302=8 ¼ 104,625 lb-ft

ML ¼ 403 � 302=8 ¼ 45,338 lb-ft

Thus:

Mu ¼ 1:2 � 104,625þ 1:6� 45,338 ¼ 198,091 lb-ft or 198:1kip-ftð Þ

The same result could be obtained by using factored loads (the loads multiplied by

their respective load factors).

wu ¼ 1:2� 930þ 1:6� 403 ¼ 1,761 lb=ft ¼ 1:761kip=ft

and

Mu ¼ 1:761� 302=8 ¼ 198:1 kip-ft

Notice that when finding factored loads from service or working loads, the

nature of the loads does not change; only their magnitudes are multiplied by the

corresponding load factors. If a service load is distributed, its factored value is also

distributed; if the service load is concentrated, its corresponding factored load is

also concentrated. The following example clarifies this point.
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Example 2.4 Determine factored loads for the beam shown in Figure 2.16.

Solution For the left half of the beam:

wu1 ¼ 1:2wD þ 1:6wL

wu1 ¼ 1:2� 1:0þ 1:6� 2:0 ¼ 4:4kip=ft

For the right half of the beam:

wu2 ¼ 1:2wD þ 1:6wL

wu2 ¼ 1:2� 1:0þ 1:6� 0 ¼ 1:2kip=ft

The concentrated load is a live load only:

Pu ¼ 1:2PD þ 1:6PL

Pu ¼ 1:2� 0þ 1:6� 10 ¼ 16kip

The factored loads on the beam are shown in Figure 2.17.

2.12 Assumptions for the Flexural Design of Reinforced
Concrete Beams

To this point we have discussed the calculations for the left side of the design

Equation (2.8) (demand) in some detail. In this section we develop the right side of

the design equation. To establish the supply, or the ultimate flexural strength, of a

wD = 1.0 kip/ft

wL = 2.0 kip/ft PL = 10 kip

20'-0"20'-0"

Figure 2.16 Example 2.4 (service loads)

wu2  1.2 kip/ft
wu1  4.4 kip/ft

20'-0"20'-0"

Pu  16 kip

Figure 2.17 Example 2.4 (factored loads)
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reinforced concrete section, we must discuss the stages of stress that a reinforced

concrete section experiences before reaching failure. This discussion of these

different stages of stress under increasing bending moments will also illuminate

the assumptions made in developing expressions for calculating the ultimate

strength of the section. To keep the discussion simple, we will examine a beam

with a rectangular cross-section like the one shown in Figure 2.18.

The symbols in Figure 2.18 will be used throughout this book. They are the

standard ACI symbols used with reinforced concrete. Thus:

b¼width of the section

h¼ the overall depth of a section

d¼ the effective depth of a section, or the depth from the centroid of the tension

reinforcement to the compression face

As¼ the sum of the cross-sectional areas of the reinforcing bars

Notice that the reinforcement is not placed at the very bottom of the beam. The

first and foremost reason for this placement is to provide corrosion protection to the

reinforcement. The inner environment of concrete is highly alkaline (high pH

value) and helps to protect the reinforcement. The concrete cover also provides

fire protection to the reinforcement. Furthermore, the concrete surrounds the

reinforcing steel, which enables intimate bonding and allows the concrete and the

steel, two individual materials, to work together. The required minimum concrete

cover is given in Section 20.6.1.3.1 of the ACI Code. For unexposed beams it is

1.5 in. to the stirrups. (The stirrups, usually made out of #3 or #4 bars, will be

discussed in Chapter 4.)

Figure 2.19 shows a simply supported beam that has a simple rectangular cross

section made of plain concrete (homogeneous material). This type of beam is

almost never used in an actual building, but it will give us insight into the behavior

of concrete beams.

The uniformly distributed load (Figure 2.19a) represents the self weight plus

some superimposed load. The slightly exaggerated deflected shape is shown in

Figure 2.19b, and the moment diagram in Figure 2.19c. Attention will be directed to

the section where the bending moment is the greatest. This location is where the

stresses and the strains are also the largest.

1.5 in. clear

As

b

h
d

Figure 2.18 Definition of symbols used in a rectangular beam section
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Figure 2.20 shows the cross section of the beam and the distribution of strains

and stresses if the beam is unreinforced. Figure 2.21 illustrates the distribution of

the strains and stresses in a 3-D form. As long as the bending moments are

small, that is, the resulting tensile stresses at the bottom are less than the ultimate

tensile strength of the concrete, the section will behave as if it were made of a

homogeneous, quasi-elastic material. The bottom is in tension, and the top is in

compression.

Direct your attention to the strain diagram first. Strain represents changes in

length. The strain distribution is linear from bottom to top.

The farther up or down a point is from the imaginary center, the greater the strain

in the beam. The largest tensile strains are at the bottom, whereas the largest

compressive strains are at the top. There is a line across the section where the strain

is zero. This is called the neutral axis. The straight-line distribution of strains is

known as the Bernoulli�Navier hypothesis. This distribution is called a “hypoth-

esis” because it results not from mathematical derivation, but from careful mea-

surements made on countless tests of many different materials, including concrete.

The distribution of stresses is also linear when the material follows Hooke’s law, as

M max

(a) The loaded beam

(b) Beam after deformation

(c) The moment diagram

Figure 2.19 Elastic bending

b

h

Section Strains Stresses

Figure 2.20 Linear distribution of strains and stresses
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steel does below the so-called proportional limit. Stresses are forces acting on a unit
area. Thus, it is possible to determine the resultant for these forces. The resultant,
which is a tensile (T) or compressive (C) force, is equal to the volume of the stress
block, For example, if the largest compressive stress is fcmax, then the sum of all the

compressive forces is given by Equation (2.9).

C ¼ 1=
2

fcmax � h=
2

� �
� b

h i
ð2:9Þ

Similarly, the sum of all tensile forces is given by Equation (2.10).

T ¼ 1=
2

ftmax � h=
2

� �
� b

h i
ð2:10Þ

These resultants will be located at the centroid of the wedge-shaped stress blocks,

as shown in Figure 2.22. Equilibrium requires that these resultants be equal in

z  2h/3

C

T

Figure 2.22 The internal couple in homogeneous beams

Figure 2.21 3D representation of linear strain or stress distribution
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magnitude, and together they form an internal couple. The internal couple is

equivalent to the bending moment at the section.

Example 2.5 For the beam of Figure 2.22, assume b¼ 12 in., h¼ 24 in. and

Mmax¼ 38.4 kip-ft. Determine the bending stresses and the equivalent tensile and

compression forces acting on the section.

Solution The section modulus is:

S ¼ b� h2=6 ¼ 1,152 in:3

Thus the maximum stresses are:

fmax ¼ Mmax=S ¼ 38:4� 12=1,152 ¼ 0:400ksi

Then

C ¼ T ¼ 1=2� 0:400� 24=2ð Þ � 12½ 	 ¼ 28:8k

The moment arm between the maximum stresses is z¼ 2� 24/3¼ 16 in.

The moment equivalent of this couple is:

C� z ¼ T � z ¼ 28:8� 16 ¼ 460:8kip-in:

12
¼ 38:4kip-ft

which agrees with the given moment, Mmax¼ 38.4 kip-ft.

The concept of the internal couple will become a very important tool in consid-

ering a reinforced concrete beam. If the beam in Example 2.5 has enough tensile

strength to withstand the applied 0.400 ksi (400 psi) tensile stress, the beam will

not fail. As discussed earlier, concrete has a rather limited tensile strength. The

modulus of rupture, which was said to represent the ultimate tensile strength of

concrete in flexure, is given in Equation (1.3).

As mentioned previously, the modulus of rupture is a statistical average (with a

considerable coefficient of variation) that is empirically derived from many labo-

ratory tests. At increasing loads, a magnitude very soon is applied at which the

beam’s tensile strength is exhausted. At that point, somewhere near the maximum

moment, the beam will crack. Without reinforcement, the crack will instantly travel

upward and the beam will collapse, as shown in Figure 2.23.

In the following discussion the beam is assumed to have flexural reinforcement.

Such a beam is shown in Figure 2.24. As long as the tensile stresses in the concrete

at the bottom of the section are less than the modulus of rupture, there will be no

Figure 2.23 Bending failure of an unreinforced concrete beam
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cracks. At the location of the reinforcing steel, the concrete and the steel have

identical strains. The steel is bonded to the concrete, thus they must deform

together. But the two different materials respond differently to deformation because

they have a different modulus of elasticity, so the stresses will be different. In this

particular case the stress in the steel will be much larger than that in the concrete.

For example, assume a concrete with fc
0 ¼ 3,000psi. Then Ec ¼ 57,000

ffiffiffiffiffiffiffiffiffiffiffiffi
3,000

p
¼ 3,122,000psi ¼ 3,122ksi. The modulus of elasticity of the reinforcing steel is

Es¼ 29,000 ksi. According to Hooke’s law the stress equals the product of the

modulus of elasticity and the strain. So it follows that the stress in the steel will be

about nine times higher (the ratio of the two moduli of elasticity values) than the

stress in the concrete in the immediate vicinity. This ratio is usually designated as

n¼Es/Ec and is called the modular ratio.
The concrete cracks under increasing applied forces, and it is the reinforcement

that carries the tension across the crack. The crack travels up to a height, then stops

somewhere below the neutral axis as seen in Figure 2.25. The shaded area represents

the uncracked part of the section. Where the strains are still small near the neutral

axis, the concrete is still able to transfer some tensile stresses (albeit very small), even

in the cracked section; however, the amount of tensile force represented by the still
un-cracked tensile stress volume is so small that it is simply neglected.

Assuming, therefore, that the concrete does not carry any tension after cracking,

the bending moment in the section is transferred across from one side of the crack to

fss

Section Strains Stresses

Figure 2.24 Strain and stress distribution of a reinforced concrete beam prior to cracking

n.a.

Section Strains Stresses

fss

Figure 2.25 Strains and stresses after cracking
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the other via the tension in the steel and the compression in the concrete, as seen

in Figure 2.26. This assumption simplifies the development of an appropriate

formula for the internal couple. The tensile component of this couple is at the

centroid of the reinforcing steel, while the compressive component is at the centroid

of the wedge-shaped compression block. Comparing Figures 2.22 and 2.26 indi-

cates that the T force now is concentrated at the centroid of the reinforcing.

In Figure 2.26 the compression stress block is represented as a triangular wedge

shape. This representation is more or less accurate as long as the compressive

stresses in the concrete remain quite low. Figure 1.8 shows the generic shapes of

the stress-strain curve of concrete in compression, and the assumption of linear

distribution of stresses may be justified up to approximately 0.5fc
0.

As the applied loads increase, there is a corresponding increase in bending

moments throughout the beam. Thus, many more sections away from the location

of the maximum moment will develop tensile stresses that exceed the concrete’s

ultimate tensile strength, resulting in the development of more cracks. While

theoretically the spacing between cracks is very small, it does not happen that

way, because the formation of a crack relieves tensile strains in the concrete in its

immediate neighborhood. Initially the cracks are very fine hairline cracks, and a

magnifying glass may be needed to locate them. These hairline cracks do not

indicate that there is anything wrong with the beam: They occur naturally in

reinforced concrete beams subjected to flexure under normal working load condi-

tions. In fact, the reinforcement does not even do much work until after the concrete

has cracked.

As the bending moment at the section increases, the magnitude of T and C, the
tension and compression components of the internal couple, must also increase. In

the reinforcement this is simply reflected as an increase in stresses. Correspond-

ingly, the steel also will experience greater strains and elongation. As long as the

strains in the reinforcing are less than the yield strain, the relationship between

stresses and strains remains linear.

In the concrete, however, the increased compression strains result in a nonlinear

response of the stresses while maintaining the required increase in the volume of the

stress block. The concrete stress block becomes more and more bounded by a

curvilinear surface. Ultimately, the contour will resemble the one shown in

Figure 2.27. This diagram is the same as the ones shown in Figure 1.8, except the

C

T

n.a.

Section Strains Stresses

fss

Figure 2.26 The internal couple after cracking
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axes are reversed. At the origin, the strains and stresses are zero, just like on the

beam section at its neutral axis. At the top there is a strain value of 0.003, which is a

value selected by the ACI Code (somewhat arbitrarily) as the ultimate useful strain.
Somewhere between these two limits (in the neighborhood of 0.002) the peak stress

(the maximum compressive strength or simply compressive strength) occurs.

In calculations this value is designated as fc
0; it is the specified compression strength

of the concrete, as already mentioned in Section 1.6.1.

On the tension side (i.e., at the reinforcement), Figure 1.17 shows the stress-strain

curve of the reinforcing steel, or the response of the steel to increasing strain values.

This curve clearly shows that the steel has significant residual strength even after it

has yielded, but this residual strength (the strength gained in the strain hardening

zone) is neglected. Thus, we assume that the stresses will linearly increase with

increasing strains up to yield, after which ever-increasing strains produce no

corresponding increase in stresses. Scientifically, this curve is known as a bilinear
stress-strain diagram, and the response of the steel as elasto-plastic behavior. Fig-
ure 2.28 shows the assumed stress-strain diagram for 40 and 60 ksi steel, respectively.

2.13 Different Failure Modes

As a first case assume that a beam has a relatively small amount of reinforcing steel.

Such a beam is shown in Figure 2.29. With increasing demand on the internal

couple the stresses in the steel will reach yield before the demand on the concrete

Strains

Stresses

0.003

0.002

0.001

1,
00

0
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00

0

3,
00

0
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0

Figure 2.27 Typical curvilinear stress distribution in the concrete at ultimate strength
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compression block reaches the ultimate concrete compressive strength. With

increasing elongation in the steel, still prior to yield, the cracks will become

wider and more visible. When the steel starts to yield (i.e., elongate rapidly), the

relatively narrow crack at the bottom opens up. This forms a wedge that shifts the

neutral axis upward, thus decreasing the area available for the compressive stress

block, until the concrete crushes on the compressive side as a secondary failure.

The primary cause of failure was due to the yielding of the reinforcement. In a

somewhat misleading way such sections are sometimes referred to as

underreinforced sections. This unfortunate expression implies that the section is

underreinforced as compared to the capacity of the compression part of the section.

(In Section 2.17 we will discover that the behavior of an under-reinforced section is

classified as tension-controlled or transition-controlled depending on the level of

tensile strain in the steel at the time of failure.)

As a second case consider a beam that has a relatively large amount of

reinforcing. For such a beam the steel will be able to develop the T part of the

internal couple without yielding. As demand on the compression stress block

Stress

Strain

60 ksi

40 ksi

0.
00

13
8

0.
00

20
7

Figure 2.28 Assumed bilinear stress-strain diagram of reinforcing steel

Compression zone

Yielding

Figure 2.29 Tension-controlled failure of a reinforced concrete beam
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increases, however, the capacity to provide a sufficiently large volume of concrete

stresses will be exhausted, reaching the state shown in Figure 2.27. In such a case

the primary failure occurs in the concrete. These types of sections are referred to as
overreinforced, that is, the beam has more reinforcing in the section than what

could be used with the largest possible compressive stress block.

A casual observer may care little about what initiated the failure of the beam.

But the two modes of failure vastly differ. The first mode, in which the primary

failure happens due to the yielding of the reinforcing, is a ductile process and is

preceded by significant cracking, fairly large deflections, and similar warning signs.

The beam, in a way, tells you that something bad is about to happen.

In the second mode there are no such obvious signs of impending failure. The

reinforcement, in providing the tensile part of the internal couple, experiences

relatively low strains, so the few hairline cracks do not serve as warning signs.

Consequently when the failure occurs, it happens in a sudden, explosive way—the

concrete failure in compression is very abrupt.

Between these two different failure modes is a special case, known in the literature

as the balanced-failure condition. Balanced failure is a theoretical limit dividing the

underreinforced and overreinforced failure modes. We feel that this is an unfortunate

terminology, because the word balance (i.e., equilibrium) should not be used to

describe a failure mode that is anything but the maintenance of balance. We would

prefer to use the expression simultaneous failure. But whatever terminology is used,

it refers to the amount of reinforcement in a section that causes the concrete at

the compression side to fail at exactly the same time the steel begins to yield. So the

strain in the steel will be the yield strain, and the strain at the extreme edge of the

concrete will be 0.003. This balanced condition is depicted in Figure 2.30.

2.14 The Equivalent Stress Block

A quick look at Figure 2.27, or at its 3-D representation in Figure 2.31, should

convince anyone that it would be impractical to calculate the value of C by figuring

out the volume of the stress block. The calculation would require integral calculus,

0.003

cb

fy/E

d

b

Figure 2.30 Strain distribution at “balanced” failure

2.14 The Equivalent Stress Block 67



even if there was an easy way to express the shape of the curve mathematically.

A reasonable approximation can be obtained by substituting a stress block whose

volume is about the same as the true stress volume enclosed in Figure 2.31, and

whose centroid is fairly close to that of the true stress volume. This is known as the

equivalent stress block, and is shown in Figure 2.32.

The relationship between the true stress block and the equivalent stress block has

been established by studying many concrete stress-strain curves. The simple rect-

angular block has been adopted for its simplicity and ease of calculation. If a

uniform stress value of 0.85fc
0 is adopted, then only the relationship between the

depth of the equivalent stress block a and the distance of the neutral axis from the

top c is needed. This relationship is given in Equation (2.11).

a ¼ β1c ð2:11Þ

To account for the somewhat different shapes of the stress-strain curves of different

strengths of (refer to Figure 1.8) concrete, β1 is given by the ACI Code (Section

22.2.2.4.3) as follows:

C 

T

c

b

Figure 2.31 True stress distribution in the concrete at ultimate strength
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β1¼ 0.85 for concrete strength fc
0 up to and including 4,000 psi. For strengths above

4,000 psi, β1 shall be reduced at a rate of 0.05 for each 1,000 psi

of strength in excess of 4,000 psi, but β1 shall not be taken less than 0.65

Equation (2.12) gives the expression to calculate β1 for fc0 > 4,000psi.

β1 ¼ 0:85� 0:05
fc
0 � 4,000

1,000

� �
� 0:65 ð2:12Þ

The equivalent stress block makes it extremely easy to manipulate the expression to

calculate the ultimate (design) resisting moment of a given section. The moment

arm of the internal couple, z, can be calculated using Equation (2.13).

z ¼ d � a

2
ð2:13Þ

The numerical value of the internal couple can be expressed in two different

ways, using the designation ofMn for the nominal resisting moment andMR for the

design resisting moment. These moments can be calculated using Equations (2.14)

and (2.15), respectively.

Mn ¼ Tz or Mn ¼ Cz ð2:14Þ

MR ¼ ϕMn ¼ ϕTz ¼ ϕCz ð2:15Þ

C 

T

a

b 0.85 fc

z

Figure 2.32 The equivalent stress block

2.14 The Equivalent Stress Block 69



where

T¼As fy (the area of the reinforcing multiplied by the yield stress

of the steel)

C ¼ 0:85fc
0ab (the volume of the equivalent stress block)

Equilibrium requires that T be equal to C, thus

As fy ¼ 0:85fc
0 ab ð2:16Þ

Solving this equation for a gives Equation (2.17) for calculating the depth of the

equivalent stress block.

a ¼ As fy
0:85fc

0 b
ð2:17Þ

Note that a will increase as larger amounts of reinforcement, or reinforcing steel

with greater strength is used. On the other hand a will be smaller if a wider section,

or stronger concrete is used. Note, however, that a is independent of the depth of the
section.

2.15 The Steel Ratio (ρ)

Sometimes it is useful to express As as a fraction of the working cross section, which

is the product of the width b and the effective depth (or working depth) d. The term
steel percentage or, more accurately, steel ratio refers to the ratio between the area

of the reinforcing steel and the area of the working concrete section.

The steel ratio is calculated using Equation (2.18).

ρ ¼ As

bd
ð2:18Þ

Note that ρ is a nondimensional number, area divided by area, so it is not a

percentage per se. But it can be made into a percentage by multiplying it by 100.

For example, assume the following beam data: b¼ 12 in., h¼ 24 in., As¼ 3

#6 bars¼ 3� 0.44¼ 1.32 in.2, and #3 stirrups in the beam.

Then d¼ 24� 1.5 in. (concrete cover)� 0.375 in. (diameter of the stirrup)�
0.75 in. (diameter of #6 bar)/2¼ 21.75 in. Thus, the steel ratio is

ρ ¼ As

bd
¼ 1:32

12 21:75ð Þ ¼ 0:00506 (or 0.506%).
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2.16 The Balanced Steel Ratio

Section 2.13 discussed the two possible different failure modes of reinforced

concrete beams in bending. The theoretical dividing point between them, the

“balanced failure,” was also discussed. In this case the steel in the outermost

layer (if there is more than one layer) reaches its yield strain exactly when the

maximum compressive strain in the concrete reaches the 0.003 value. The strain

distribution at balanced failure resembles the one shown in Figure 2.33. In order to

cover the more general (although not so frequent) case of multilayer reinforcing in

the beam, a distinction is made between d, the working depth, and dt, the depth to

the outermost layer of reinforcing on the tension side. When there is only one layer

of reinforcement, d¼ dt.
From the similarity of the two triangles above and below the neutral axis,

cb, the depth of the neutral axis at balanced failure can be expressed as a function

of dt and fy.

cb
dt � cb

¼ 0:003

εty
ð2:19Þ

Solving for cb

cb ¼ 0:003dt
0:003þ εty

ð2:20Þ

because

εty ¼
fy
Es

¼ fy
29,000,000

ð2:21Þ

0.003

N.A.d

εty

dt –cb

cb

dt

Figure 2.33 Strain distribution at balanced failure
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We can substitute and rearrange to obtain

cb ¼ 87,000

87,000 þ fy
dt ð2:22Þ

In these equations fy is substituted in psi.

With this information the depth of the equivalent stress block at balanced failure
can be calculated using Equation (2.23).

ab ¼ β1cb ¼
Asbfy

0:85fc
0b

ð2:23Þ

where Asb is the theoretical amount of reinforcing needed to cause a balanced

failure mode.

When cb from Equation (2.22) and Asb¼ ρbbd from Equation (2.18) are

substituted into Equation (2.23).

β1
87,000dt

87,000þ fy
¼ ρbbdfy

0:85fc
0b

the steel ratio for balanced failure, ρb, can be calculated using Equation (2.24).

ρb ¼
0:85fc

0

fy
β1

87,000

87,000þ fy

dt
d

ð2:24Þ

If dt¼ d, which means there is only one layer of reinforcing steel (by far the most

frequent case), then Equation (2.24) becomes Equation (2.25).

ρb ¼
0:85fc

0

fy
β1

87,000

87,000þ fy
ð2:25Þ

Note that the value of ρb depends only on the selected materials ( fc
0 and fy) and is

independent of the size of the section. (The ratio
dt
d
becomes necessary only when

there is more than one layer of reinforcement.)

2.17 Elaboration on the Net Tensile Strain in Steel (εt)

In an effort to generalize the approach for members subject to both bending and

axial compressive forces, the ACI Code strives to treat these combination cases

together. The different failure modes were discussed in Section 2.13. These modes

are distinguished by whether the primary failure is due to yielding of the steel or to
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crushing of the concrete. The former is called tension-controlled failure, and the

latter is compression-controlled failure. It was also previously noted that tension-

controlled failure results in highly desirable ductility, whereas compression-

controlled failure is abrupt and nonductile in nature. Unfortunately, as will be

discussed later in Chapter 5, the desire to have only ductile tension-controlled

failure modes cannot always be satisfied. But in flexural members, at least we can

control the failure behavior by using no more steel than an amount that ensures the

desirable ductility. In the past this was accomplished by limiting the reinforcement

ratio, ρ, to 75ρb in flexural members. Since 2002 the ACI Code has adopted a new

approach that is a better integration of dealing with members subject to axial

stresses whether from flexure, or axial compression, or both. If ductile failure

mode cannot always be assured, then the use of a larger safety factor against a

nonductile type of failure is warranted. This larger safety factor is obtained by

regulating the ratio between the useful ultimate moment or design resisting moment

(MR¼ϕMn) and the nominal ultimate moment (Mn). This requires only an adjust-

ment in the ϕ (strength reduction) factor.

The ACI Code (Section 21.2.2) defines three different types of section behavior:

tension-controlled, compression-controlled, and a transition zone, which is the

zone between the tension- and the compression-controlled failure zones. Figure 2.34

shows a graphical representation of these zones, and defines and separates the three

regions. Theoretically the division between compression-controlled failure and

tension-controlled failure is where εt¼ εty. In other words, the section is

compression-controlled if the strain in the steel is less than the yield strain; and is

tension-controlled if the strain in the steel is greater than the yield strain when the

compression strain in the concrete reaches the limit of 0.003. For design purposes,

however, the ACI Code requires a safely assured tension-controlled section; thus, it

Compression
controlled Transition

0.90

0.65
A

A1 B1

B

C

Flexural members

0.004

D

Tension controlled

0.005

εt

εty
εt

Figure 2.34 Variation of ϕ versus εt
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defines a section as tension-controlled only when the steel strain at ultimate strength

is greater than 0.005. Between the two limits, yield strain (εty) and 0.005, the Code

defines a transition zone with lowered ϕ values.

Note that the ACI Code allows εt for flexural members to be as small as 0.004 at

ultimate strength. A somewhat diminished ϕ factor, however, is required in

conjunction.

It may be helpful here to repeat what was discussed in Section 2.13 in a

somewhat different format. Figure 2.35 defines graphically the behavior of

reinforced concrete sections.

1. A compression-controlled section is a reinforced concrete section in which the

strain in the concrete reaches 0.003 at ultimate strength, but the strain in the steel

(εt) is less than the yield strain (εty). (See Figure 2.35a.) In other words, at the

ultimate strength of the member, the concrete compressive strain reaches 0.003

before the steel in tension yields. This condition results in a brittle or sudden

failure of beams and should be avoided. In reinforced concrete columns, how-

ever, a design based on compression-controlled failure behavior cannot be

avoided. As shown in Figure 2.34, ϕ¼ 0.65 is mandated for this case, which is

considerably less than the ϕ¼ 0.90 that is used for tension-controlled sections.

The reasons for this additional factor of safety are: (1) compression-controlled

sections have less ductility; (2) these sections are more sensitive to variations

in concrete strength; and (3) the compression-controlled sections generally occur

in members that support larger loaded areas than do members with tension-

controlled sections.

2. A tension-controlled section is a reinforced concrete section in which the tensile
strain in steel (εt) is more than 0.005 when the compression strain in concrete

reaches 0.003 (see Figure 2.35b). In other words, when a section is tension-

controlled at ultimate strength, steel yields in tension well before the strain in the

concrete reaches 0.003. Flexural members with tension-controlled sections have

0.003 0.003 0.003

0.0050.005

d dt

c

c
c

cba
εc

εt εt εtεty εty

εc εc

Figure 2.35 Strain distribution and net tensile strain (εt) at behavior limits: (a) compression-

controlled sections; (b) tension-controlled sections; (c) transition-controlled sections
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ductile behavior. As a result, these sections may give warning prior to failure by

excessive deflection or excessive cracking, or both. Not all tension-controlled
sections will give both types of warning, but most tension-controlled sections

should give at least one type of warning. Both types of warnings, excessive

deflection and cracking, are functions of the strain, particularly the strain on the

tension side. Because tensile strains are larger than compressive strains in

tension-controlled sections at failure, the ACI Code allows a larger ϕ factor

(0.90) for these types of members.

3. A transition-controlled section is a reinforced concrete section in which the net

tensile strain in the steel (εt) is between yield strain (εty) and 0.005 when the

compression strain in the concrete reaches 0.003. (See Figure 2.35c.) Some

sections, such as those with a limited axial load and large bending moment,

may have net tensile strain in the extreme steel (εt) between these limits. These

sections are in a transition region between compression- and tension-controlled

sections. In Figure 2.34, the line AC represents the Code-defined relationship

between ϕ and εt in the transition-controlled zone. The value of ϕ in the

transition zone can be calculated using Equation (2.26).

ϕ ¼ A1 þ B1 εt ð2:26Þ

where the coefficients A1 and B1 may be expressed as

A1 ¼ 0:00325� 0:9 εty
0:005� εty

B1 ¼ 0:25

0:005� εty

Table A2.2a in Appendix A lists the values for the coefficients A1 and B1 for

commonly used reinforcing steels.

2.18 The Location of the Neutral Axis and Limit Positions

Consider the strain diagram shown in Figure 2.36. The location of the neutral axis at

ultimate strength (c) depends upon the net tensile strain of the steel. Observe the

solid and the dotted lines. Because the strain at the compression face is constant

(0.003), c becomes smaller as the steel strain increases. Using similar triangles of

the strains above and below the neutral axis, an expression can be derived to

calculate the depth of the neutral axis, c.

c

dt � c
¼ 0:003

εt
cεt ¼ 0:003 dt � cð Þ

ð2:27Þ
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Solving Equation (2.27) for c:

c ¼ 0:003

0:003þ εt
dt ð2:28Þ

The ratio of c/dt, given in Equation (2.29), is often used to check if a section is

tension-controlled.

c

dt
¼ 0:003

0:003þ εt
ð2:29Þ

Two values of εt are of special interest. The first one is εt¼ 0.004. This is the absolute

minimum steel strain permitted by the ACI Code for members in flexure. (Refer to

Figure 2.34 and ACI Code, Section 7.3.3.1 for one way slabs, and Section 9.3.3.1 for

beams). Substituting this εt value into Equation (2.29) gives us Equation (2.30).

c

dt
¼ 3

7
¼ 0:429 or c¼0:429dt ð2:30Þ

Equation (2.30) gives the lowest permissible value of the neutral axis depth. In

other words, this defines the largest permissible concrete area in compression

(c� 0.429dt).
The second value of interest is εt¼ 0.005. Solving Equation (2.29) for this case,

we obtain Equation (2.31) for the lowest location of the neutral axis depth for

tension-controlled sections.

c

dt
¼ 0:003

0:003þ 0:005
¼ 3

8
¼ 0:375 or c¼0:375dt ð2:31Þ

0.003

dt

c

ec

et

Figure 2.36 Variation of the location of the neutral axis (c) with the tensile strain in steel (εt)
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2.19 Relationship Between ϕ and dt/c

Equation (2.29) shows that the ratio of either c/dt, or its inverse, dt/c, are in direct

relationship with the steel tensile strain εt. Then it is possible to modify Figure 2.34

to show the ACI Code–prescribed strength reduction factor’s (the ϕ factor’s)

variation in terms of the dt/c ratio. (For convenience of graphing, the relationship

is shown in terms of dt/c.) Figure 2.37 expresses the changing ϕ values with respect

to the ratio dt/c. Note that the ratio dt/cb is the ratio of d/c at the balanced failure

point.

Table A2.2b inAppendixA of this text lists the values for the coefficientsA2 andB2

that describe the variations in ϕ values through the transition zone. The limiting ratios

between the depth of the member and the location of the neutral axis (dt/c) and its

inverse at the balanced failure point (i.e., dt/cb or cb/dt) are also included.

2.20 Limitations on the Steel Percentage (ρ) for Flexural
Members

With the help of Equations (2.30) and (2.31), the corresponding largest ρ values (i.e.,
the steel percentages that satisfy those limiting conditions) can be determined. For

εt¼ 0.004 (lowest permitted steel strain value at ultimate strength of flexural mem-

bers), the maximum depth of the neutral axis is calculated using Equation (2.32).

Compression
controlled Transition

0.90

0.65
A

A2 B2 ( )

B

C

Flexural members

D

Tension controlled

dt
cb

dt
c

dt
c

7
3

8
3

Figure 2.37 Variation of ϕ versus
dt
c
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cmax ¼ 3

7
dt ð2:32Þ

The corresponding depth of the equivalent stress block (refer to Equations (2.11)

and (2.17)) is given by Equation (2.33).

amax ¼
As,max fy
0:85fc

0b
¼ 3

7
β1dt ð2:33Þ

where As,max is the amount of reinforcing steel necessary to have εt¼ 0.004.

Substituting for As,max¼ ρmax bd in Equation (2.33), then rearranging, the largest
ρ value can be determined.

ρmaxbdfy
0:85fc

0b
¼ 3

7
β1dt ð2:34Þ

ρmax ¼
3

7
0:85ð Þβ1

fc
0

fy
� dt
d

or

ρmax ¼ 0:364β1
fc
0

fy
� dt
d

ð2:35Þ

Equation (2.35) gives the maximum percentage of reinforcing steel permitted by

the ACI Code in flexural members, unless the capacity is augmented by the use of

compression reinforcing. (See more on that in Chapter 3.)

For sections with a single layer of reinforcing, dt/d¼ 1.0, Equation (2.35) is

simplified as indicated in Equation (2.36).

ρmax ¼ 0:364β1
fc
0

fy
ð2:36Þ

In a similar way, we can determine the value of ρ that will ensure an εt¼ 0.005,

the upper limit of ρ needed to ensure a tension-controlled (ductile) failure in beams

at their ultimate strength. Designate this value of ρ as ρtc. After changing the right

side of Equation (2.34) accordingly (see Equations (2.30) and (2.31)), then the

value of ρtc can be calculated using Equation (2.38) (or Equation (2.39) for the

special case of a section with only one layer of reinforcement).

ρtcbdfy
0:85fc

0b
¼ 3

8
β1dt ð2:37Þ
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ρtc ¼ 0:319β1
fc
0

fy
� dt
d

ð2:38Þ

ρtc ¼ 0:319β1
fc
0

fy
ð2:39Þ

Table A2.3 in Appendix A lists the values of ρmax and ρtc for various grades of steel
( fy) and concrete strength ( fc

0) combinations. The value of the strength reduction

factor (ϕ) is shown in the right column of the table. This value varies when

ρtc< ρ< ρmax, or the beam’s failure mode is in the transition zone (see

Section 2.17). Table A2.3 indicates that not much is gained in terms of useable

moment capacity with the required reductions in the ϕ values and when the

reinforcing percentage is increased from ρtc to ρmax, especially when higher

strength steels are used.

2.21 Minimum Steel Ratio (ρmin) for Reinforced
Concrete Beams

When a reinforced concrete beam, for architectural or other reasons, is relatively

large in cross section, or carries little load, the calculations may require only a very

small amount of reinforcing steel. Such a section, if accidentally overloaded, will

fail in a sudden, brittle manner. The reason is that the ultimate moment strength

provided by the reinforced section is actually less than the strength of the same

section without any reinforcing. Thus, the stress in the reinforcement will immedi-

ately reach yield at the first crack, causing the section to fail suddenly.

To ensure that reinforced beam’s ultimate strength is larger than that of

the unreinforced beam, Section 9.6.1.2 of the ACI Code requires a minimum

amount of flexural steel in reinforced concrete beams. This requirement is given

in Equation (2.40).

As,min ¼
3
ffiffiffiffi
fc
0p

fy
bd � 200

fy
bd ð2:40Þ

This minimum amount of steel (As,min) provides enough reinforcement to ensure that

the moment strength of the reinforced concrete section is more than that of

an unreinforced concrete section, which can be calculated from itsmodulus of rupture.

In the past, the ACI Code required only an As,min ¼ 200

fy
bd. For concrete strength

greater than about 4,440 psi, however, this is not sufficient to ensure the desired aim;
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3
ffiffiffiffi
fc
0p

fy
bd rectifies this condition. Because As,min¼ ρmin bd, Equation (2.40) may be

expressed mathematically in terms of ρmin (minimum steel ratio) as shown in

Equation (2.41).

ρmin ¼ max
3
ffiffiffiffi
fc
0p

fy
,
200

fy

( )
ð2:41Þ

Table A2.4 in Appendix A provides values of ρmin for different grades of steel

and compressive strengths of concrete.

2.22 Analysis of Rectangular Reinforced Concrete Sections

Analysis of a section means finding the MR¼ϕMn value. This may be necessary

when checking an existing structure or element to determine if the strength pro-

vided by the section (supply) is sufficient to satisfy Mu that is calculated from the

loads (demand). Finding MR also makes it possible to calculate the maximum live

load that may be permitted on the element.

An analysis can be performed only when all parameters that influence the ultimate

strength of a section are known. There are five of these parameters, namely:

The dimensions of the section b and d

The materials used in the beam fc
0 and fy

The tensile reinforcement in the beam As

Next we show two methods for calculating the value of MR.

2.22.1 MR Calculation: Method I

This method closely follows the already discussed and established formulae.

Figure 2.38 shows the stress and strain distributions for a reinforced concrete

rectangular beam at ultimate strength. For the most general case, a beam section

with multilayer reinforcing is shown.

The resisting moment can be calculated from the internal couple and using

Equations (2.42)�(2.44).
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T ¼ As fy C ¼ 0:85fc
0ba z ¼ d � a=2

Mn ¼ Tz ¼ As fy d � a=2ð Þ ð2:42Þ

Mn ¼ Cz ¼ 0:85fc
0 ba d � a=2ð Þ ð2:43Þ

MR ¼ ϕMn ð2:44Þ

The calculation proceeds as follows:

Step 1. Calculate ρ ¼ As

bd
and check if ρ� ρmin (from Table A2.4); if not, the

beam does not satisfy the minimum requirements of the ACI Code, and

its use for load carrying is not permitted. Determine whether ρ� ρmax

(from Table A2.3); if not, the beam has too much reinforcing and does

not satisfy the latest ACI Code’s limitations. A practical solution for this

is to disregard the excessive amount of reinforcement, assume that the

section is in the transition zone, and continue the calculations with

the maximum permissible amount of reinforcing.

Step 2. Calculate the depth of the equivalent stress block from Equation (2.17):

a ¼ As fy
0:85fc

0 b

Step 3. Calculate the location of the neutral axis from Equation (2.11):

c ¼ a

β1

dt

d

C

T

z

ba

b

c
a

0.85fc

fy

εc

εt εty

Figure 2.38 Stress and strain distributions on a reinforced concrete section
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Step 4. Determine whether

c

dt
� 3

8

If yes, the beam is in the tension-controlled failure zone; set ϕ¼ 0.90 and

go directly to step 5. If not i:e:,
3

8
� c

dt
� 3

7

� �
, the ϕ factor must be

adjusted accordingly. Therefore, calculate the reduced ϕ:

ϕ ¼ A2 þ B2

c
dt

refer to Table A2:2b for A2 and B2ð Þ

Step 5. Calculate MR ¼ ϕMn ¼ ϕAs fy d � a

2

� �
refer to Equations 2:42ð Þ andð

2:44ð ÞÞ
Figure 2.39 summarizes the analysis steps.

Find MR for reinforced
concrete rectangular beams.

Beam is illegal ( min)
per current ACI Code.

Warning! max 
Only the part of the reinforcing that
is equal to max may be taken into

account in the nominal strength calculations.

dt

c
B2A2

?
dt

c

4.

1.

min?
bd
As

max?

Yes No

No

No

Yes

a 
Asfy

0.85fcb

MR Asfy (d )a
2

ac 
1

3
8

0.90

2.

3.

5.

Figure 2.39 Flowchart to calculate MR (Method I)
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Example 2.6 Use Method I to determine the design resisting moment, MR, of
the reinforced concrete beam section shown below. fc

0 ¼ 4ksi, and fy¼ 40ksi.

The reinforcement is 3 #9 bars, As¼ 3.00 in2.

d = 22 in.

b = 10 in.

Solution Using the steps of Figure 2.39:

Step 1. Find the steel ratio, ρ:

ρ ¼ As

bd
¼ 3

10� 22
¼ 0:0136

From Table A2:4 ! ρmin ¼ 0:0050 < 0:0136 ∴ ok

From Table A2:3 ! ρmax ¼ 0:0310 > 0:0136 ∴ ok

Step 2. Calculate the depth of the compression zone, a:

a ¼ Asfy
0:85fc

0b
¼ 3� 40

0:85� 4� 10
¼ 3:53 in:

Step 3. From the depth of the equivalent stress block, determine the location of the

neutral axis, c:

c ¼ a

β1
¼ 3:53

0:85
¼ 4:15 in:

Step 4. Determine whether the section is tension-controlled or is in the transition zone:

c

dt
¼ 4:15

22
¼ 0:189 < 0:375 ∴ ok

Therefore, the section is tension-controlled and the strength reduction

factor ϕ¼ 0.90.
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Step 5. Calculate the resisting moment, MR:

MR ¼ ϕAs fy d � a

2

� �

MR ¼
0:90� 3� 40 22� 3:53

2

� �
12

¼ 182ft-kip

Example 2.7 Repeat Example 2.6 for fy¼ 60 ksi, and fc
0 ¼ 3ksi.

Solution

Step 1.

ρ ¼ As

bd
¼ 0:0136

Table A2:4 ! ρmin ¼ 0:0033 < 0:0136 ∴ ok

Table A2:3 ! ρmax ¼ 0:0155 > 0:0136 ∴ ok

Step 2.

a ¼ As fy
0:85fc

0b
¼ 3� 60

0:85� 3� 10
¼ 7:06 in:

Step 3.
c ¼ a

β1
¼ 7:06

0:85
¼ 8:30 in:

Step 4.

c

dt
¼ 8:30

22
¼ 0:377 > 0:375

∴ Section is in the transition zone (although just barely).

ϕ ¼ A2 þ B2

c

dt

Use Table A2.2b to determine A2 and B2; then

ϕ ¼ 0:233þ 0:25

0:377
¼ 0:90

Step 5.

MR ¼
0:90� 3� 60 22� 7:06

2

� �
12

¼ 249ft-kip
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Example 2.8 CalculateMR for the reinforced concrete beam section shown below.

fy¼ 60 ksi, fc
0 ¼ 4ksi, As¼ 7.62 in2.

d = 31.25 in. dt = 32.5 in.

6 # 10

12 in.

Solution

Step 1.

ρ ¼ As

bd
¼ 7:62

12� 31:25
¼ 0:0203

From Table A2:4 ! ρmin ¼ 0:0033 < 0:0203 ∴ ok

From Table A2:3 ! ρmax ¼ 0:0207 > 0:0203 ∴ ok

Step 2.

a ¼ As fy
0:85fc

0 b
¼ 7:62� 60

0:85� 4� 12
¼ 11:21 in:

Step 3.

c ¼ a

β1
¼ 11:21

0:85
¼ 13:19 in:

Step 4.
c

dt
¼ 13:19

32:5
¼ 0:406 > 0:375

∴ Section is in the transition zone. With the help of Table A2.2b:
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ϕ ¼ A2 þ B2

c
dt

¼ 0:233þ 0:25

0:406
¼ 0:85

Step 5.

MR ¼
0:85� 7:62� 60 31:25� 11:21

2

� �
12

¼ 831kip-ft

2.22.2 MR Calculation: Method II

This method results in the development of design aid tables, which are more user-

friendly. The tables will also be useful when the aim is to design beam sections to

satisfy a given Mu demand instead of analyzing.

The expressions for the components of the internal couple are

T ¼ As fy C ¼ 0:85fc
0ba z ¼ d � a=2

Because T¼C, the depth of the equivalent stress block is

a ¼ As fy
0:85fc

0b

Substituting from Equation (2.18), As¼ ρbd. Equation (2.45) can be used to calcu-

late a.

a ¼ ρbdfy
0:85fc

0b
¼ ρdfy

0:85fc
0 ð2:45Þ

Substituting from Equation (2.11), a¼ β1c, c can be determined using

Equation (2.46).

β1c¼
ρdfy
0:85fc

0

c¼ ρ fyd
0:85fc

0β1

ð2:46Þ

or

c

dt
¼ ρfy

0:85fc
0β1

� d
dt

ð2:47Þ

Equation (2.47) is usually the preferred equation to check if a section is tension-

controlled.
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If 3/8� c/dt� 3/7 the strength reduction factor, ϕ, must be adjusted accordingly.

ϕ ¼ A2 þ B2

c
dt

Substituting for c/dt from Equation (2.47), Equation (2.48) can be used to

calculate the adjusted strength reduction factor.

ϕ ¼ A2 þ B2

0:85fc
0β1

ρfy
� dt
d

ð2:48Þ

Equation (2.48) provides the values of ϕ in the transition zone. In order to simplify

the equation, introduce a new steel ratio, ρt:

ρt ¼
As

bdt

(Note that dt¼ d and ρt¼ ρ when the beam has only a single layer of steel.)

Substituting ρ ¼ ρt
dt
d
Equation (2.48) can be rewritten as Equation (2.48a).

ϕ ¼ A2 þ B2

0:85fc
0β1

ρt fy
ð2:48aÞ

From Equation (2.43) (see also Figure 2.38):

MR ¼ ϕMn ¼ ϕCz

MR ¼ ϕ 0:85fc
0bað Þ d � a

2

� �

Substituting from Equation (2.45) for a:

MR ¼ ϕ 0:85fc
0b

ρdfy
0:85f

0
c

0
@

1
A d � ρdfy

1:7f
0
c

0
@

1
A

Rearranging and simplifying:

MR ¼ bd2 ϕρ fy 1� ρfy
1:7f

0
c

 !" #
ð2:49Þ

If the product in the bracket is designated as R (called the resistance coefficient,
which has units of stress, psi or ksi) as shown in Equation (2.50),
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R ¼ ϕρfy 1� ρfy
1:7fc

0

� �
ð2:50Þ

the expression for MR is simplified to Equation (2.51).

MR ¼ bd2R ð2:51Þ

It is clear from Equation (2.50) that R depends on the materials used (i.e., fc
0, fy

and the steel ratio (ρ) in the beam), but it is independent of the dimensions of the

section. Thus tables for R can be developed in terms of ρ for the various combina-

tions of materials. Values of R can be found from Tables A2.5 through A2.7. ρmin

for beams are indicated on each table. Reinforcement ratio (ρ) values less than ρmin

may not be used in beams, but may be used in slabs and footings.

These tables were developed with R in psi. Using R in psi and beam dimensions

b and d in inches results in lb-in. units for MR. Because kip-ft are usually used in

moment calculations, appropriate conversions must be made between lb-in. and

kip-ft for the correct use of the tables.

MR ft-kipð Þ ¼ b in: d in:ð Þ2 R psið Þ
12,000

The tables must be used with care, especially when large ρ values result in

the section being in the transition zone. The value of ϕ depends on fc
0, fy, ρ, and

dt
d
, thus if

ρ � ρtc ! ϕ ¼ 0:90

and if

ρmax � ρ > ρtc ! ϕ ¼ A2 þ B2

0:85fc
0β1

ρfy
� dt
d

The values of ρtc and ρmax for common grades of steel and concrete strength are

listed in Table A2.3.

An important note here is that Tables A2.5 to A2.7 have been developed based

on ρ (i.e., beams with a single layer of reinforcement). If the beam has multiple

layers of reinforcement (ρt 6¼ ρ), the R value must be modified by adjusting it to an

R0 value based on ρt. This can be easily done by using Equation (2.51a).

R0 ¼ ϕ0

ϕ
R ð2:51aÞ

The values of ϕ0, which are listed in Tables A2.5 to A2.7, correspond to the

values of ρt.
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The use of Method II for analysis of reinforced concrete beam sections involves

the following steps:

Step 1. Determine whether ρ� ρmin; if not, then the beam does not satisfy the

minimum requirements of the ACI Code and its use for load carrying is not

permitted.

Determine whether ρ� ρmax; if not, the beam has too much reinforcing

and does not satisfy the latest ACI Code’s limitations. A practical solution

for this is to disregard the excessive amount of reinforcement, assume that

the section is in the transition zone, and continue the calculations with the

maximum permissible amount of reinforcing.

Step 2. Use ρ, fc0 and fy to obtain R and ϕ values from the appropriate Tables A2.5

to A2.7. If the beam has a single layer of steel or ϕ¼ 0.90, find MR from

Step 3. Otherwise move to Step 4.

Step 3. Calculate MR ¼ bd2R

12,000
b, d ¼ in:;R ¼ psi;MR ¼ ft-kipð Þ

Step 4. For beams with multiple layers of reinforcement, calculate ρt ¼
As

bdt
and

obtain the corresponding strength reduction factor (ϕ0) from Tables A2.5 to

A2.7.

Step 5. Calculate the modified value of the coefficient of resistance R0 ¼ R
ϕ0

ϕ

� �
.

Step 6. Calculate MR ¼ bd2R0

12,000
.

The flowchart for Method II is shown in Figure 2.40.

Method II has fewer steps to follow, so it is easier to use. Method I, however, is

more general as it does not require the use of design tables (which may not be

readily available) and it is adaptable to any grade of steel or compressive strength of

concrete, not just the ones listed in the tables.
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Example 2.9 Solve Example 2.6 using Method II.

Solution

Step 1. From Example 2.6:

ρ ¼ 0:0136 > ρmin ¼ 0:0050 ∴ ok

From Table A2:3 ! ρmax ¼ 0:0310 > 0:0136 ∴ ok

Step 2. Using ρ¼ 0.0136, fy¼ 40 ksi, and fc
0 ¼ 4ksi, obtain the resistance coeffi-

cient, R, from Table A2.5b:

R ¼ 450psi, ϕ ¼ 0:90

Find MR for reinforced concrete
rectangular beams (Method II).

No

Yes

Yes

No

No

Yes

1.

bd
As

min max?

Use , fy, fc to find R and  from
Tables A2.5 through A2.7.

2.

min, beam is illegal per ACI Code.
max, only the part of the reinforcing

that is equal to max, may be taken into
account in the nominal strength calculations.

Beam has
single layer of
bars (dt d )?

MR
bd 2R

12,000
0.90?

3.

MR
bd 2R
12,000

6.

As

bdt
Use t       to find from 

Tables A2.5 through A2.7.

R R

4.

5.

Figure 2.40 Flowchart to calculate MR using Method II
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Step 3. Because the beam has a single layer of reinforcement:

MR ¼ bd2R

12,000
¼ 10� 222 � 450

12,000

MR ¼ 182ft-k

which is the same as determined in Example 2.6.

Example 2.10 Solve Example 2.7 using Method II.

Solution

Step 1. From Example 2.7:

ρmax ¼ 0:0155 > ρ ¼ 0:0136 > ρmin ¼ 0:0033 ∴ ok

Step 2. ρ¼ 0.0136, fc
0 ¼ 3ksi, and fy¼ 60 ksi. From Table A2.6a:

R ¼ 615psi, ϕ ¼ 0:90

Step 3.

MR ¼ bd2R

12,000

MR ¼ 10� 222 � 615

12,000
¼ 248ft-kip

which is about the same as the result determined in Example 2.7.

Example 2.11 Solve Example 2.8 using Method II.

Solution

Step 1. From Example 2.8:

ρ ¼ 0:0203 > 0:0033 ∴ ok

Because there are two layers of reinforcement, adjust ρmax using

Table A2.3:

ρmax ¼ 0:0207
dt
d
¼ 0:0207

32:5

31:25
¼ 0:0215 > 0:0203 ∴ ok

Step 2. Use ρ, fy, and fc
0 to obtain R from Table A2.6b.

ρ¼ 0:0203

fc
0 ¼ 4ksi ! Table A2:6b ! R ¼ 825psi

fy ¼ 60ksi ϕ ¼ 0:82

Step 3. Because the beam has two layers of reinforcement and ϕ is not equal to

0.90, determine ρt and ϕ0 and adjust the resistance coefficient, R:
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Step 4.

ρt ¼
As

bdt
¼ 7:62

12� 32:5
¼ 0:0195

From Table A2:6b ! ϕ0 ¼ 0:85

Step 5. Adjusted value of the resistance coefficient (R0) is:

R0 ¼ R
ϕ0

ϕ
¼ 825� 0:85

0:82
¼ 855psi

Step 6. MR ¼ bd2R0

12,000
¼ 12� 31:252 � 855

12,000
¼ 835ft-kip

This result is about the same as that from using Method I. The difference

is insignificant and is due to rounding errors in the calculations.

2.23 Selection of Appropriate Dimensions for Reinforced
Concrete Beams and One-Way Slabs

2.23.1 Selection of Depth

The selection of a beam’s depth is almost always a controversial issue. On the one

hand, the building designer wants to minimize the depth of the structure in order to

maximize the headroom without unduly increasing the height of the building. On

the other hand, structural elements that are too shallow lead to increased short- and

long-term deflections. These, in turn, may be detrimental to attached nonstructural

building elements. Excessive deflections of concrete structures may result in

cracked walls and partitions, non-functioning doors, and so on.

To guide in the design of well-functioning structures, the ACI Code (Sections

7.3.1.1 and 9.3.1.1) recommend a set of span/depth ratios, with the comment that

the designer does not have to calculate deflections (an involved and somewhat

uncertain process) if the utilized depth is at least equal to the values provided in ACI

Table 7.3.1.1 for one-way slabs, and Table 9.3.1.1 for beams. These values are

summarized graphically in Figures 2.41 and 2.42.

Note from Figures 2.41 and 2.42 that the recommended minimum depth for

simply supported beams is span/16, whereas for one-way slabs this value is span/20.

These types of support conditions are quite rare in monolithic reinforced concrete

construction, because in most cases either continuity or some other type of restraint

is available at the supports. If the member is continuous at both ends, hmin¼ span/21

for beams and hmin¼ span/28 for one-way slabs. Finally, if the beam is continuous

at only one end, the minimum depth is span/18.5, and for one-way slabs is span/24.

A cautionary note is in order here. Span 2 (‘2) in Figures 2.41 and 2.42 is shown
as “Both ends continuous.” This assumption is valid only if the cantilever at the left

end of ‘2 is long enough to develop a significant end moment. Experience shows

92 2 Rectangular Beams and One-Way Slabs



that when the cantilever length is at least ‘2/3, the span ‘2 may safely be assumed as

“both ends continuous” from the point of view of satisfactory deflection control.

The values shown in Figures 2.41 and 2.42 are applicable only to normal-weight

concrete (wc¼ 145 lb/ft3) and Grade 60 reinforcement. For other conditions, the

ACI Code Section 7.3.1 recommends the following modifications:

(a) For lightweight concrete in the range of 90–115 pcf, the values in Figures 2.41

and 2.42 need to be multiplied by (1.65� 0.005wc) where wc¼ unit weight of

concrete in lb/ft3. This factor should not be less than 1.09. For a typical

lightweight structural concrete, wc¼ 115 pcf. Then the multiplier is

1.65� 0.005� 115¼ 1.075< 1.09. Use a multiplier equal to 1.09.

(b) For fy other than 60,000 psi, the values obtained from Figures 2.41 and 2.42

shall be multiplied by:

1 2 3 4

hmin

Simply-supported

hmin /20

hmin 4/24hmin 3/28hmin 2/28hmin 1/10

Both ends continuous One end continuousBoth ends continuousCantilever

Figure 2.42 Minimum depth requirements for reinforced concrete one-way slabs

Both ends continuous One end continuousBoth ends continuousCantilever

Simply-supported

1 2 3 4

1/8hmin 3/21hmin

/16hmin

2/21hmin 4/18.5hmin

hmin

Figure 2.41 Minimum depth requirements for reinforced concrete beams
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0:4þ fy
100,000

� �
ð2:52Þ

If the selected beam depth is less than the recommended hmin, the beam deflec-

tion has to be calculated and checked against the ACI Code requirements. There-

fore, if a beam does not satisfy the minimum depth requirements, it may still be

acceptable if computation of deflection proves it to be satisfactory.

2.23.2 Selection of Width

Minimum Bar Spacing in Reinforced Concrete Beams In Section 2.12 we

discussed the role of concrete cover over the reinforcement. Reinforcing bars also

need space between them to ensure adequate bond surface at their interface with the

concrete. The space should also be larger than the size of the largest aggregate

particle in the concrete.

Sections 25.2.1, 25.2.2 of the ACI Code require a minimum clear space for

single and multiple layers of bars as follows:

Minimum Space (smin) for Single Layer of Bars The minimum space (smin) for a

single layer of bars in beams (see Figure 2.43a) is the largest of the following: the

diameter of bar (db), 1 in., and 4/3 of maximum size aggregate used in the concrete

mixture.

Mathematically:

smin ¼ max db, 1 in:, 4=3 max: aggregate sizef g

Note that in most building structure applications (save for footings and founda-

tions) the usual concrete mix limits the size of the aggregate to ¾ in. Thus, a 1 in.

minimum spacing satisfies the third of the spacing requirements.

smin

a

smin

1 in. 

b

Figure 2.43 Minimum spacing between reinforcing bars: (a) single layer; (b) multiple layer
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Minimum Space for Multiple Layers of BarsWhere reinforcement is placed in two

or more layers (see Figure 2.43b), bars in the upper layers shall be placed directly

above bars in the lower layer with clear distance between layers not less than 1 in. In

addition, the requirements of single-layer bars must also be satisfied.

Minimum Width (bmin) of Reinforced Concrete Beams We use the minimum

required space between bars in a single layer to calculate the minimum beam
width needed to provide enough room for a specific number and size of bars. To

compute bmin, consider Figure 2.44. Usually #3 or #4 bars are used for stirrups.

Also, the minimum cover for bars in beams is 1.5 in. Therefore, we can calculate

bmin by adding the minimum required spaces and the bar diameters.

As an example, suppose that the beam in Figure 2.44 is reinforced with 4 #8 bars.

Assuming #4 stirrups, the minimum width for this beam is:

min

min

1+ 2 in. + 4 ´ 1 in.  +  3  ´ 1 in. = 11 in.
2

Cover Stirrups Main bars

= 2 ´ 1.5 in. ´

� � � �

b

s

Note that smin¼ 1 in. was used; this assumes that 4/3 of the maximum aggregate

size is less than or equal to 1 in. Table A2.8, based on the above example, shows

bmin for different numbers and sizes of bars in a single layer.

2.24 Crack Control in Reinforced Concrete Beams
and One-Way Slabs

It was previously mentioned that a reinforced concrete member will always crack

when subjected to bending. In fact, the reinforcing really starts working only after

the development of cracks. Nevertheless, designers try to minimize the size of the

cracks. Limitation of crack width is desirable for three main reasons: (1) appear-

ance; (2) limitation of corrosion of the reinforcement; and (3) water-tightness.

bmin

Figure 2.44 Minimum beam width (bmin)
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Laboratory experiments have shown that several parameters influence the width

and spacing of flexural cracks. The first is the concrete cover over the reinforcing.
The smaller the cover, the smaller the crack width will be. The cover cannot

be reduced beyond a certain limit, however, because a minimum cover is needed

for fire and corrosion protection. Thus, the Code requires a minimum cover

of 1.5 in. over the stirrups for interior beams, 2 in. for exposed exterior beams

(see Figure B2.2 in Appendix B) and ¾ in. for joists and slabs. The 1.5 in. cover

over the stirrups results in a cover of 1 7=8 in. to 2 in. over the main reinforcement.

The second important parameter is the maximum stress in the reinforcement
(directly related to the strain, or the elongation of the steel) at service load levels.

This value may be assumed to be roughly 0.66 fy. The higher the stress level is in the
steel, the wider the cracks are expected to be. Thus, using more reinforcing than

required to satisfy the ultimate strength capacity can reduce the width of cracks by

reducing the stresses (and strains) at working load levels. This is not an economical

choice, however. The same is true if steel with fy¼ 40,000 psi is used instead of

steel with fy¼ 60,000 psi. The section would need 50% more steel, but the much

lower levels of stress at service load levels would help limit the crack width.

Another important parameter is the maximum spacing of the reinforcing bars.

For minimizing the width of cracks, placing more and smaller bars closer together is

preferable to placing a few large bars farther apart. The ACI Code (Sections 24.3.2,

and 24.3.3) limits the maximum spacing of the tensile reinforcement in beams and

one-way slabs. The empirical formula for maximum spacing, given in Equa-

tion (2.53), is based on the tensile stress in the steel and the concrete cover.

s ¼ 15
40,000

fs

� �
� 2:5cc � 12

40,000

fs

� �
ð2:53Þ

where s is the center-to-center spacing (in inches) of flexural tension reinforcement

nearest to the extreme tension face; fs is the calculated tensile stress (in psi) at

service load in steel or 2/3 fy; and cc is the least distance (in inches) from the surface

of the reinforcement to the tension face. Equation (2.53) cannot address the control

of cracking for all the different causes discussed.

If fy¼ 60,000 ksi, the right side of Equation (2.53) is limited to 12 in. (since

fs¼ 2/3 fy). The left side of the inequality relates the maximum spacing (s) to the

concrete cover (cc). To better comprehend Equation (2.53), consider Figure 2.45,

which shows the reinforcing bar with two different covers, cc1 and cc2. If the

concrete cover is increased from cc1 to cc2 and the crack width at the level of the

reinforcement (ws) is constant, the surface crack width increases from w1 to w2.

Figure 2.45 clearly shows the relationship between surface crack width and amount

of concrete cover.

We can use the maximum spacing limitation (s) given by Equation (2.53) to

determine the maximum beam width (bmax) as a function of the number of bars

placed in the section. For example, for 4 #4 main bars, #4 stirrups, and

fy¼ 60,000 psi, the maximum permissible spacing of bars (s) is:
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s ¼ 15
40,000

fs

� �
� 2:5cc � 12

40,000

fs

� �

s ¼ 15
40,000

2=3 � 60,000

 !
� 2:5 1:5þ 0:5ð Þ � 12

40,000
2=3 � 60,000

 !

s ¼ 10 in: � 12 in: ! s ¼ 10 in:

and the maximum beam width (bmax) is:

1 1
2 2max 2 1.5 in. + 2 in. in. + 3 ´ 10 in. = 34.5 in. » 34 in.

Cover #4stirrups #4bar

  =  ´ ´ +

� � � �

b

s

Note that in the above calculation, s is the center-to-center distance of the

reinforcing bars. Therefore, only the diameter of one bar was used to determine

bmax. The last column of Table A2.8 lists bmax for different sizes and numbers of

bars in a single layer. In practice, bmax is rarely a problem for beams; however, the

maximum spacing limitation is an important issue when designing reinforcing

layouts in slabs.

Table A2.9 shows the areas of reinforcing steel (As) for different sizes and

numbers of bars.

Rebar

ws

a b

Concrete surface

ws

Rebar

cc1

cc2

w1 w2

Figure 2.45 Relationship between crack width and concrete cover
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2.25 Design of Beams

The ultimate strength of a beam depends on five parameters. These are the materials

( fc
0 and fy), the dimensions of the section (b and d ), and the amount of reinforcement

(As). The last three parameters may be expressed in the form of the steel ratio

ρ¼As/bd.
Whichever way these parameters are expressed, they are always five in number.

There is only one equation (or, more precisely, one inequality), however, that

expresses the problem:

Mu � MR

The left side of this inequality depends only on the applied loads. The right side

of the inequality, on the other hand, depends on all five of the variables listed above.

Thus, this problem has an infinite number of solutions. But if four out of the five

parameters are preselected or assumed, the inequality can be readily solved.

As an example, contemplate the following considerations. In a floor of a given

structure, it would be quite impractical to vary the quality of the concrete. Conse-

quently, every beam and slab of the floors of the structure is usually cast with the

same quality concrete (same fc
0 ) throughout. (In columns, the use of a different

quality concrete may be warranted; but even then all columns in a given floor level

would have the same concrete mix.) So preselecting the concrete quality for the

slabs and beams throughout a building is standard practice.

The same is true with the reinforcement. Labor is the dominant factor in the price

of the “in-place” reinforcing steel. And the basic cost per ton of reinforcing steel

with fy¼ 40 ksi and fy¼ 60 ksi is very near the same, so there is no economic

incentive to use the former. In fact, 60 ksi steel provides 50% more strength than

40 ksi steel, thus making it cheaper to use.

Of the three remaining variables, b (the width of the section), d (the working

depth of the section), and As (the amount of reinforcement), two must still be

preselected in order to solve for the remaining unknown quantity. Generally

speaking, practitioners select a concrete section (b and h) and then solve for a

minimum required amount of reinforcement to satisfy the demanded factored

moment requirements. Often all beams have the same depth and width to enable

the contractor to reuse the forms. In other cases keeping the depth of all beams

uniform satisfies the minimum headroom requirement throughout the structure.

In general, two types of problems arise: (1) The beam’s sizes (b and h) are set

using the considerations stated above and the designer needs only to determine the

required area of steel (As); this is by far the most common problem. (2) The beam’s

sizes (b and h) and area of steel (As) are all unknown and determined by the designer

during the process; this problem is more academic than practical.

b, h¼ known, As¼ unknown

The flowchart in Figure 2.46 shows the steps for the design process.
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Design of reinforced concrete
 rectangular beams

   (b, h  known, As  unknown)

Calculate maximum Mu (remember
to include beam self-weight in

the dead load).

1.

2.

4.

5.

6.

Use R, fy, and f c to find  from
Tables A2.5 through A2.7.

min

End

d assumed h y ;    y 2.5 in.

R 
12,000Mu

bd 2

3.

R Rmax? 

min?

Yes

Yes

Stop!
Need to
increase

beam size.

As bd, then select bar size
and numbers from Table A2.9.

Calculate y and find d h – y .

d dassumed

No

No

No

Yes

b

y

d

Figure 2.46 Flowchart for the design of reinforced concrete rectangular beams (b, h¼ known,

As¼ unknown)
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Step 1. Find the maximum factored bending moment, Mu.
Step 2. Because the bar sizes are not yet known, assume the distance from the edge

of concrete in tension to the center of steel (y) is 2.5 in. This is a reasonable
assumption if the cover is 1.5 in., the stirrup diameter is 3/8 in. (#3) or ½ in.

(#4), the main reinforcement is #8 to #10 bars or smaller, and there is only

one layer of reinforcement.

Step 3. Use the assumed value of d to calculate the required resistance

coefficient (R).

MR ¼ bd2R refer to Equation 2:51ð Þð Þ

If b and d are in inches, and R in psi, Mu will need to be converted to

in.-lb from its usual ft-kip units.

MR ¼ bd2R

12,000

Set Mu¼MR:

Mu ¼ MR ¼ bd2R

12,000

R ¼ 12,000Mu

bd2

Step 4. Use R, fy, and fc
0 to determine ρ from Tables A2.5 to A2.7. If R is greater

than the maximum R value (Rmax) to be found in the tables, it means that the

selected sizes are too small and must be increased.

If the value obtained is less than ρmin, it means that the beam sizes b and
h are larger than needed to carry the loads with minimum reinforcement.

This may happen when other considerations dictate the beam sizes. In this

case use ρ¼ ρmin from Table A2.4, because the beam must always have the
required minimum reinforcement.

Step 5. Determine how much steel is needed and select bars using Table A2.9. It is

also helpful to use Table A2.8 here, because it lists how many of a certain

size of bar may be fitted into the selected b in a single layer.

Step 6. Once the bar sizes are known, the exact effective depth (d) can be

calculated. If this depth is greater than what was assumed at the beginning

of process, the design will be conservative as it will have more moment

capacity than what was demanded. If the effective depth is less than the

assumed value (e.g., the section needs multiple layers of reinforcements),

then the process needs to be repeated with a new value of d. Insignificant
differences in the assumed and recalculated values in d (less than 3/8 in. in
slabs and 1/2 in. in beams) may be neglected and the reinforcing need not

be redesigned.

Note that having multiple layers of reinforcing bars may influence the

value of the strength reduction factor, ϕ.
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Example 2.12 Figure 2.47a shows the partial framing plan of a beam-girder

reinforced concrete floor system. The slab is 6 in. thick, and is subjected to a

superimposed dead load of 30 psf. The floor live load is 100 psf. Beam B-2 has

a width of 12 in. (b¼ 12 in.), and a total depth of 30 in. (including the slab

thickness). Determine the steel required at Section 1.1. Use the ACI Code coeffi-

cients to calculate moments. Assume that the beam end is integral with the column.

Use fc
0 ¼ 4ksi, fy¼ 60 ksi, and assume that the unit weight of concrete is 150 pcf.

Stirrups are #3 bars.

Solution

Step 1. Before calculating the moments at the selected location, we must determine

the floor loads:

#3 stirrup

Section 1–1

24 in.

6 in.

12 in.

A

1

2

B C

1

1

(B-2)

12 in. � 12 in. column
(typical)

3

15'-0"

15'-0"

15'-0"

15'-0"

15'-0"

30'-0" 30'-0"

Figure 2.47a Framing plan and section for Example 2.12
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Weight of slab ¼ 150� 6

12

� �
¼ 75psf

Superimposed dead load ¼ 30psf

Total dead load ¼ 105psf

Live load ¼ 100psf

The tributary width for beam B-2 is 150–000; therefore, the uniform dead

and live loads are:

Beam weight

12 24150
105 15 12 12 1.88 kip/ft

1,000 1,000Dw

æ ö´ç ÷´ è ø= + =

wL ¼ 100� 15

1,000
¼ 1:5kip=ft

Note : Reduction of live load
is neglected here:

wu ¼ 1:2wD þ 1:6wL ¼ 1:2� 1:88þ 1:6� 1:5 ¼ 4:65kip=ft

The beam’s clear span ‘n¼ 30 ft� (0.5 ft + 0.5 ft)¼ 29 ft

Figure 2.47b shows the moments using the ACI coefficients from

Table A2.1 for an exterior beam. Because the problem requires designing

the reinforcement at Section 1.1:

Muð Þ� ¼ wu‘
2
n

10
¼ 4:65 29ð Þ2

10
¼ 391ft-kip

Section to be designed

wu
2
n

16
wu

2
n

14
wu

2
n

10

n

Figure 2.47b Moments using the ACI coefficients (Example 2.12)

Step 2. Assuming the distance (y) from the edge of the beam in tension to the center

of tensile steel is 2.5 in.:

d ¼ h� y ¼ 30 in:� 2:5 in: ¼ 27:5 in:

Step 3. The required resistance coefficient, R, is:

R¼ 12,000Mu

bd2
¼ 12,000� 391

12 27:5ð Þ2
R¼ 517psi
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Step 4.

R¼ 517psi

fc
0 ¼ 4ksi ! Table A2:6b ! ρ ¼ 0:0106

fy ¼ 60ksi

Note that ρ¼ 0.0106 corresponding to R¼ 519 psi was conservatively

selected.

Table A2:4 ! ρmin ¼ 0:0033 < ρ ¼ 0:0106 ∴ ok

Step 5. Find the required amount of steel:

As ¼ ρbd ¼ 0:0106 12ð Þ 27:5ð Þ ¼ 3:50 in:2

From Table A2.9!Try 3 #10 (As¼ 3.81 in.2)

The reinforcement is placed at the top of the beam, because the moment

is negative at the section under investigation, which causes tension at the

top. Figure 2.47c shows a sketch of the beam.

Table A2:8 ! bmin ¼ 10:5 in: < 12 in: < bmax ¼ 24 in: ∴ ok

Step 6. Check for the actual effective depth, d:

3 1.27
8 2

assumed

1.5 in.+  in. + = 2.51 in.

Cover Stirrup Bar diameter
30 in. 2.51 in. = 27.49 in. 27.5 in. ok

=

= - = - » = \

y

d h y d

3 #10

24 in.

6 in.

12 in.

Figure 2.47c Sketch of beam for Example 2.12

b, h, As¼ unknown

There is still only one design equation, but the problem now is formulated

differently. It is somewhat more “contorted” than the previous one, for if the

designer does not like the results obtained with the assumed cross section and the

2.25 Design of Beams 103

http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


corresponding reinforcement, he or she can just change the width or the depth

(or both) and recalculate the reinforcement until satisfied with the design.

A first assumption may be an arbitrary selection of the steel ratio ρ. When ratios

close to the ρmax value are chosen, the amount of steel required creates a rather

congested layout, especially in the positive moment regions (steel is placed in the

bottom of the beam). On the other hand, an unnecessarily large concrete section

may result if the section’s moment requirement can be satisfied with ρmin. Most

practical designs have steel ratios somewhere between ρmax and ρmin.

Generally speaking, if ρ is assumed to be about 0.6ρmax or less the beam

proportions will likely be such that excessive deflection will not be a problem.

Therefore, Table 2.1 is provided as an aid for the designer. In this table, ρdes was
calculated as 0.6ρmax as a starting point.

Then the corresponding R value may be obtained from Tables A2.5 to A2.7.

The value bd2 can be determined using Mu:

Mu ¼ Rbd2 ! bd2 ¼ Mu

R

Two unknowns remain, however: b and d. There are no ACI Code requirements on

the geometrical proportioning of beams. But it is more economical to design beams

as deep and narrow rather than wide and shallow sections. This means that the

effective depth, d, should be larger than the width, b. Generally speaking, the most

economical beam sections for spans up to 25 ft usually have a d/b ratio between 1.5
and 2.5. For longer spans, a d/b ratio of 3–4 may be more suitable. Economy for a

specific beam (or set of beams) is not the same as economy for the overall building.

In fact, sometimes it is more economical to design wide and shallow beam sections

due to the savings in the floor-to-floor height, even though this design will require

more reinforcing steel.

Figure 2.48 summarizes the steps of the design process:

Step 1. Find the factored loads and moments.

Step 2. Use fy and fc
0 to select a ρdes value from Table 2.1. Then find the

corresponding R value from the appropriate design table (Tables A2.5

to A2.7).

Step 3. The formula for MR is:

MR ¼ bd2R

12,000

Table 2.1 Design steel ratio

(ρdes)
fy (psi)

ρdes
f

0
c ¼3,000 psi f

0
c ¼4,000 psi f

0
c ¼5,000 psi

40,000 0.0139 0.0186 0.0218

60,000 0.0093 0.0124 0.0146

75,000 0.0074 0.0099 0.0116
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and the design of the beam requires thatMR�Mu. For the most economical

case, Mu¼MR; therefore

bd2R

12,000
¼ Mu

Solving for bd2:

bd2 ¼ 12,000Mu

R

Now we must preselect one dimension or the other: We either assume

b and solve for d, or the other way around. A third possibility is to assume a

Design of reinforced concrete
rectangular beams (b, h, As  unknown)

Calculate maximum Mu1.

2.

3.

4.

6.

8.

9.

7.

5.

h hmin?

Beam weight
included ?

Yes

No

No

Yes

(Mu ft-kip) 
(b,d inch)

Add the moment
from weight to

Mu

Using fy and fc find des from Table 2.1, 
and find R from Tables A2.5 through A2.7.

bd 2
12,000Mu

R

Assume b d/2, and solve
for b and d.

As bd
Select the size and number of bars

using Tables A2.8 and A2.9.

h d y

End

12,000Mu

bd 2

Find  from Tables
A2.5 through A2.7.

R

As bd
Select the size and

number of bars using
Tables A2.8 and A2.9.

h hmin

b

y

d

Figure 2.48 Flowchart for the design of reinforced concrete rectangular beams (b, h, As¼ unknown)
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certain proportion between d and b, for example, d/b¼ 2; then the problem

again becomes straightforward.

Step 4. Use the values of b and d from above to find the required area of reinforce-

ment (As):

As ¼ ρbd

and select the size and number of bars using Tables A2.8 and A2.9.

Step 5. Now find the beam’s total depth (h) using the effective depth (d) from Step

3 and size of bars:

h ¼ d þ y

Then round h up to the nearest 1 in.

Step 6. Check the beam depth for expected deformation performance by comparing

it with hmin as recommended by the ACI Code (see Figure 2.41). If h< hmin,

use hmin. In this case you may want to go back and recalculate As.
Step 7. Because the beam sizes were not known when the loads were calculated,

the beam’s self-weight could only be estimated. Experienced designers

usually use their own rule of thumb for this purpose. For example, some

engineers assume the beam’s self-weight to be about 10–20% of the loads

it carries. Others estimate the total depth (h) to be roughly 6–8% of the

span, and bffi 0.5h, and find a preliminary estimate for the beam’s weight.

But if we desire a more accurate value of the beam’s weight, we can

estimate it now and make corrections to the dead load and the total Mu.
Step 8. Find a new R value:

R ¼ 12,000Mu

bd2

and find the corresponding steel ratio (ρ) using Tables A2.5 to A2.7.

Step 9. Find the required area of steel:

As ¼ ρbd

and select the numbers and sizes of bars from Tables A2.8 and A2.9.

Example 2.13 Determine the required area of steel for a reinforced concrete

rectangular beam subject to a total factored moment, Mu¼ 400 ft-kip, that already

includes the estimated weight of the beam. fc
0 ¼ 4,000psi and fy¼ 60,000 psi and

use ρdes¼ 0.0124 from Table 2.1.

Solution

Step 1

Mu ¼ 400ft-kip
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Step 2 For fc
0 ¼ 4ksi, fy ¼ 60ksi and ρ ¼ 0:0124

using Table A2:6b ! R ¼ 596psi

Steps 3 and 4 Search now for the beam’s sizes:

bd2 ¼ 12,000Mu

R
¼ 12,000� 400

596

bd2 ¼ 8,054 in:3

There are an infinite number of solutions, that is, an infinite number of concrete

cross sections that will satisfy the design problem, even with the provision that

ρ¼ 0.0124 (1.24%). The table below lists a few solutions. Take your pick!

b 10 in. 12 in. 14 in. 16 in. 18 in. 20 in.

d 28.4 in. 26.0 in. 24.0 in. 22.5 in. 21.2 in. 20.1 in.

As, required 3.52 in.2 3.87 in.2 4.17 in.2 4.46 in.2 4.73 in.2 4.98 in2

hpractical 32 in. 30 in. 28 in. 26 in. 24 in. 24 in.

A couple of important observations must be made here. All of these sections

have approximately 1.24% reinforcement, but the quantity of reinforcing grows as

the beam becomes wider and shallower. Furthermore, the concrete cross-sectional

area (and, consequently, the self-weight of the beam) also increase.

Another way to solve this same problem is to select a d/b ratio. For example,

suppose that after determining that

bd2 ¼ 8,054 in:3

the designer selects a d/b¼ 2.0 ratio. Then:

b ¼ d

2

d

2
d2
� � ¼ d3

2
¼ 8,054

d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 8,0543

p ¼ 25:3 in:

b ¼ d

2
¼ 25:3

2
¼ 12:65 in: ! Selectb ¼ 13 in:

h ¼ 25:3þ 2:5 ¼ 27:8 in: ! Selecth ¼ 28 in:

As ¼ ρbd ¼ 0:0124� 12:65� 25:3 ¼ 3:97 in:2
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Example 2.14 Use the floor framing plan and loadings of Example 2.12

(Figure 2.47a) to design the reinforced concrete rectangular beam along grid line

2. Assuming that the beam width b¼ 12 in., determine the beam depth, h, and
required steel for the location of the maximum bending moment. Use ACI Code

coefficients for calculation of moments. Assume that the beam end is integral with

the column, fy¼ 60 ksi, fc
0 ¼ 4ksi, and the unit weight of the concrete is 150 pcf.

The stirrups are #3 bars.

Solution

Step 1. Find the maximum ultimate moment, Mu.
From Example 2.12:

wD ¼ 105� 15

1,000
¼ 1:58 kip=ft without the weight of the beam’s stemð Þ

wL ¼ 100� 15

1,000
¼ 1:5 kip=ft without the use of live load reductionð Þ

wu ¼ 1:2wD þ 1:6wL ¼ 1:2� 1:58þ 1:6� 1:5 ¼ 4:3 kip=ft

‘n ¼ 30ft � 1

2
þ 1

2

� �
¼ 29ft

Using the ACI coefficients (Table A2.1) to calculate moments

(Figure 2.49a), we determine that the maximum bending moment for the

beam along line 2 is at the first interior column (negative moment):

Mu ¼ wu‘
2
n

10
¼ 4:3 29ð Þ2

10
¼ 362ft-kip

Step 2. From Table2:1 ! fc
0 ¼ 4ksi, fy¼ 60 ksi! ρdes¼ 0.0124 From Table A2.6b

!R¼ 596 psi

16

wu n
2

11

wu n
2

11

wu n
2

16

wu n
2

10

wu n
2

14

wu n
2

nn

Figure 2.49 (a) Moments using the ACI coefficients (Example 2.14)
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Step 3. Determine the beam’s sizes:

bd2 ¼ 12,000Mu

R
¼ 12,000� 362

596

bd2 ¼ 7,289 in:3

b¼ 12 in: ! 12d2 ¼ 7,289

d2 ¼ 607 ! d ¼ 24:7 in:

Step 4. Calculate the required area of steel, and select the number and size of the

reinforcing bars:

As ¼ ρbd ¼ 0:0124ð Þ 12ð Þ 24:7ð Þ ¼ 3:68 in:2

From Table A2:9 ! Try 4#9 As ¼ 4 in:2ð Þ
Table A2:9 ! bmin ¼ 12 in: ¼ 12 in: ∴ ok

Table A2:9 ! bmax ¼ 34 in: > 12 in: ∴ ok

Step 5. Use the selected bar sizes and the effective depth (d ) to calculate the total

beam depth (h):

y ¼ 1
1

2
þ 3

8
þ 1:128

2
¼ 2:44 in:

h ¼ d þ y ¼ 24:7þ 2:44 ¼ 27:14 in:

This value is usually rounded up to the nearest 1 in. Thus:

h ¼ 28 in:

Step 6. Check to see if the beam depth is more than the recommended minimum for

deflection control. The case for the beam with one end continuous results in

the largest required depth (see Figure 2.41):

hmin ¼ ‘

18:5
¼ 30� 12

18:5
¼ 19:5 in: < 28 in: ∴ ok

Step 7. Calculate the correct beam weight. The total beam depth is 28 in. The

concrete slab, however, is 6 in. thick; therefore, the beam depth (the stem)

below the slab is 28 in.� 6 in.¼ 22 in.

Stemweight ¼
150

12

12
� 22

12

� �
1,000

¼ 0:28kip=ft
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The total uniform dead load acting on the beam (wD):

wD ¼ 1:58þ 0:28 ¼ 1:86kip=ft

wu ¼ 1:2� 1:86þ 1:6� 1:5 ¼ 4:63kip=ft

Muð Þ� ¼ wu‘
2
n

10
¼ 4:63 29ð Þ2

10
¼ 390ft-kip

Step 8.

R¼ 12,000Mu

bd2

R¼ 12,000� 390

12 24:7ð Þ2
R¼ 639psi

From Table A2.6b! ρ¼ 0.0134 (this corresponds to R¼ 638 psi, which

is very close).

Step 9.

As ¼ ρbd ¼ 0:0134ð Þ 12ð Þ 24:7ð Þ ¼ 3:97 in:2

From TableA2:9 ! Use4#9bars:

The selected reinforcement is the same as it was for the previous design

cycle. Figure 2.49b shows the sketch of the beam.

6 in.

4 #9

28 in.

12 in.

Figure 2.49 (b) Final design of Example 2.14
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2.26 Slabs

Slabs or plates are very important components of reinforced concrete structures.

The elements we have studied until now, could be described abstractly by a line:

Bending of that line in a vertical plane by the loads described their behavior. These

elements are called linear elements, because one of their three dimensions, the

length, is much greater than the other two, i.e. the dimensions of the cross section.

Slabs (plates), on the other hand, cannot be described by a line. They have two

dimensions, length and width, that are significantly larger than the third one, the

thickness. Mathematically plates are described as planes. A mathematically exact

analysis of slabs is not provided here but a discussion of their behavior is in order.

A slab can bend in two directions, so its bent shape is described not by the shape

of a single line, but rather by the bent shape of a surface. A slab must carry the loads

to the supports, hence it will bend accordingly. The behavior of a slab depends on

the support conditions, that is, on how the designer chose to support it. The types of

supports are:

(a) Line supports (beams, girders, walls) Slabs that are supported by these types of

building elements are referred to as one- or two-way slabs. In this chapter we

discuss only one-way slabs, although an attempt is made to explain the

difference between one-way and two-way slabs. Chapter 6 discusses the

different types of two-way slabs used as floor systems.

(b) Point supports (columns, posts, suspension points, etc.) Slabs supported by

these types of supports are referred to as flat slabs or flat plates. We will

discuss these in more detail in Chapter 6.

(c) Continuous media (slabs on grade)

The simple sketch in Figure 2.50 illustrates the behavior of a one-way slab. The
beams that support the slab are poured together with the slab. Slabs are often not just

single span, as shown here, but continuous over several spans defined by the beams’

spacing. In the case of uniformly distributed loads, the most common for slabs (for it

is quite rare to place large concentrated loads on slabs), every one-foot-wide strip of

the slab is loaded identically; hence, the design is limited to only a one-foot-wide

strip and the selection of the reinforcing for that strip. Then it is assumed that all the

h

1'–0"

Figure 2.50 One-way slab behavior
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other strips behave the same way, that is, they need the same amount of reinforcing.

Figure 2.50 also illustrates that if only one imaginary strip is loaded, the adjacent

slab strips will have to help. This is because it is impossible for amonolithic structure

to get the deformation diagram shown on the right of the figure.

Figures 2.51 and 2.52 show the framing plan of different reinforced concrete

floor/roof systems. In Figure 2.51a, slab S-1 is supported by the surrounding beams

Slabs 
(typical)

Beams
(typical)

a

b

Columns

(S-1)

Columns
(typical)

(S-2) (S-2)

Girders
(typical)

(S-1)(S-1) (S-1)

(S-1) (S-1)(S-1) (S-1)

(S-2)

(S-2) (S-2)(S-2)

Figure 2.51 (a) Slabs in beam girder floor system; (b) flat plate slab
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and girders. In Figure 2.51b slab S-2 is part of a flat plate floor system, in which

slabs are directly supported by columns. In Figure 2.52 slab S-3 is supported by two

parallel walls, which can be made of concrete or masonry.

2.27 Behavior of Reinforced Concrete Slabs Under Loads

Depending on the geometry and location of the supports, most slabs are divided into

two groups: one-way slabs, and two-way slabs.

One-way slabs bend mainly in one direction. If the supporting elements of the

slab are only two parallel members such as beams or walls, the slab is forced to

bend in a perpendicular direction. Figure 2.52 shows the plan view of a slab

supported by two parallel walls. Because every 1 ft wide strip can be considered

to be the same as all the others, only a single 1 ft wide strip of slab needs to be

considered in analysis and design.

The slab’s geometry is an important factor that affects its behavior under loads.

Figure 2.53a shows a slab supported by edge beams B-1 and B-2. Determining the

distribution of loads from the slab to the supporting beams can be simplified by

assuming that the load is transferred to the nearest beam. Such an assumption is

represented by drawing 45-degree lines from each slab corner. The enclosed areas

show the tributary loads to be carried by each beam. Beam B-1 will carry large

trapezoidal loads compared to the triangular loads that will be carried by beam B-2.

As the ratio of longer span (‘‘) to shorter span (‘s) increases, B-1 carries more loads

than does B-2, that is, more loads are transferred in the shorter span of the slab.

In fact, if the ratio
‘‘
‘s
is greater than or equal to 2.0

‘‘
‘s

� 2:0

� �
, the load carried

by B-2 is quite small, and it can be neglected altogether. Therefore, if
‘‘
‘s

� 2:0,

the slab behaves as a one-way slab for all practical purposes, even though the slab is

supported on all four edges.

Section A-A

1'-0"  wide strip

(S
-3

)

A
Plan

A

Wall (typical)

Figure 2.52 Slab supported by walls
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To better understand this assumption, consider Figure 2.53b, in which two 1 ft

wide strips of slab in the long (‘) and short (s) directions are shown at midspan for

both. The load carried by the short 1 ft wide strip is ws, and the load carried by the

long 1 ft wide strip is w‘. If we assume that the slab is simply-supported along all

edges, we can calculate the maximum mid-span deflections for the short (Δs) and

long (Δ‘) 1 ft wide strips from Equations (2.54) and (2.55).

Δs ¼ 5ws‘
4
s

384EI
ð2:54Þ

45

45

a

B-1

2-B2-B

B-1

s1'-0"

1'-0"

B-2

B-1

B-2

B-1

s

w

ws

ws

s

w

s

b

Figure 2.53 (a) Slab (edge supported); (b) slab load distribution
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Δ‘ ¼ 5w‘‘
4
‘

384EI
ð2:55Þ

The two deflections must be equal. Thus, an expression may be developed that

relates the loads and spans, as shown in Equation (2.56).

Δs ¼ Δ‘

5ws‘
4
s

384EI
¼ 5w‘‘

4
‘

384EI

ws‘
4
s ¼ w‘‘

4
‘

ws

w‘
¼ ‘4‘

‘4s
¼ ‘‘

‘s

� �4

ð2:56Þ

The assumption for one-way behavior is ‘‘/‘s� 2.0. If ‘‘/‘s¼ 2.0 is substituted into

Equation (2.56), ws is equal to 16w‘. Thus, the load transferred in the shorter

direction (ws) is 16 times larger than that transferred in the long direction (w‘),

when ‘‘/‘s� 2.0. Therefore, it is reasonable to assume that the loads are transferred

mainly in the shorter direction.

Despite all the foregoing reasoning, structural engineers often design slabs as

one-way slabs, even when the slabs’ proportions do not satisfy the ‘‘/‘s� 2.0

requirement. The reason is that the shrinkage and temperature reinforcing needed

in the long direction is usually quite enough to satisfy the small moment’s require-

ments. Figure B2.3 in Appendix B shows a one-way slab supported by reinforced

concrete beams. Design and analysis of floor systems with two-way slabs are

discussed in Chapter 6.

2.28 Reinforcement in One-Way Slabs

In general, two types of reinforcement are used in one-way slabs: main reinforce-

ment, and shrinkage and temperature reinforcement.

2.28.1 Main Reinforcement

The main reinforcement resists the bending moments. It is designed to act in the

direction of the one-way slab’s bending, which is along the shorter span length.

Figure 2.54 shows the main reinforcement in a one-way slab supported by two

parallel walls. The slab is assumed to be simply supported by the walls. In other

words, no moment is transferred from the slab to the walls. Because the bottom

portion of slab is in tension, the main reinforcement is placed in the bottom.
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Similarly, the main reinforcement is placed in a continuous construction where

tension develops. For this case, as shown in Figure 2.55, the main reinforcement is

at the bottom of the slab in the midspan region (positive moment) and at the top of

the slab over the supports (negative moment). Typically, #4 bars or larger are used

as main reinforcement, #3 bars are susceptible to permanent distortion caused by

the construction crew walking over them. This is more critical for the top (negative

moment) bars as the slab effective depth (d) may be reduced.

2.28.2 Shrinkage and Temperature (S & T) Reinforcement

As discussed in Chapter 1, fresh concrete loses water and shrinks soon after

placement. In addition, variations in temperature cause the concrete to expand

and contract. These volume changes, when restrained, may result in cracking of

concrete, especially in the early stages of strength development. Reinforcing bars

are used to resist developing tensions in order to minimize cracks in concrete

caused by shrinkage and temperature changes. The main longitudinal reinforcement

in beams plays that role as well. Because the cross-sectional dimensions of beams

are relatively small and beams may freely change their cross-sectional dimensions

Main reinforcement

Main reinforcement

S&T reinforcement

Section A-A

S&T reinforcement

Section B-B

1'-0"

Wall

A
1'-0"

A

B

B

Figure 2.54 One-way slab reinforcement (simple span)
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without restraint, shrinkage and temperature reinforcement are not needed perpen-

dicular to the main bars.

This is not the case in reinforced concrete slabs. Slabs typically have large

dimensions in two directions, thus they need shrinkage and temperature reinforce-

ment, which is placed in the direction perpendicular to the main reinforcement.

Figures 2.54 and 2.55 show such reinforcement for simple-span one-way slabs and

continuous one-way slabs, respectively. In addition, temperature and shrinkage

reinforcement helps distribute concentrated loads to a wide zone transversely to

the one-way direction. (This is necessary in bridges, for example, to distribute large

wheel loads onto a much wider strip than the one directly affected by the concen-

trated load.)

2.28.3 Minimum Reinforcements for One-Way Slabs

As discussed above, two types of reinforcement are used in one-way slabs. The ACI

Code sets the following minimum reinforcement criteria for both the main and the

shrinkage and temperature reinforcements.

Reinforcement distribution

Moment diagram for continuous slab

(M)

S&T reinforcements Main reinforcements
a

b

Figure 2.55 One-way slab reinforcement (continuous construction). (a) Reinforcement distribu-

tion. (b) Moment diagram for continuous slab (refer also to Figure 2.14)
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Minimum Main Reinforcement The minimum main reinforcement for slabs is

equal to that required for shrinkage and temperature reinforcements (ACI Code,

Section 7.6.1):

As,min ¼ As S&Tð Þ ð2:57Þ

In other words, if the calculated main reinforcement is less than that required for

shrinkage and temperature reinforcement, the designer must use at least the latter

amount.

Minimum Shrinkage and Temperature Reinforcement The ACI Code

(Section 7.6.1.1) requires shrinkage and temperature reinforcement based on the

grade of steel, as given in Equations (2.58)–(2.60).

For fy ¼ 40 or 50ksi ! As S&Tð Þ ¼ 0:002bh ð2:58Þ

For fy ¼ 60ksi ! As S&Tð Þ ¼ 0:0018bh ð2:59Þ

For fy > 60ksi ! As S&Tð Þ ¼ 0:0018� 60

fy
bh � 0:0014bh ð2:60Þ

In Equations (2.58)–(2.60), b¼ 12 in. (slab width), which corresponds to the width

of the 1 ft wide strip, h is the overall thickness of the slab in inches, and As(S&T) is

the area of steel in square inches per foot of width.

Minimum Concrete Cover for the Reinforcement in Slabs A minimum concrete

cover is needed for the reinforcement to prevent various detrimental effects of

the environment on reinforcing bars. Concrete cover is always measured from the

closest concrete surface to the first layer of reinforcing. This is shown in Figure 2.56.

Section 20.6.1.3 of the ACI Code requires a minimum concrete cover of ¾ in. for

#11 and smaller bars, and 1.5 in. for #14 and #18 bars, provided that the concrete

slab is not exposed to weather or not in contact with the ground.

Minimum concrete cover

Figure 2.56 Minimum cover for slabs
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Bar Spacing in Reinforced Concrete Slabs No specific minimum spacing of bars is

required in slabs other than what was already discussed for beams. For practical

reasons, however, bars are not placed closer than 3–4 in.

The ACI Code has different maximum spacing requirements for the main and

the shrinkage and temperature reinforcements. These are as follows:

Maximum Spacing of Main Reinforcement Bars ACI 318-14 has two sets of

requirements regarding maximum bar spacing for the main reinforcement in

one-way slabs: (1) Section 7.7.2.3 requires that the maximum spacing of bars be

limited to three times the slab thickness or 18 in., whichever is smaller; and

(2) Section 24.3.2 limits the maximum main reinforcement spacing (s) of

one-way slabs, as calculated by Equation (2.53), in order to control the width and

spacing of flexural cracks.

We can use the required minimum cover of 3/4 in. for one-way slabs

(cc¼ 0.75 in.) and fs¼ 2/3 fy¼ 2/3 (60,000)¼ 40,000 psi to determine the maxi-

mum spacing for fy¼ 60 ksi reinforcement. Substituting into Equation (2.53):

s ¼ 15
40,000

40,000

� �
� 2:5 0:75ð Þ � 12

40,000

40,000

� �
s ¼ 13:1 in: � 12 in:

s ¼ 12 in:

Therefore, the maximum main reinforcement spacing with fy¼ 60 ksi steel for

one-way slabs is given by Equation (2.61a).

smax,main ¼ min 3h, 12 in:f g ð2:61aÞ

Similarly, when using fy¼ 40 ksi steel as main reinforcement, Equation (2.53) will

simplify to Equation (2.61b).

smax,main ¼ min 3h, 18 in:f g ð2:61bÞ

Maximum Bar Spacing of Shrinkage and Temperature Reinforcement ACI Code,
Section 7.7.6.2.1 limits the spacing of the shrinkage and temperature reinforce-

ments to five times the slab thickness or, 18 in., whichever is smaller:

smax, S&Tð Þ ¼ min 5h, 18 in:f g ð2:62Þ

Minimum Thickness of Slab for Deflection Control The minimum recommended

thickness for one-way slabs required to adequately control excessive deflections is

based on Table 7.3.1.1 of the ACI Code, which is summarized graphically in

Figure 2.42. Lesser thicknesses are permitted if the designer can show through a

detailed deflection analysis that the Code’s serviceability requirements are met.
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2.29 Areas of Reinforcing Bars in Slabs

A 1 ft (12 in.) wide strip of slab is typically used for the analysis and design of

one-way slabs. Thus, it is advantageous to define the amount of steel in a 1 ft wide

strip as a function of the bar size and the spacing.

Table A2.10 lists spacing and bar sizes for slabs. The table provides the areas of

reinforcement averaged out to 1 ft width for different sizes and spacing of bars.

(One can interpolate for ½ in. spacing increments, if so desired.)

For example, with #5@8 in. o.c. (#5 bar at 8 in. on-center spacing), the table,

under #5 bars spaced at 8 in., provides the area of steel per foot of section 0.47 in.2.

In other words, 0.47 in.2/ft is equivalent to one #5 bar every 8 in.

Another example: If 0.50 in.2 of reinforcement is required for a 1 ft wide strip of

a slab, the table offers several options, including #4@4 in. (As¼ 0.60 in.2),

#5@7 in. (As¼ 0.53 in.2), #6@ 10 in. (As¼ 0.53 in.2), and so on.

2.30 Analysis of Reinforced Concrete One-Way Slabs

In general, one-way slabs and reinforced concrete beams are analyzed very simi-

larly. There are a few differences, however. These are listed below:

1. For the analysis of one-way slabs, b is always 12 in.

2. Slabs require a different amount of concrete cover over the reinforcement.

3. Slabs require shrinkage and temperature reinforcement.

4. The Code-specified minimum amounts of reinforcing steel for slabs and beams

are different.

5. Minimum required depth/span ratios for adequate control of deflection are

different.

6. Bar spacing requirements are different.

Figure 2.57 summarizes the steps for the analysis of reinforced concrete one-way

slabs. They are as follows:

Step 1. Calculate the steel ratio, ρ ¼ As

bd

� �
. As is the area of steel in a 1 ft wide strip

of slab from Table A2.10. Compare ρ with ρmax from Table A2.3. The

maximum permitted steel ratio is the same for beams and slabs.

Step 2. Compare As with As,min, which is the minimum required area of steel for

the control of shrinkage and temperature-induced volumetric changes.

If As�As,min, the proportioning of steel and concrete is not acceptable

according to the current ACI Code and the slab’s use is illegal. If As�As,min,

however, then one of the following methods can be used to check the

adequacy of the slab:
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Method I

Step 3. Calculate the depth of the compression zone:

a ¼ As fy
0:85fc

0 b

Determine the location of the neutral axis (c):

c ¼ a

β1

Analysis of Reinforced
Concrete One-Way Slabs

5.

1.
You may not legally use all

the reinforcing in finding MR.
No

No

No

No

Yes

max

Yes

Yes

Yes

Slab is illegal
per current
ACI Code.

Slab is not adequate to carry the
assumed live loads. Calculate

permissible reduced live
loads from MR.

Check main reinforcement spacing.

Check shrinkage and temperature reinforcement.

Check slab thickness for deflection control.

END

3.

2.

a
Asfy

0.85 fc b

bd
As

dt

c
B2A2

4.
MR Asfy d a

2

MR Mu ?

Use , fy and fc to find R
from Tables A2.5 through A2.7.

As As,min ?

0.90

(1) EITHER (2) OR

3. 

4. 

6.

7.

8.

MR
bd 2 R
12,000

(
(

dt

c ?3
8

Figure 2.57 Flowchart for the analysis of reinforced concrete one-way slabs
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If
c

dt
� 3

8
, the section is tension-controlled and ϕ¼ 0.90. Otherwise, the

section will be in the transition zone. Calculate the strength reduction

factor, ϕ:

ϕ ¼ A2 þ B2

c

dt

A2 and B2 are listed in Table A2.2b.

Step 4. Calculate the section’s resisting moment (MR):

MR ¼ ϕAs fy d � a

2

� �

(If As is in in.2, fy ksi, d and a in., then MR will have kip-in. unit.

Divide the result by 12 to obtain MR in the customary units of kip-ft).

Step 5. CompareMRwith the maximum factored moment from the applied loads. If

MR<Mu the slab is not adequate to carry the assumed loads. Proceed to

calculate a new permissible live load that the slab may legally support. If

MR�Mu, the section can take the assumed loads, but the reinforcing still

needs to be checked for conformance with other Code requirements.

Step 6. Check spacing requirements. The maximum allowable spacing of main

reinforcement is min{3h, 12 in.}, or min{3h, 18 in.} for fy¼ 60 ksi and

fy¼ 40 ksi steel, respectively.

3 in: � s � min 3h, 12 in:f g for fy ¼ 60ksi

3 in: � s � min 3h, 18 in:f g for fy ¼ 40ksi

Step 7. Check the amount and spacing of shrinkage and temperature reinforcement,

(As)S&T (Refer to Equations (2.58)–(2.60).)

3 in: � sS&T � min 5h, 18 in:f g

Step 8. Check the thickness of the slab against the minimum thickness of one-way

slabs for desirable deformation control (see Figure 2.42).

hmin ¼ ‘=20 for simply-supported slabs

hmin ¼ ‘=10 for cantilevered slabs

hmin ¼ ‘=28 for both ends continuous slabs

hmin ¼ ‘=24 for one end continuous slabs

If the slab thickness is less than the above limits, calculate the deflection

and check it against the Code’s serviceability requirements.
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Method II
Steps 1 and 2 are the same as in Method I.

Step 3 Use fy, fc
0, and the calculated steel ratio (ρ) to obtain the resistance coefficient,

R, from Tables A2.5 to A2.7.

Step 4 Use the R value to calculate the section’s resisting moment.

MR ¼ bd2R

12,000

R is in psi, b¼ 12 in., and d in inches. MR will be in units of ft-kip. Steps 5, 6,

7, and 8 are the same as in Method I.

Example 2.15 Figure 2.58 shows a section through a reinforced concrete simply-

supported one-way slab of an existing building. The maximum moment from dead

loads, including the slab weight, is 3.0 (ft-kip)/ft, and that from live loads is 2.0

(ft-kip)/ft. Check the adequacy of the slab, including the shrinkage and temperature

reinforcements, using (a) Method I, and (b) Method II.

Use a concrete cover of ¾ in., fc
0 ¼ 3:0ksi, and fy¼ 40.0 ksi.

Solution

Step 1. Check the reinforcement ratio in the slab:

Diameter of #5 bars
5

3 8 1.06 in.
4 2

Cover
6 in. 1.06 in.=4.94 in.

= + =

= - = -

y

d h y

#5@ 7 in. (main reinforcement)!Table A2.10!As¼ 0.53 in.2/ft

#5 @7 in. (main)

6 in

#3 @12 in. (S&T)

Figure 2.58 Sketch of one-way slab for Example 2.15
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ρ ¼ As

bd
¼ 0:53

12� 4:94
¼ 0:00894

fc
0 ¼ 3ksi!Table A2.3! ρmax¼ 0.0232> 0.00894 ∴ok

fy¼ 40 ksi

Step 2. Check the minimum area of main reinforcement. For slabs, this area is the

same as the requirement for shrinkage and temperature reinforcement:

As,min ¼ As S&Tð Þ ¼ 0:002bh fy ¼ 40ksi
� �

As,min ¼ 0:002ð Þ 12ð Þ 6ð Þ ¼ 0:14 in:2=ft

As ¼ 0:53 in:2=ft > 0:14 in:2=ft ∴ ok

(a) Method I

Step 3. Calculate the depth of the compression zone:

a ¼ As fy
0:85 fc

0 b
¼ 0:53� 40

0:85� 3� 12
a ¼ 0:69 in:

The neutral axis is located at c:

c¼ a

β1
¼ 0:69

0:85
¼ 0:81 in:

dt ¼ d ¼ 4:94 in:
c

dt
¼ 0:81

4:94
¼ 0:164 < 0:375 ∴ ϕ ¼ 0:90

Step 4.

MR ¼ ϕMn ¼ ϕAs fy d � a

2

� �
MR ¼ 0:9ð Þ 0:53ð Þ 40ð Þ 4:94� 0:69

2

� �

MR ¼ 87:7 in:-kip

12 in:=ft
¼ 7:3ft-kip

Step 5. Calculate the factored applied moment on the slab:

Mu ¼ 1:2MD þ 1:6ML

Mu ¼ 1:2 � 3:0 þ 1:6 � 2:0 ¼ 6:8ft-kip < 7:3ft-kip ∴ ok
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Step 6. Check the main reinforcement spacing:

3 in: � s � min 3h, 18 in:f g

The main reinforcement is #5@ 7 in.:

3 in: < 7 in: < min 3� 6 in:, 18 in:f g
3 in: < 7 in: < 18 in: ∴ ok

Slab is ok:

Step 7. Check the shrinkage and temperature reinforcements:

As S&Tð Þ ¼ 0:002bh ¼ 0:002ð Þ 12ð Þ 6ð Þ ¼ 0:14 in:2=ft

From TableA2:10 ! #3@12in: ! As ¼ 0:11 in:2=ft < 0:14 in:2=ft ∴ N:G:

Therefore, the shrinkage and temperature reinforcement in the slab

does not satisfy the current ACI Code’s minimum requirement.

(b) Method II

ρ¼ 0.00894

Step 3. fc
0 ¼ 3ksi ! TableA2:5a ! R ¼ 299psi (by interpolation)

fy¼ 40 ksi

Step 4.

MR ¼ bd2R

12,000

MR ¼ 12ð Þ 4:94ð Þ2 299ð Þ
12,000

MR ¼ 7:3ft-kip

This value is the same as the resisting moment we calculated in

Step 4 using Method I. Steps 5, 6, and 7 are the same as those of

Method I.

Example 2.16 Figure 2.59 shows the partial floor framing plan and section of a

reinforced concrete floor system. The weight of the ceiling and floor finishing is

5 psf, the mechanical and electrical systems are 5 psf, and the partitions are 15 psf.

The floor live load is 150 psf. The concrete is normal weight, fc
0 ¼ 4ksi, and

fy¼ 60 ksi. Check the adequacy of slab S-1 in the exterior bay at (a) midspan,

and (b) over the interior supporting beam. Assume the slab is cast integrally with

the supporting beams and use ACI code coefficients to calculate moments. Use

¾ in. cover for the slab.
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Solution

(a) Check the Slab at the Midspan

Step 1. The main reinforcement at the midspan (positive moment) is #4@

10 in.

#4@10in: ! TableA2:10 ! As ¼ 0:24 in:2=ft

Partial floor framing plan

A

(S-1)

Section A-A

#3 @ 10 in.

#4 @ 10 in.

#4 @ 8 in. #4 @ 8 in.

14 in. 14 in.

12'-0 in.

24 in.

6 in.

A

1

2

B C

3

12'-0"

12'-0"

12'-0"

12'-0"

A
25'-0" 25'-0"

Figure 2.59 Framing plan and section for Example 2.16
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y ¼ 3

4
þ
4

8
2
¼ 1:0 in:

d ¼ h� y ¼ 6 in:� 1 in: ¼ 5 in:

ρ ¼ As

bd
¼ 0:24

12ð Þ 5ð Þ ¼ 0:0040

fc
0 ¼ 4ksi ! TableA2:3 ! ρmax ¼ 0:0207 > 0:004 ∴ ok

fy ¼ 60ksi

Step 2.

As,min ¼ As S&Tð Þ ¼ 0:0018bh fy ¼ 60ksi
� �

As,min ¼ 0:0018ð Þ 12ð Þ 6ð Þ ¼ 0:13 in:2=ft

As ¼ 0:24 in:2=ft > 0:13 in:2=ft ∴ ok

Method II is followed for the rest of the solution, as it requires fewer

steps.

Step 3.
ρ¼ 0:0040

fc
0 ¼ 4ksi ! TableA2:6b ! R ¼ 208psi

fy ¼ 60ksi

Step 4.

MR ¼ bd2R

12,000

MR ¼ 12ð Þ 5ð Þ2 208ð Þ
12,000

MR ¼ 5:2 ft-kip

Step 5. The slab’s dead and live loads are:

Weight of slab ¼ 150
6

12

� �
¼ 75psf

Ceiling and the floor finishing ¼ 5psf

Mechanical and electrical ¼ 5psf

Partitions ¼ 15psf

��������������������������������������
Total dead load ¼ 100psf

Total live load ¼ 150psf
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The slab’s tributary width is 10–000:

wD ¼ 100� 1

1,000
¼ 0:10kip=ft

wL ¼ 150� 1

1,000
¼ 0:15kip=ft

wu ¼ 1:2wD þ 1:6wL ¼ 1:2� 0:10þ 1:6� 0:15

wu ¼ 0:36kip=ft

‘n ¼ 12ft� 14 in:

12
¼ 10:83ft

The maximum factored moment at the midspan of the exterior bay

of the slab is:

Mu ¼ wu‘
2
n

14

Mu ¼ 0:36ð Þ 10:83ð Þ2
14

Mu ¼ 3:0ft-kip < MR ¼ 5:2ft-kip ∴ ok

Because MR is much larger than Mu, the slab is overdesigned for

positive moment.

Step 6. Check the spacing requirements for the main reinforcement:

3 in: � s � min 3h, 12 in:f g
3 in: < 10 in: < min 3� 6 in:, 12 in:f g
3 in: < 10 in: < 12 in: ∴ ok

Step 7. Check shrinkage and temperature reinforcement:

As S&Tð Þ ¼ 0:0018bh fy ¼ 60ksi
� �

As S&Tð Þ ¼ 0:0018 12ð Þ 6ð Þ ¼ 0:13 in:2=ft

#3@10in: ! TableA2:10 ! As ¼ 0:13 in:2=ft ∴ ok

Check the spacing of the shrinkage and temperature reinforcement:

3 in: � s � min 5h, 18 in:f g
3 in: < 10 in: < min 5� 6 in:, 18 in:f g
3 in: < 10 in: < 18 in: ∴ ok
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Step 8. For deflection control, the minimum recommended thickness (without

calculating deflections) for the one-end-continuous slab is:

hmin ¼ ‘

24
¼ 12� 12

24
¼ 6 in: ¼ 6 in: ∴ ok

Slab is ok at mid-span:

(b) Check the Slab at Supports

Step 1. The main reinforcement at the supports (negative moment) is

#4@8 in.

#4@8in: ! TableA2:10 ! As ¼ 0:30 in:2=ft

y ¼ 3

4
þ
4

8
2
¼ 1:0 in:

d ¼ h� y ¼ 6 in:� 1 in: ¼ 5 in:

ρ ¼ As

bd
¼ 0:30

12ð Þ 5ð Þ ¼ 0:005

fc
0 ¼ 4ksi ! TableA2:3 ! ρmax ¼ 0:0207 > 0:005 ∴ ok

fy ¼ 60ksi

Step 2.
As,min ¼ As S&Tð Þ ¼ 0:0018bh fy ¼ 60ksi

� �
As,min ¼ 0:0018ð Þ 12ð Þ 6ð Þ ¼ 0:13 in:2=ft

As ¼ 0:30 in:2=ft > 0:13 in:2=ft ∴ ok

Step 3. ρ¼ 0:005
fc
0 ¼ 4ksi ! TableA2:6b ! R ¼ 258psi

fy ¼ 60ksi

Step 4.

MR ¼ bd2R

12,000

MR ¼ 12ð Þ 5ð Þ2 258ð Þ
12,000

MR ¼ 6:5ft-kip
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Step 5. The dead and live loads from part a are:

wu ¼ 0:36kip=ft from part að Þ
‘n ¼ 10:83ft from part að Þ

The maximum factored moment at the first interior support for an

exterior bay of the slab is (Table A2.1):

Mu ¼ wu‘
2
n

10

Mu ¼ 0:36ð Þ 10:83ð Þ2
10

Mu ¼ 4:2ft-kip < MR ¼ 6:5ft-kip ∴ ok

Step 6. Check the spacing of the main reinforcement:

3 in: � s � min 3h, 12 in:f g
3 in: � s � min 3� 6 in:, 12 in:f g
3 in: < 8 in: < 12 in: ∴ ok

The shrinkage and temperature reinforcement and the minimum

depth for deflection were checked in part a.

Slab is ok at the support.

2.31 Design of Reinforced Concrete One-Way Slabs

The design process of one-way slabs is similar to that of reinforced concrete

rectangular beams. Figure 2.60 summarizes the steps for the design of reinforced

concrete one-way slabs. They are as follows:

Step 1. Select the slab thickness. The slab thickness is generally based on the

minimum ACI requirements for deflection control (see Figure 2.42). This

is usually rounded up to the nearest ½ in. for slabs with h� 6 in. and to the

nearest 1 in. for those with h> 6 in.

Step 2. Calculate the factored loads (wu), and then determine the maximum fac-

tored moment, Mu.
Step 3. Determine the slab’s effective depth, d. Because the bar sizes are not yet

known, assume #6 bars with 3/4 in. cover.

y ¼ 1:12 in:
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Design of Reinforced Concrete One-Way Slabs

Select steel from Table A2.10.

Check maximum main bar spacing.

Design shrinkage and temperature reinforcements. End

Find the maximum moment, Mu

 Use R, fy , and fc to find  from Tables A2.5 through A2.7.

Select hmin based on ACI requirements for deflection (Figure 2.42).

Find dead and live loads and calculate wu  1.2wD  1.6wL.

Calculate assumed effective depth (d ), d h  1.12 in.

Yes

Yes

Yes

No

No

No

As bd

As As,min

Increase slab thickness.

b 12 in.

4.
(Mu ft-kip) R

12,000Mu

bd 2

R Rmax?

dactual dassumed?

1. 

2.

3.

As As,min ?
As,min As(S&T)

6.

7.

8.

9.

5.

Figure 2.60 Flowchart for the design of reinforced concrete one-way slabs
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Therefore, the assumed effective depth:

d ¼ h� 1:12 in:

Step 4. Determine the required resistance coefficient (R):

R psið Þ ¼ 12,000Mu

bd2

b¼ 12 in., and d is in inches. Mu is in ft-kip and R in psi.

Step 5. Using R, fy, and fc
0 select ρ (steel ratio) from Tables A2.5 to A2.7. If the

value of R is more than the maximum value shown in these tables

(R>Rmax), the selected slab thickness is not adequate for the loads and

needs to be increased. (Note that in most cases this does not happen. The

required thickness for deflection control is usually more than what is

required to carry the loads.)

As ¼ ρbd

Step 6. Check the minimum reinforcement requirement. The minimum area of

steel for the main reinforcement must not be less than that required for

shrinkage and temperature reinforcement:

As,min ¼ As S&Tð Þ

If As<As,min, the slab requires only a small amount of reinforcing steel,

As. Use at least As,min, however. Select the bar size and spacing from

Table A2.10.

Step 7. Check for actual depth (dactual) based on the bar selected. If

dactual< dassumed, go back to Step 4 and revise. Repeat if the difference is

too large (larger than 1/8 in. for slabs h �6 in. and 1/4 in. for h> 6 in.).

Step 8. Check bar spacing. The spacing of bars selected in Step 6 has to be checked

against the ACI Code requirements for maximum allowable spacing.

Step 9. Design the shrinkage and temperature reinforcements according to the ACI

Code requirements.

Example 2.17 Design the one-way slab (S-1) of Example 2.16. Determine the

reinforcement at (a) the midspan and (b) the supports.

Solution

(a) Slab Design at the Midspan

Step 1. Because S-1 is one end continuous, the minimum slab thickness (hmin) is:

hmin ¼ ‘

24
¼ 12� 12

24
¼ 6 in:
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Step 2. Determine the loads on the slab:

Weight of slab ¼ 150 6=12ð Þ ¼ 75psf

Ceiling and floor finishing ¼ 5psf

Mechanical and electrical ¼ 5psf

Partitions ¼ 15psf

���������������������������������
Total dead load ¼ 100psf

Total live load ¼ 150psf

On a 1 ft wide strip

wD ¼ 100� 1

1,000
¼ 0:10kip=ft

wL ¼ 150� 1

1,000
¼ 0:15kip=ft

wu ¼ 1:2wD þ 1:6wL ¼ 1:2� 0:10þ 1:6� 0:15

wu ¼ 0:36kip=ft

‘n ¼ 12ft� 14 in:

12
¼ 10:83ft

The maximum factored moment at themidspan of S-1 (see Figure 2.61) is:

Mu ¼ wu‘
2
n

14

Mu ¼ 0:36ð Þ 10:83ð Þ2
14

Mu ¼ 3:0ft-kip

14

wu n
2

24

wu n
2

10

wu n
2

11

wu n
2

Figure 2.61 Design factored moments for slab S-1 of Example 2.17 using ACI Code coefficients

from Table A2.1

2.31 Design of Reinforced Concrete One-Way Slabs 133

http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


Step 3. Assuming ¾ in. cover, calculate the slab’s effective depth:

d ¼ h� 1:12 in: ¼ 6 in:� 1:12 in: ¼ 4:88 in:

Step 4. Calculate the required resistance coefficient, R:

R¼ 12,000Mu

bd2

R¼ 12,000� 3:0

12ð Þ 4:88ð Þ2 ¼ 126psi

Step 5. Find ρ from Tables A2.5 through A2.7:

R ¼ 126psi

fc
0 ¼ 4ksi ! TableA2:6b ! ρ ¼ 0:0024
fy ¼ 60ksi

Therefore, the required area of main reinforcement (As) is:

As ¼ ρbd ¼ 0:0024ð Þ 12ð Þ 4:88ð Þ
As ¼ 0:14 in:2=ft

Step 6. The minimum amount of reinforcement for slabs cannot be less than the

required shrinkage and temperature reinforcement steel:

As,min ¼ As S&Tð Þ ¼ 0:0018bh for fy ¼ 60ksi

As,min ¼ 0:0018ð Þ 12ð Þ 6ð Þ ¼ 0:13 in:2=ft < 0:14 in:2=ft ∴ ok

As ¼ 0:14 in:2=ft

From Table A2:10 ! select #4@17in: As ¼ 0:14 in:2=ftð Þ

Note that according to Section 2.28, the smallest size bar for main

reinforcement is #4.

Step 7. Check for the actual effective depth.

dactual ¼ 6� 3

4
�
4

8
2
¼ 5:0 in: > dassumed ¼ 4:88 in: ∴ ok

Step 8. Check the main reinforcement spacing, s, ( fy¼ 60 ksi).

3 in: � s � min 3h, 12 in:f g
3 in: < 17 in: < min 3� 6 in:, 12 in:f g
3 in: < 17 in: < 12 in: ∴ N:G:
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Therefore:

Use #4@ 12 in. for the main reinforcement at the midspan.

Step 9. Calculate the required shrinkage and temperature reinforcement.

As S&Tð Þ ¼ 0:0018bh ¼ 0:13 in:2=ft

From Table A2:10 ! use #3@10in:

The shrinkage and temperature reinforcement spacing (s) has to be

within the following range:

3 in: � s � min 5h, 18 in:f g
3 in: < 10 in: < min 5� 6 in:, 18 in:f g
3 in: < 10 in: < 18 in: ∴ ok

Therefore,

Use #3@10 in. for the shrinkage and temperature reinforcement.

(b) Slab Design at the Supports

Step 1. From Step 1 of part a:

hmin ¼ 6 in:

Step 2. The factored uniformly distributed load on the slab (wu) from Step 2 of part

a is:

wu ¼ 0:36kip=ft

and the clear span (‘n) is:

‘n ¼ 10:83ft

From Figure 2.61, the moments at the exterior and interior supports are:

M�
u ¼ wu‘

2
n

24
¼ 0:36ð Þ 10:83ð Þ2

24
¼ 1:76ft-kip exterior supportð Þ

M�
u ¼ wu‘

2
n

10
¼ 0:36ð Þ 10:83ð Þ2

10
¼ 4:22ft-kip interior supportð Þ

Step 3.
Assume d ¼ h� 1:12 in: ¼ 6� 1:12 ¼ 4:88 in:
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Step 4.

R¼ 12,000Mu

bd2
¼ 12,000� 1:76

12ð Þ 4:88ð Þ2 ¼ 74psi exterior supportð Þ

R¼ 12,000Mu

bd2
¼ 12,000� 4:22

12ð Þ 4:88ð Þ2 ¼ 177psi interior supportð Þ

Step 5.

For exterior support

R ¼ 74psi

fc
0 ¼ 4ksi ! TableA2:6b ! ρext: ¼ 0:0014

fy ¼ 60ksi

8><
>:

For interior support

R ¼ 177psi

fc
0 ¼ 4ksi ! TableA2:6b ! ρint: ¼ 0:0034

fy ¼ 60ksi

8><
>:

Therefore:

Asð Þext: ¼ ρbd ¼ 0:0014ð Þ 12ð Þ 4:88ð Þ ¼ 0:082 in:2=ft

Asð Þint: ¼ ρbd ¼ 0:0034ð Þ 12ð Þ 4:88ð Þ ¼ 0:20 in:2=ft

Step 6. From Step 6 of part a:

As, min ¼ As S&Tð Þ ¼ 0:13 in:2=ft

Asð Þext: ¼ 0:082 in:2=ft < 0:13 in:2=ft ∴ N:G:

Therefore, use

Asð Þext: ¼ 0:13 in:2=ft

Asð Þint: ¼ 0:20 in:2=ft > 0:13 in:2=ft ∴ ok

From TableA2:10 ! Try#4@12in: exterior supportsð Þ
Asð Þint: ¼ 0:20 in:2=ft

From TableA2:10 ! Try#4@12in: interior supportsð Þ

Step 7. This is the same as in part a.
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Step 8. Check the main reinforcement spacing:

3 in: � s � min 3h, 12 in:f g
3 in: � s � min 3� 6 in:, 12 in:f g

3 in: � s � 12 in:

sint: ¼ sext: ¼ 12 in: ¼ 12 in: ∴ ok

∴Use #4@12in: for the exterior and interior supports:

Step 9. The shrinkage and temperature reinforcement was designed in part a.

Figure 2.62 shows the slab as designed.

Problems

In the following problems, unless noted otherwise, use normal weight concrete with
a unit weight of 150 pcf, 1.5 in. for beam clear concrete cover, and 0.75 in. for slab
clear concrete cover.

2.1 Consider a section with a width (b) of 14 in. and reinforced with 4 #9 bars in

a single layer. fc
0 ¼ 4,000psi, and fy¼ 60,000 psi. Determine the moment

capacity of the section, MR, using Method I or II, for the following cases:

(a) d¼ 28 in.

(b) d¼ 32 in.

(c) d¼ 36 in.

(d) d¼ 40 in.

Show the changes in MR with respect to the section’s effective depth.

Calculate the percentages of increase in MR versus d.

#4 @ 12 in.

#3 @ 10 in. #4 @ 12 in.

#4 @ 12 in.

12'–0"

Figure 2.62 Slab S-1 designed in Example 2.17
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2.2 Consider a rectangular reinforced concrete beam with an effective depth of

36 in. reinforced with 4 #9 bars. fc
0 ¼ 4,000psi, and fy¼ 60,000 psi. Determine

MR using Method I or II for the following cases:

(a) b¼ 14 in.

(b) b¼ 16 in.

(c) b¼ 18 in.

(d) b¼ 20 in.

Show the variation in MR with b. For each case calculate the percentage of

increase in MR versus b.
2.3 Consider a reinforced concrete beam with a width (b) of 14 in. and an effective

depth (d) equal to 36 in. fc
0 ¼ 4,000psi, and fy¼ 60,000 psi. Determine the

moment capacity of this beam, MR, for the following reinforcements:

(a) 4 #6 bars

(b) 4 #7 bars

(c) 4 #8 bars

(d) 4 #9 bars

Show the variation ofMR with respect to the area of reinforcements (As). For

each case calculate the percentage of increase in MR versus As.
2.4 Consider a reinforced concrete beam with a width (b) of 14 in., and an effective

depth (d) of 36 in. reinforced with 4 #8 bars. Use fy¼ 60,000 psi. Determine the

moment capacity, MR, of this beam for the following cases:

(a) fc
0 ¼ 3,000psi

(b) fc
0 ¼ 4,000psi

(c) fc
0 ¼ 5,000psi

2.5 Rework Problem 2.4 for fc
0 ¼ 4,000psi and for the following steel yield

strengths:

(a) fy¼ 40,000 psi

(b) fy¼ 60,000 psi

(c) fy¼ 75,000 psi

2.6 Determine the useful moment strength of the section shown below in accor-

dance with the ACI Code. Use fc
0 ¼ 4,000psi, fy¼ 60,000 psi, and #3 stirrups

and follow Method II in the calculations.

32 in.

8#912 in.
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2.7 The rectangular reinforced concrete beam shown below is subjected to a dead

load moment of 180 ft-kip and live load moment of 90 ft-kip. Determine

whether the beam is adequate for moment capacity. fc
0 ¼ 4,000psi, and

fy¼ 60,000 psi. The stirrups are #3 bars.

12 in.

4 #9

30 in.

2.8 The beam below supports 500 lb/ft service dead loads and 600 lb/ft service live

loads in addition to its self-weight. Calculate the maximum simply-supported

span (‘¼ ?) for the beam. Use Method II in the calculations. Use fc
0 ¼ 5,000psi

and fy¼ 60,000 psi.

2.5 in.
12 in.

3 #8

15.5 in.

2.9 A rectangular beam carries uniformly distributed service (unfactored) dead

loads of 3.0 kip/ft, including its own self-weight and 1.5 kip/ft service live

loads. Based on the beam’s moment capacity, calculate the largest factored

concentrated loads, Pu, that may be placed as shown on the span in addition to

the given distributed loads. The beam width is 18 in., and has a total depth of

30 in. with 5 #11 bars. Use fc
0 ¼ 5,000psi, fy¼ 60,000 psi, and #3 stirrups.

8'-0" 8'-0" 8'-0"

Pu Pu
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2.10 The beam shown below is part of a beam-girder floor system. It is subjected to

a superimposed dead load of 4.0 kip/ft (excluding the beam weight) and a

live load of 2.0 kip/ft. Check the adequacy of this beam. Use fc
0 ¼ 4,000psi,

fy¼ 60,000 psi, and #3 stirrups. Assume knife edge type supports at the

centers of the walls.

BA

A B

5'-3"5'-3" 18 in. 18 in.

wL  2.0kip/ft

wD  4.0kip/ft

21'-0"

A-A

12 in. 12 in.

4 #9

3 #10

B-B

24 in. 24 in.

Note: Check both sections A-A and B-B. Neglect the reinforcement in the

bottom of the beam at section A-A.

2.11 Determine the moment capacity, MR, of the reinforced concrete section

shown below if subjected to a negative moment. The stirrups are #3 bars.

Use fc
0 ¼ 4,000psi and fy¼ 60,000 psi.
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13 in.

4 #10

28 in.

2.12 The figure below shows the cross section of a floor system consisting of a

reinforced concrete beam supporting precast concrete planks. The beam span

is 200–000 with 160–000 spacing. Calculate the maximum service live load per

square foot of floor area. Use fc
0 ¼ 4,000psi and fy¼ 60,000 psi. The unit

weight of lightweight (LW) concrete used is 108 pcf. Assume the beam is

simply-supported.

8 in. deep  24 in. wide precast
concrete planks at 110 lb/ft

2 in. concrete topping at 108 pcf

Floor finish, 2 psf

12 in.

24 in.

3 # 9

2.13 The 16 in.� 27 in. rectangular reinforced concrete beam shown below is

reinforced with 4 #10 bars in the positive moment region and 3 #11 bars in

the negative moment region. Determine the maximum factored uniformly

distributed load, wu, for this beam. Stirrups are #4, fc
0 ¼ 5,000psi, and

fy¼ 60,000 psi.
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28'-0" 12'-0"

wu

2.14 The beam of Problem 2.11 is part of a beam-girder floor system shown below

(beam B-1). The floor slab is 6 in. thick concrete, and the weight of the

mechanical/electrical systems is 5 psf. Assume 15 psf for partition loads,

and miscellaneous dead loads of 5 psf. What is the maximum allowable live

load for this floor? Consider only the negativemoment capacity of the section.

(Note: Use the ACI moment coefficients. Live load is not to be reduced.)

(B-1)

10'-0" 10'-0" 10'-0" 10'-0"14 in. 14 in.
Columns (typical)

40'-0"

40'-0"

2.15 Calculate the required areas of reinforcement for the following beams. Use

fc
0 ¼ 4,000psi and fy¼ 60,000 psi.

(a) b¼ 10 in., d¼ 20 in., Mu¼ 200 ft-kip

(b) b¼ 12 in., d¼ 24 in., Mu¼ 300 ft-kip

(c) b¼ 18 in., d¼ 36 in., Mu¼ 500 ft-kip
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2.16 Design a rectangular reinforced concrete beam subjected to a factored load

moment, Mu¼ 250 ft-kip. The architect has specified width b¼ 10 in. and

total depth h¼ 24 in. Use fc
0 ¼ 4,000psi, fy¼ 60,000 psi, and #3 stirrups.

2.17 Redesign the beam in Problem 2.16, assuming that the clear height for the

building requires the total beam depth to be limited to 20 in. Determine the

beam width (b) and the area of steel (As) in such a way that the section will be

in the tension-controlled failure zone.

2.18 Design a rectangular beam for Mu¼ 300 kip-ft. Use fc
0 ¼ 3,000psi,

fy¼ 60,000 psi, and #3 stirrups. Size the beam for ρ¼ 0.01 and b/d¼ 0.5

(approximate). Do not consider the beam’s self-weight.

2.19 The 16 in.� 27 in. rectangular reinforced concrete beam shown below is

subjected to concentrated loads of PD¼ 12.0 kip and PL¼ 8.0 kip. The

uniformly distributed dead load, wD, is 1.6 kip/ft (including the beam’s self-

weight), and the live load, wL, is 1.0 kip/ft. Determine the required reinforce-

ments. Sketch the section and show the selected bars. Use fc
0 ¼ 5,000psi and

fy¼ 60,000 psi.

8'-0" 8'-0" 8'-0"

P P

w

2.20 An artist is designing a sculpture that is to be supported by a rectangular

reinforced concrete beam. The sculpture’s weight is estimated to be 400 lb/ft

(assumed as a live load). The beam section must be limited to b¼ 8 in. and

h¼ 12 in. The artist wants to make his sculpture as long as possible. What is

the maximum possible length of this cantilever beam without the use of

compression reinforcement? Use fc
0 ¼ 4,000psi, fy¼ 60,000 psi, and #3

stirrups.

2.21 A 14 in.� 24 in. rectangular precast reinforced concrete beam supports a

factored uniform load, wu¼ 4.0 kip/ft, including the beam’s self-weight.

Determine the reinforcements required at the supports and the midspan. Use

fc
0 ¼ 4,000psi and fy¼ 60,000 psi.

wu 4.0 kip/ft

32'-0" 12'-0"12'-0"
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2.22 An 8 in. thick simply-supported reinforced concrete one-way slab is subjected

to a live load of 150 psf. It has a 12 ft span and is reinforced with #4@8 in.

as the main reinforcement and #4@12 in. as shrinkage and temperature

reinforcement. Determine whether the slab is adequate. Use fc
0 ¼ 4,000psi

and fy¼ 60,000 psi.

2.23 A 5 in.-thick simply-supported reinforced concrete one-way slab is part of a

roof system. It is supported by two masonry block walls, as shown below.

Assume a superimposed dead load (roofing, insulation, ceiling, etc.) of 15 psf

and a roof snow load of 30 psf. Check the adequacy of the slab, including the

required shrinkage and temperature reinforcement. Use fc
0 ¼ 4,000psi and

fy¼ 60,000 psi. The bearing length of the slab on the wall is 6 in.

6 in.

10'-0"

12 in. 12 in.

6 in.

#4 @ 9 in. #4 @ 12 in.

2.24 The figures below show the framing plan and section of a reinforced concrete

floor system. The weight of the ceiling and floor finishing is 5 psf, that of the

mechanical and electrical systems is 5 psf, and the weight of the partitions is

20 psf. The floor live load is 80 psf. The 6 in.-thick slab exterior bay (S-1) is

reinforced with #6@9 in. as the main reinforcement at the midspan and #4@

12 in. for the shrinkage and temperature reinforcement. Check the adequacy

of the slab. Use the ACI moment coefficients. Use fc
0 ¼ 4,000psi and

fy¼ 60,000 psi.
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25'-0" 25'-0"

(S-1)

(S-2)

12 in. 12 in. column (typical)

Framing Plan

A

A

10'-0"

10'-0"

10'-0"

10'-0"

12 in.

6 in.

10'-0"
12 in.

Section A-A

30 in.
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2.25 Design a 6 in.-thick one-way slab for a factored moment, Mu¼ 10 ft-kip. Use

fc
0 ¼ 4,000psi and fy¼ 60,000 psi.

2.26 Find the reinforcements for the midspan and supports for an interior 6 in.-thick

slab (S-2) of the floor of Problem 2.24. Sketch the slab and show the

reinforcements including the shrinkage and temperature reinforcement steel.

Self-Experiments

The main objective of these self-experiments is to understand the behavior of beams

in bending (tension and compression) and changes in concrete strength with time,

finding the modulus of rupture, and understanding the behavior of reinforced

concrete beams under loading. The other objective is to understand the different

aspects of concrete slabs. Remember to include all the details of the tests (sizes,

time of day concrete was poured, amounts of water/cement/aggregate, problems

encountered, etc.) with images showing the steps (making concrete, placing,

forming, performing tests, etc.).

Experiment 1

In this experiment you learn about the behavior of beams in bending. Obtain a

rectangular-shaped piece of Styrofoam with the proportions of a beam. Make slots

on the top and bottom of the beam, as shown in Figure SE 2.1.

Slot
P

Figure SE 2.1 Styrofoam beam with slots

Place the beam on two supports and add a load at the center as shown in Figure SE

2.1. Answer the following questions:

1. What happened to the slots at the top and bottom of the beam?

2. Did the slots stay straight after adding the load?

3. Any other observations?

Experiment 2

You must start and perform Experiments 2 and 3 at the same time. In this

experiment, you find the modulus of rupture for a plain concrete beam and learn

about concrete curing and gaining strength with time.

For this experiment you will build four beams using concrete with w/cm

ratio¼ 0.5. Size the beams as you wish, but do not make them excessively small

or large (for practical reasons). After forming the beams (you can use cardboard or

wood for your forms, depending on the beam size), spray water on two of the beams
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while keeping the other two dry. Keep your concrete beams indoors, as the concrete

may freeze and stop the hydration process. After 2 days, test two of your test

beams (one kept dry and one kept wet) by placing loads on them, as shown in

Figure SE 2.2.

⁄3 ⁄3 ⁄3

P P

Figure SE 2.2 Plain concrete beam test.

Increase the loads until the beams fail. Record the loads at which the two

specimens fail.

After seven days, repeat the tests with the remaining two beams and record the

loads at which they fail.

Experiment 3

In this experiment, you will learn about the importance of reinforcing steel in

concrete beams and compare the results with those of Experiment 2.

When you pour the four plain concrete beams for Experiment 2, build two

reinforced concrete beams with the same dimensions as those of the plain concrete

beams. You can use steel wires for the reinforcement (depending on your beam

size). Place these wires on only one side of the beam (singly-reinforced beam).

After 2 days, place one of the beams on two supports and apply loads as shown in

Figure SE 2.3a. Increase the load, and record your observations.

⁄3 ⁄3 ⁄3

P P

Figure SE 2.3a Reinforced concrete beam test 1

Repeat this test for the remaining reinforced concrete beam after seven days.

(Perform these tests at the same time as Experiment 2.) DO NOT TRY TO FAIL

THE REINFORCED CONCRETE BEAMS! Turn the beams upside down

(Figure SE 2.3b) and repeat the tests. Add loads until the beams fail. Record

your observations.
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⁄3 ⁄3 ⁄3

P P

Figure SE 2.3b Reinforced concrete beam test 2

Answer the following questions regarding Experiments 2 and 3:

1. Which of the samples (dry or wet) had more strength? Why?

2. Was the 7-day-old sample stronger than the 2-day-old one? Why?

3. Find the modulus of rupture for the 7-day-old plain concrete beams.

4. How did the reinforcement affect the concrete beam strength?

5. What happened when you turned the beam upside down and tested it?

Experiment 4

This experiment demonstrates the behavior of one-way and two-way slabs, and the

reinforcing of one-way slabs.

Test 1
Use two Styrofoam pieces to represent one-way and two-way slabs. For the

two-way slab, cut the Styrofoam into a square piece, and for the one-way slab

make it such that length/width� 2. Place the square Styrofoam on two parallel

supports and apply a load as shown in Figure SE 2.4a. Support the same model on

four edges and repeat the test as shown Figure SE 2.4b. Make notes on how the two

models deform and their differences.

a b

Figure SE 2.4 Slabs under loads: (a) two parallel supports; (b) supports along all edges
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Test 2
Repeat Test 1 using the one-way slab model. Record your observations.

Experiment 5

This experiment deals with the reinforcement in slabs.

Cast two slab models with a thickness of approximately 1 in. and a width of at

least 12 in. Make one from plain concrete and the other from concrete reinforced

with a grid of thin wires (provide about ¼ in. cover).

One week after making the samples, compare the two slabs in terms of crack

formation. Which one has more surface cracks?
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Chapter 3

Special Topics in Flexure

3.1 T-beams

3.1.1 Introduction

In cast-in-place reinforced concrete systems, the concrete for beams and slabs is

poured at the same time. As a result, a monolithic system is obtained, that is, beams

and slabs working together to carry the loads.

There are several different types of reinforced concrete floor systems, as we will

discuss in detail later in Chapter 6. Here we will use a beam-girder floor system to

study T-beams. Figure 3.1 shows the floor framing plan and the section of a typical

beam-girder floor system. The floor beams (B-1) support the one-way slab (S-1).

The slab transfers the load to the beams (B-1); then the girders (G-1) carry the

loads from the beams. The girders are supported by columns (C-1). Because the

one-way slab is continuously supported by the beams, the load on the beams is a

uniformly distributed load. The girders, however, support the beams at their ends,

so the loads on the girders are concentrated. Thus, the flow of the gravity loads is

from the slab to the beams, from the beams to the girders, from the girders to the

columns, from the columns to the footings, and from the footings to the ground.

In cast-in-place concrete construction, concrete is poured in the forms after the

form-work is built and the rebars are placed, creating a monolithic system of slabs,

beams, and girders. There is no physical separation between beams and slabs as in

steel construction. So when a beam bends, part of the slab attached to the beam

works with the beam and helps the beam carry the load. At the midspan the top part

of the beam is in compression. As a result the slab, which is attached to the top of

the beam, is subjected to compression stress. But at the support, the top portion of

beam, including the neighboring slab, is in tension. Therefore, the slab does not

help carry the beam load because the concrete does not take any tensile stresses.

Figure 3.2 shows cross sections and moments for a typical beam (B-1). At the

midspan the moment is positive, so steel reinforcement is needed at the bottom of
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the beam Aþ
s

� �
. In this case the concrete slab and part of the beam web are in

compression. The shape of the compression zone looks like a T-shape, so it is called

a T-beam. Over the supports, however, there are negative moments. This requires

steel reinforcement at the top of the beam A�
s

� �
. In certain special cases, the ACI

(B
-1

)

(B
-1

)

(B
-1

)

(B
-1

)

(G-1)

(C-1)

A

(C-1)

A

(S-1) (S-1) (S-1)

(G-1)

(C-1) (C-1)

a

b

(B-1) (G-1)

Figure 3.1 Beam-girder floor system. (a) Typical floor framing plan. (b) Section A-A
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Code requires part of the positive reinforcements Aþ
s

� �
to be extended over the

supports. In these cases reinforcing is used in the compression zone, resulting in a

doubly-reinforced beam (see Section 3.2).

3.1.2 Effective Flange Width (beff)

The attached slab zone of a T-beam is referred to as the flange of the beam. The

portion below the flange is called the web. How much of the slab width acts as part

of the beam is a rather complex matter. It depends on many parameters that define

how much of a slab’s width is “dragged” into compression by the beam. The

phenomenon that dissipates the compression in the slab that lies farther away

from the beam’s web is known as “shear lag.”

The ACI Code simplifies the matter by defining an effective flange width (beff),
in which the stresses due to bending are assumed to be uniform. Figure 3.3, which

shows the floor framing plan and a section through the midspan of a reinforced

concrete floor system, also shows the effective width for an edge beam and for an

A

A

B A-
s

A-
s

A

0" +
s

B A

n

Moment diagram

Flange

N.A. N.A.

Web or stem +
s

N.A. N.A.

A-A B-B

�

+

– +

Figure 3.2 Beam behavior at midspan (T-beam) and over the support (rectangular beam)
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interior beam. The edge beam is called an L-beam because the compression zone

has an L shape. The interior beam is a T-beam. The beams clear span is ‘n, and their
clear distance between adjacent webs is designated by sw. The slab or flange

thickness is designated by hf.
The effective flange widths of T- and L-beams are based on Sections 6.3.2.1 of

the ACI Code and are given in Equations (3.1) and (3.2).

a. beff for T-beams:

beff � min bw þ ‘n
4
, bw þ 16hf , bw þ sw

� �
ð3:1Þ

A A

a

b

beff beff

hf

d d

As As

bw bw

�n

sw

Figure 3.3 Effective flange widths for T- and L-beams. (a) Plan. (b) Section A-A
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b. beff for L-beams:

beff � min bw þ ‘n
12

, bw þ 6hf ,bw þ sw
2

� �
ð3:2Þ

3.1.3 Minimum Steel for T-beams

The minimum amount of steel for a T-beam is the same as that for a rectangular

beam having working dimensions of bW (width of web) and d. Equation (3.3) gives

the minimum amount of steel required.

As,min ¼ max
3
ffiffiffiffi
fc
0p

fy
bwd,

200

fy
bwd

( )
ð3:3Þ

Equation (3.4) gives the requirement in terms of minimum steel ratio.

ρmin ¼ max
3
ffiffiffiffi
fc
0p

fy
,
200

fy

( )
ð3:4Þ

Table A2.4 lists the values for ρmin.

The compression zone in the negative moment regions (near the columns) is at

the bottom of the web, where there is no flange attached. The section, therefore, is

simply rectangular. The analysis and design of these sections were discussed in

Chapter 2.

3.1.4 Analysis of T-beams

The behavior of the T-beam (or L-beam) depends on the shape of the compression

zone. The depth of the equivalent stress block (a) may be above or below the bottom

of the flange, depending on the proportioning of the beam and the slab and the

amount of reinforcement used. Figure 3.4a, b show these two cases, respectively.

When the neutral axis is within the flange’s depth, the T-beam (or L-beam) acts

like a wide rectangular beam with a rectangular compression zone of size beff� a.
In the rare cases when a small beff is coupled with relatively large positive moments,

the beff� hf zone is not adequate to develop the compression part of the internal

couple. Then a part of the web becomes in compression to aid the compression

zone. The analysis and design of such beams are somewhat different from those of

rectangular beams (Figure 3.5).

Thus, two slightly different sets of procedures are used for the analysis of

T- (or L-) beams based on the shape of the compression zone. The flowchart in

3.1 T-beams 155

http://dx.doi.org/10.1007/978-3-319-24115-9_2
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


Figure 3.6 summarizes the different steps of analysis of T- (or L-) beams. They are

as follows:

Step 1. Calculate the effective flange width (beff).
Step 2. Check the minimum area of steel As,min or the minimum steel ratio from

Table A2.4. Note if the areas of reinforcing satisfy the current ACI Code’s

requirements.

Step 3. Assume that the steel yields in tension before the concrete crushes in

compression (i.e., fs¼ fy). Then calculate the total tensile force, T:

T ¼ As fy

Step 4. Calculate the compression force if the entire flange is in compression, Cf :

beff

hf
a

beff

d d 
h

bw bw

ba

Figure 3.4 Different types of T-beams. (a) T-beam with compression zone in the flange. (b)
T-beam with compression zone in the web

f

d

beff

h y 
c a

d z
t

bw

a b

Figure 3.5 T-beam with neutral axis below the flange. (a) Assumed area of compression zone at

ultimate moment. (b) y is the location of the centroid of the compression zone at ultimate moment
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6.

to find R from Tables
A2.5 through A2.7

c  w

2

Analysis of T- and L-Beams

1. Find beff:
(T-beam)

(L-beam)

2. Find ρmin, using Table A2.4
As,min =

≥

≤≤

≤

≤

≥

ρminbwd

As As,min?

Yes

No Reinforcing does not 
satisfy minimum
requirements.

3.  Assume fs = fy, and find tensile force, T: 
T = Asfy

4.  Calculate flange compression force, Cf :
Cf  = 0.85fc¢beffhf

Case (a)
a hf

Yes
T Cf ?

No Case (b)
a > hf

5. As 5. Calculate a:
ρ =

b d T–Cfeff

Use fy , fc¢ and ρ

Beam has more
than maximum 
reinforcement.

No 

B2

c 3 ?
dt 7

a 

a 
β

Σ
Σ

c =

=
0.85f ¢b  

+ hf

6.

1
φ

φ

φ

φ

= A2 +
No c 3 ?c /dt dt 8

Yes

No

Yes

6a.

single layer 
Beam has

of bars?

= 0.9? Yes

= 0.9

7.MR = Tz

Locate y–:

y– =
Ay

andA

z = d – y–

No Yes 7. MR = beffd 2R /12,000
8.

MR Mu?
No Beam is not

Adequate!
Calculate ρt, and 

find φ' from Tables 
A2.5 through A2.7.

Yes

Beam is ok.

R' = R
φ¢
φ

Check beam depth 
for deflection.

7.
MR = beffd

R¢
12,000

beff = min �n
4

,bw bw swbw+ + +16hf ,

beff = min {
{ {

{�n
12 2

,bw bw
swbw+ + +6hf ,

Figure 3.6 Analysis of T- and L-beams
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Cf ¼ 0:85fc
0 beffhf

The internal couple requires that T¼C, that is, the compression force

and the tensile force must be equal.

If T<Cf (or a< hf), the full depth of the flange thickness is not needed to
develop the compression part of the internal couple. In that case the depth

of the equivalent stress block is less than the thickness of the flange, and

case a below is applicable; otherwise, use case b.
Case a: The compression zone is within the flange (a� hf); the beam behaves like a

rectangular beam.
Step 5. Determine the steel ratio, ρ:

ρ ¼ As

beffd

Step 6. Use fy, fc
0, and ρ to obtain the resistance coefficient, R, from Tables A2.5

through A2.7.

The resistance coefficient obtained, R, is only applicable for beams

with a single layer of reinforcement (dt¼ d). If the beam has multiple

layers of reinforcement, R may need to be revised. If the value of the

strength reduction factor, ϕ, in the last step is 0.90, no change in the

value of R is necessary. If ϕ< 0.90, however, then compute ρt ¼
As

beffdt
and obtain the corresponding value of ϕ from Tables A2.5 through A2.7.

Then calculate R0 R0 ¼ Rϕ0=ϕð Þ.
Step 7. Calculate MR:

MR ¼ ϕMn ¼ beffd
2R=12,000

or

MR ¼ ϕMn ¼ beffd
2R0=12,000

MR is in ft-kip, b and d are in in., and R and R0 are in psi.
Step 8. After calculatingMR, check to ensure the beam can safely carry the loads by

comparing MR with the maximum factored moment (Mu). Also, check the

depth of the beam to determine if deflection calculations are required

according to the ACI Code (see Figure 2.41).

Case b: The compression zone extends below the flange (a> hf); compression zone
is T-shaped.

Figure 3.5 shows the T-shaped compression zone and the corresponding defini-

tion of symbols used below.

Step 5. Determine the depth of the compression zone (a) by equating the tensile

force to the compression forces in the flange and the web:
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T ¼ Cf þ 0:85fc
0 bw a� hf
� �

T � Cf þ 0:85fc
0 bwhf ¼ 0:85fc

0 bwa

a ¼ T � Cf þ 0:85fc
0 bwhf

0:85fc
0 bw

a ¼ T � Cf

0:85fc
0 bw

þ hf

ð3:5Þ

Step 6. Locate the neutral axis (c) and check to ensure the section satisfies the ACI
Code’s requirements for being in the tension-controlled or transition zones.

The neutral axis is located at:

c ¼ a

β1

If
c

dt
>

3

7
the section does not satisfy the ductile failure requirements,

as εt< 0.004 when εc¼ 0.003.

If
c

dt
� 3

7
, determine the strength reduction factor, ϕ using the relation-

ships below:

if
c

dt
� 3

8
! ϕ ¼ 0:90

if
c

dt
>

3

8
! ϕ ¼ A2 þ B2

c=dt

A2 and B2 are obtained from Table A2.2b.

Step 6a. Determine the centroid of the compression zone by dividing it into rect-

angular parts and using Equation (3.6):

y ¼ ΣAy
ΣA

ð3:6Þ

y is the distance from the top of the beam to the centroid of the

compression zone.

The moment arm (z), which is the distance between the tensile and

compression forces, is:

z ¼ d � y

Step 7. Calculate the design resisting moment, MR:

MR ¼ ϕMn ¼ ϕTz ð3:7Þ

3.1 T-beams 159

http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


Step 8. After computing MR, check to ensure the beam is adequate. Also check the

depth of the beam for deflection (Figure 2.41).

Example 3.1 Figure 3.7 shows the partial floor framing plan and sections of a

reinforced concrete floor system. The slab is 4 in. thick, and the weight of mechan-

ical/electrical systems, ceiling, and floor finishing is 24 psf. The floor live load is

200 psf. The beam ends are integral with their support, fc
0 ¼ 3ksi, fy¼ 60 ksi, and a

24 in. x 24 in. 
Column (typical)

A A B C
32'-0" 32'-0"

1

10'-0"

10'-0"

2

10'-0"

10'-0"

(B-1)

(S-1)

(B-2)

(S-1) A

(B-2)

(S-1)

(S-1)

(S-1)

(S-1)

(S-1)

(S-1)

3

a

b

4 in.

30 in.

5 #11

#4 stirrup (typical)
6 #11

26 in.

18 in. 18 in.

10'-0"

Figure 3.7 Floor framing plan and section for Example 3.1. (a) Partial floor framing plan.

(b) Section A-A
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unit weight of concrete of 150 pcf. Stirrups are #4 bars. Use ACI coefficients for

calculation of bending moments.

a. Check the adequacy of the edge beam (B-1) at midspan.

b. Check the adequacy of the interior beam (B-2) at midspan.

Solution Use the flowchart of Figure 3.6.
(a) Edge Beam (B-1) B-1 is an L-beam for positive moment (midspan):

Step 1. Calculate the effective flange width:

beff ¼ min bw þ ‘n
12

, bw þ 6hf , bw þ sw
2

� �

where

‘n ¼ 32� 2ð Þ � 12 ¼ 360 in:

bw ¼ 18 in:

hf ¼ 4 in:

sw ¼ 10� 12� 18 ¼ 102 in:

beff ¼ min 18þ 360

12
, 18þ 6 4ð Þ, 18þ 102

2

� �
beff ¼ min 48 in:, 42 in:, 69 inf g ¼ 42 in:

Step 2. From Table A2.4! ρmin¼ 0.0033

d ¼ h� y ¼ 30 in:� 1:5þ 4

8
þ 1:41

2

� �
¼ 27:3 in:

As,min ¼ ρmin bwd

As,min ¼ 0:0033ð Þ 18ð Þ 27:3ð Þ
As,min ¼ 1:62 in:2

5 #11!Table A2.9!As¼ 7.80 in.2> 1.62 in.2 ∴ ok

Step 3. Assuming that the steel yields at the nominal resisting moment ( fs¼ fy),
calculate the tensile force, T:

T ¼ Asfy ¼ 7:80� 60 ¼ 468kip

Step 4. Determine the total compression force, Cf, assuming that the compression

zone is within the flange:

Cf ¼ 0:85fc
0 beffhf

Cf ¼ 0:85 3ð Þ 42ð Þ 4ð Þ
Cf ¼ 428k

T ¼ 468k > Cf ¼ 428 kip
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Because T>Cf , the assumption in step 4 was not correct, and the

compression zone has to be larger in order for Cf to be equal to T. Thus,
the compression zone extends below the flange.

Step 5. Determine the depth of the compression zone, a:

a ¼ T � Cf

0:85fc
0 bw

þ hf

a ¼ 468� 428

0:85� 3� 18
þ 4

a ¼ 4:87 in:

Step 6. Calculate the location of the neutral axis, c:

c ¼ a

β1
¼ 4:87

0:85

c ¼ 5:73 in:

Because there is only a single layer of reinforcement (dt¼ d¼ 27.3 in.):

c

dt
¼ 5:73

27:3
¼ 0:210 <

3

7
¼ 0:429 ∴ ok

0:210 <
3

8
¼ 0:375 ∴ ϕ ¼ 0:90

Therefore, the section is tension-controlled.

Step 6a. Locate the centroid of the compression zone (hatched area) in Figure 3.8.

Divide the compression zone into two rectangular shapes and calculate y
(measured from the top of the beam).

5 #11

beff = 42 in.

hf = 4 in.   C

0.85f c¢

a = 4.87 in.

26 in.

T fy

bw = 18 in.

Figure 3.8 Forces acting on the beam section of Example 3.1a
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y ¼ ΣAy
ΣA

y ¼
42� 4ð Þ 4

2

� �
þ 18� 0:87ð Þ 4þ 0:87

2

� �
42� 4ð Þ þ 18� 0:87ð Þ

y ¼ 2:21 in:

Calculate the moment arm, z:

z ¼ d � y ¼ 27:3 � 2:21 ¼ 25:09 in:

Step 7. The design resisting moment, MR, is:

MR ¼ ϕTz ¼ 0:90� 468� 25:09 ¼ 10,568kip-in

12
¼ 881 ft-kip

Step 8. To ensure that the beam can carry the loads, calculate the maximum

factored moment after determining the loads.

Weight of slab ¼ 150
4

12

� �
¼ 50psf

Superimposed dead loads¼ 24psf

Total dead load¼ 74psf

wD ¼
74� 5:75þ 150

18

12
� 26

12

� �	 

1,000

¼ 0:913kip=ft

wL ¼ 200� 5:75

1,000

	 

¼ 1:15kip=ft

wu ¼ 1:2wD þ 1:6wL ¼ 1:2� 0:913þ 1:6� 1:15 ¼ 2:94kip=ft

‘n ¼ 32� 2 ¼ 30ft

From Table A2.1:

Muð Þþ ¼ wu‘
2
n

14
¼ 2:94ð Þ 30ð Þ2

14
¼ 189 ft-kip

Mu ¼ 189 ft-kip < MR ¼ 881 ft-kip ∴ ok

Check the beam depth for deflection. See Figure 2.41. (B-1 is a one-end

continuous beam):

hmin ¼ ‘

18:5
¼ 32� 12

18:5

hmin ¼ 21 in: < h ¼ 30 in: ∴ ok
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Therefore, the deflection does not need to be checked.

B� 1 is ok:

(b) Interior Beam (B-2) B-2 is a T-beam for positive moment at midspan.

Step 1. Determine the effective flange width:

beff ¼ min bw þ ‘n
4
, bw þ 16hf , bw þ sw

� �

where

‘n ¼ 32� 2ð Þft� 12 ¼ 360 in:
bw ¼ 18 in:
hf ¼ 4 in:
sw ¼ 10� 12� 18 ¼ 102 in:

beff ¼ min 18þ 360

4
, 18þ 16 4ð Þ, 18þ 102

� �
beff ¼ min 108 in:, 82 in:, 120 in:f g
beff ¼ 82 in:

Step 2. From Table A2.4! ρmin¼ 0.0033

d ¼ h � y ¼ 30� 1:5 þ 4=8þ 1:41þ 1=2ð Þ ¼ 26:1 in:

As,min ¼ ρmin bwd
As,min ¼ 0:0033 18ð Þ 26:1ð Þ ¼ 1:55 in:2

6 #11!Table A2.9!As¼ 9.36 in.2> 1.55 in.2 ∴ ok

Step 3. Assuming that the steel yields ( fs¼ fy), calculate the tensile force, T:

T ¼ As fy ¼ 9:36� 60 ¼ 562 kip

Step 4. Calculate the flange compression force, Cf :

Cf ¼ 0:85fc
0 beffhf ¼ 0:85 3ð Þ 82ð Þ 4ð Þ ¼ 836 kip

T ¼ 562 kip < 836 kip

Therefore, the compression zone is within the flange. In other words,

a< hf. Thus, the beam analysis is similar to that of a rectangular beam with

a width of b¼ beff¼ 82 in.
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Step 5. Calculate the steel ratio, ρ:

ρ ¼ As

beffd
¼ 9:36

82� 26:1
¼ 0:0044

Step 6.
ρ ¼ 0:0044

fc
0 ¼ 3ksi ! TableA2:6a ! R ¼ 225psi

ϕ ¼ 0:90
fy ¼ 60ksi

Step 7. Calculate the design resisting moment, MR:

MR ¼ beffd
2R

12,000

MR ¼ 82ð Þ 26:1ð Þ2 225ð Þ
12,000

MR ¼ 1,047 ft-kip

Step 8. Determine maximum (Mu)
+:

From part a: Total dead load¼ 74 psf

Total live load¼ 200 psf

wD ¼
74� 10þ 150

18

12
� 26

12

� �	 

1,000

¼ 1:23kip=ft

wL ¼ 200� 10

1,000

	 

¼ 2:0kip=ft

wu ¼ 1:2wD þ 1:6wL

wu ¼ 1:2� 1:23þ 1:6� 2:0 ¼ 4:68kip=ft

Muð Þþ ¼ wu‘
2
n

14
¼ 4:68ð Þ 30ð Þ2

14
¼ 301ft-kip

Mu ¼ 301ft-kip < MR ¼ 1,047 ft-kip ∴ ok

Check the beam depth to determine whether deflection analysis is needed:

hmin ¼ 21 in: from case a

h ¼ 30 in: > 21 in: ∴ ok

B� 2 is ok:

3.1.5 Design of T-beams

In theory, the design of T-beams involves finding the flange thickness, the width

and depth of the web, and the amount of reinforcement required. In practice,

however, the flange thickness is determined when designing the slab. The size of
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the web is selected to resist not only the moments at the supports (no T-beam

action), but to provide adequate shear capacity, and to simplify formwork layout for

ease of construction.

Hence, when designing a T-beam, the geometric dimensions of the beam

typically are known. The only unknown is the amount of steel required to resist

the loads. The T-beam design procedure, like beam analysis, depends on the

required depth of the equivalent stress block. In most cases, the compression zone

is within the flange area; so the design follows that of a simple rectangular beam,

with a width equal to the effective width of the flange.

In some rare cases, however, the compression zone available within the depth of

the flange, may not be adequate to develop the necessary factored moment. The

difference then must be compensated by having an additional compression zone

below the bottom of the flange (within the web).

The steps for the design of T- and L-beams follow. These are summarized in the

flowchart of Figure 3.10.

Step 1. Calculate the maximum factored moment that the beam must carry (Mu).
Step 2. Determine the effective flange width (beff) based on the ACI requirements.

Step 3. Assume a single layer of reinforcement y ¼ 2:5 in:ð Þand the effective depth,
d ¼ h� y. In addition, assume ϕ¼ 0.90.

Step 4. Calculate MRf using Equation (3.8). MRf is the moment capacity when the

compression zone is only within the flange.

MRf ¼ ϕMnf ¼ ϕ 0:85fc
0ð Þbeffhf d � hf =2

� � ð3:8Þ

Step5. Case a: If Mu�MRf! the compression zone is entirely within the flange.

Case b: If Mu>MRf! the flange area is not adequate to develop the

required factored moment.

Case a: Compression zone is within the flange (a� hf).

Step 6. Calculate the resistance coefficient, R:

R ¼ 12,000Mu

beffd
2

Step 7. Use fy, fc
0, and R to obtain ρ and ϕ from Tables A2.5 through A2.7.

Step 8. Calculate the required area of steel, As:

As ¼ ρbeffd

Check the result against the minimum reinforcement requirement

As,min¼ ρminbwd. ρmin is given in Table A2.4. Select the size and number

of the bars using Tables A2.8 and A2.9.

Step 9. Calculate the actual effective depth:
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d ¼ h� y

If d� dassumed, the design is a little conservative. Otherwise, you may

revise the design by using this new value of effective depth.

Step 10. Compare the beam depth with the required minimum for deflection

control.

Case b: Compression zone extends below the flange (a> hf)—see Figure 3.9a.

Step 6. Calculate the area of steel required to balance the entire flange in com-

pression. See Figure 3.9b. Assume df¼ d¼ h� 2.5 in., and the moment

arm zf ¼ df � hf =2.
Step 7. The area of steel necessary to develop the compression zone of the entire

flange area (Asf) is given in Equation (3.9).

+

beff

hfa

d

As

bw

beff

df d =
h

Asf

Cf

zf
hw

Cw

dw

Asw
Asf fy Aswfy

bw

a

b c

Figure 3.9 T-beam design where the compression zone extends below the bottom of the flange.

(a) Compression zone extends below the flange. (b) Compression in flange only. (c) Compression

in web only
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Asf ¼ 12MRf

ϕfyzf
ð3:9Þ

MRf is in kip-ft, fy in ksi, zf in in., and Asf in in.2.

Another way of calculating Asf is to use equilibrium of forces in

Figure 3.9b Asf fy ¼ Cf

� �
.

Asf fy ¼ 0:85fc
0 beffhf

Asf ¼ 0:85fc
0 beffhf
fy

sf ———

f f

w

u Rf

7.

Design of T- and L-Beams

1.
Find the maximum Mu

2.
Find beff:

beff = min {bw +  n/4, bw + 16hf , bw + sw}       (T-beam)

beff = min {bw +  n/12, bw + 6hf , bw + sw /2}    (L-beam)

3. Assume y = 2.5 in. and
φ = 0.90, d = h - y.

Case a

4.
Find MRf = φMnf (design resisting moment

for compression zone covering the entire flange):

5.
Case b

Compression zone is No 
within flange (a ≤ hf ).

Mu > MRf?
Yes Compression zone extends

below flange (a > hf )

6. 12,000MuR = ————
beffd

2

7. Use fy,  , and R to find 
ρ and φ from Tables 
A2.5 through A2.7.

6. Assume df = h - 2.5 in. 

and z = d -
hf .
2

A  =
12MRf
φfy zf

8. hw = h - hf and

8. As = ρbeffd
assume dw = hw - 2.5 in.

As,min = ρminbwd

12,000(M - M )
Rw = ————————

bwd 2

C A B

f ′c

MRf = ) beffhf ( )d -φ(0.85
hf
2f ′c

Figure 3.10 Flowchart for the design of T- and L-beams
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Step 8. In order to calculate the area of required steel for the part of the compres-

sion zone that is below the flange (Asw), consider only the depth of the stem

that is below the flange (hw¼ h� hf). Assume that the effective depth of the

stem (dw) is dw¼ hw� 2.5 in. See Figure 3.9c.

Then use Equation (3.10) to calculate the resistance coefficient for the

required area of steel in the web (Rw).

Rw ¼ 12,000 Mu �MRf

� �
bwd

2
w

ð3:10Þ

Step 9. Use fy, fc
0, and Rw to obtain ρw (steel ratio for the web) from Tables A2.5

through A2.7, and calculate the required area of steel in the web (Asw)

using Equation (3.11).

Asw ¼ ρwbwdw ð3:11Þ

Step 10. The total area of steel is:

As ¼ Asf þ Asw ð3:12Þ

Step 11. Select the size and number of bars using Tables A2.8 and A2.9.

C A B

As >As,min ?
No

As = As,min

9. Use fy, f �c and Rw to find
ρw fromTables A2.5

through A2.7.

Asw = ρwbwdw

Yes
10. As = Asf + Asw

Select the size and
11. Select the size and 

number of bars using
number of bars using

Tables A2.8 and A2.9.
Tables A2.8 and A2.9.

9. d = h- y
12. d = h- y

No
d ≥ dassumed?

d ≥ dassumed? No

Yes Yes

10. Check the beam depth 
for deflection.

13. Check the beam 
depth for deflection.

Figure 3.10 (continued)
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Step 12. Based on the size and number of the selected bars, compute the actual

beam effective depth d ¼ h� yð Þ. If this value is larger than what was

assumed in step 3, the design is a little conservative. Otherwise, revise the

design as needed by using the new value of effective depth.

Step 13. Finally, check the beam depth (h) for deflection requirements.

Example 3.2 Because beams B-1 and B-2 of Example 3.1 were overdesigned,

redesign these L- and T-beams respectively for the maximum positive moments at

midspan.

Solution Use the flowchart of Figure 3.10.
(a) Edge Beams (B-1)

Step 1. From Example 3.1a, step 8:

Mu ¼ 189 ft-kip

Step 2. From Example 3.1a, step 1, the effective flange width (beff) is:

beff ¼ 42 in:

Step 3. Assume y¼ 2.5 in. and ϕ¼ 0.90:

d ¼ h � y ¼ 30 in:� 2:5 in: ¼ 27:5 in:

Step 4. Equation (3.8) gives the design resisting moment if the entire flange is in

compression (MRf):

MRf ¼ ϕMnf ¼ ϕ 0:85fc
0ð Þbeffhf d � hf

2

� �

MRf ¼ 0:90 0:85� 3ð Þ 42ð Þ 4ð Þ 27:5� 4

2

� �

MRf ¼ 9,832 in-kip

12
¼ 819ft-kip

Step 5. BecauseMu¼ 189 ft-kip<MRf¼ 819 ft-kip, the compression zone will be

within the flange (a< hf).
Step 6. Calculate the resistance coefficient, R:

R¼ 12,000Mu

beffd
2

R¼ 12,000� 189

42� 27:52
¼ 71psi

Step 7.
fc
0 ¼ 3ksi

fy ¼ 60ksi ! Table A2:6a ! ρ ¼ 0:0014

R ¼ 71psi
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(When obtaining ρ from Table A2.6a, because R¼ 71 psi is not in the

table, we selected the value corresponding to R¼ 74 psi.)

Step 8.
As ¼ ρbeffd ¼ 0:0014ð Þ 42ð Þ 27:5ð Þ ¼ 1:62 in:2

From Table A2:4, ρmin ¼ 0:0033
Thus As,min ¼ 0:0033� 18� 27:5 ¼ 1:63 in:2

Because As is less than As,min use As ¼ 1:63 in:2

From Table A2:9, we select 3#7 bars As ¼ 1:8 in:2ð Þ
From Table A2:8 ! bmin ¼ 9 in: < 18 in: ∴ ok

From Table A2:8 ! bmax ¼ 24 in: > 18 in: ∴ ok

Step 9. Calculate the actual effective depth (d) of the beam:

y¼ 1:5þ 4

8
þ 0:875

2
¼ 2:44 in:

d ¼ h� y ¼ 30 in:� 2:44 in: ¼ 27:56 in: � dassumed ¼ 27:5 in: ∴ ok

Step 10. Check the beam depth for deflection:

hmin ¼ ‘

18:5
one-end continuous beamð Þ

hmin ¼ 32� 12

18:5
¼ 21 in: < h ¼ 30 in: ∴ ok

Figure 3.11 shows a sketch of the beam.

(b) Interior Beam (B-2)

Step 1. From Example 3.1b, step 8:

Mu ¼ 301ft-kip

4 in.

30 in.

3 #7

18 in.

Figure 3.11 Sketch of beam B-1 for Example 3.2
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Step 2. From Example 3.1b, step 1, the effective flange width (beff) is:

beff ¼ 82 in:

Step 3. Assume ϕ¼ 0.90 and y ¼ 2:5 in.:

d ¼ h � y ¼ 30 in:� 2:5 in: ¼ 27:5 in:

Step 4. Equation (3.8) gives the design resisting moment for the beam with the

entire flange in compression (MRf):

MRf ¼ ϕMnf ¼ ϕ 0:85fc
0ð Þbeffhf d � hf

2

� �

MRf ¼ 0:90 0:85� 3ð Þ 82ð Þ 4ð Þ 27:5� 4

2

� �
MRf ¼ 19,195 in-kip

12
¼ 1,600ft-kip

Step 5. Because Mu¼ 301 ft-kip<MRf¼ 1,600 ft-kip, the compression zone will

be within the flange.

Step 6. Calculate the resistance coefficient, R:

R¼ 12,000Mu

beffd
2

R¼ 12,000� 301

82� 27:5ð Þ2 ¼ 58psi

Step 7.
fc
0 ¼ 3ksi

fy ¼ 60ksi ! Table A2:6a ! ρ ¼ 0:0011
R ¼ 58psi

Step 8.
As ¼ ρbeffd ¼ 0:0011� 82� 27:5
As ¼ 2:48 in:2

From Table A2:4 ! ρmin ¼ 0:0033
As, min ¼ 0:0033� 18� 27:5 ¼ 1:63 in:2

From Table A2:9 ! 3#9bars As ¼ 3 in:2ð Þ
From Table A2:8 ! bmin ¼ 10 in: < 18 in: ∴ ok

From Table A2:8 ! bmax ¼ 24 in: > 18 in: ∴ ok

Step 9. Calculate the actual effective depth (d):

y ¼ 1:5þ 4

8
þ 1:128

2
¼ 2:56 in:

d ¼ h� y ¼ 30 in:� 2:56 in: ¼ 27:44 in: � dassumed ¼ 27:5 in: ∴ ok
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Step 10. Check the beam depth for deflection:

hmin ¼ ‘

18:5
¼ 32� 12

18:5
¼ 21 in: < h ¼ 30 in: ∴ ok

Figure 3.12 shows a sketch of the beam.

Example 3.3 Design the T-beam shown in Figure 3.13. Assume that the effective

flange width is 54 in. The T-beam is subjected to a total factored positive moment,

Mu¼ 950 ft-kip. Use fc
0 ¼ 3 ksi, and fy¼ 60 ksi. Assume #4 stirrups.

Solution Use the flowchart of Figure 3.10.

Step 1. Mu ¼ 950ft-kip givenð Þ
Step 2. beff ¼ 54 in: givenð Þ
Step 3. Assuming ϕ¼ 0.90 and y ¼ 2:5 in : :

d ¼ h� y ¼ 30 in:� 2:5 in: ¼ 27:5 in:

4 in.

30 in.

3 #9

18 in.

Figure 3.12 Sketch of beam B-2 for Example 3.2

beff = 54 in.

3 in.

30 in.

20 in.

Figure 3.13 Sketch of T-beam for Example 3.3
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Step 4. From Equation (3.8):

MRf ¼ ϕMnf ¼ ϕ 0:85fc
0ð Þbeffhf d � hf

2

� �

MRf ¼ 0:90ð Þ 0:85� 3ð Þ 54ð Þ 3ð Þ 27:5� 3

2

� �

MRf ¼ 9,667 in-kip

12
¼ 806ft-kip

Step 5. Because Mu¼ 950 ft-kip>MRf¼ 806 ft-kip, the compression zone will

extend into the web area (a> hf). Use Case b.
Step 6. First calculate the amount of steel needed to work with the entire flange in

compression (Asf), and then the reinforcing needed to work with the part of

the web that is in compression (Asw). The total required area of steel (As)

will then be:

As ¼ Asf þ Asw

To determine the area of steel required to work with the flange in

compression (Asf), assume df (effective beam depth for the entire flange

in compression) as:

df ¼ h� 2:5 in: ¼ 30 in: � 2:5 in: ¼ 27:5 in:

Then the moment arm of this internal couple is

zf ¼ df � hf
2
¼ 27:5 in:� 3 in:

2
¼ 26 in:

Step 7. The area of the steel required to work with the flange (Asf) is:

Asf ¼ 12MRf

ϕfyzf

Asf ¼ 12� 806

0:9� 60� 26
¼ 6:89 in:2

Step 8. The depth of the web (hw) is:

hw ¼ h � hf ¼ 30 in:� 3 in: ¼ 27 in:

Then

dw ¼ hw � 2:5 in: ¼ 27 in:� 2:5 in: ¼ 24:5 in:

The resistance coefficient for the area of steel required for the part of

the compression in the web (Rw) is:
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Rw ¼ 12,000 Mu �MRf

� �
bwd

2
w

Rw ¼ 12,000 950� 806ð Þ
20 24:5ð Þ2 ¼ 144psi

Step 9.
fc
0 ¼ 3ksi

fy ¼ 60ksi ! Table A2:6a ! ρ ¼ 0:0028

Rw ¼ 144psi

Asw ¼ ρwbwdw ¼ 0:0028ð Þ 20ð Þ 24:5ð Þ
Asw ¼ 1:37 in:2

Step 10. The total required area of steel (As) is:

As ¼ Asf þ Asw ¼ 6:89þ 1:37 ¼ 8:26 in:2

Step 11.
From Table A2:9 ! Try 6 #11 bars As ¼ 9:36 in:2ð Þ
From Table A2:8 ! bmin ¼ 19:5 in: < 20 in: ∴ ok

From Table A2:8 ! bmax ¼ 54 in: > 20 in: ∴ ok

Step 12. Calculate the actual effective depth (d):

y ¼ 1:5þ 1=2þ 1:41=2 ¼ 2:71 in:
d ¼ h� y ¼ 30 in:� 2:71 in: ¼ 27:3 in: � dassumed ¼ 27:5 in: ∴ ok

The sketch of the final beam design is shown in Figure 3.14.

3 in.

30 in.

6 #11

20 in.

Figure 3.14 Sketch of final design of T-beam for Example 3.3
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3.2 Doubly-Reinforced Beams

3.2.1 Introduction

To this point we have shown the use of steel reinforcement only for the tension part

of a reinforced concrete beam (tension steel). When reinforcement is also used in

the compression zone of a reinforced concrete section (compression steel), the

beam is referred to as a doubly-reinforced beam. Even though such a section in

general is not economical, the use of compression steel has several advantages and

applications, including the following:

1. It allows the use of a cross section smaller than that of a singly-reinforced beam.

This is especially useful if the beam size is limited for architectural or aesthetic

purposes.

2. It helps in reducing long-term deflections.

3. It can support stirrups or shear reinforcement by tying them to compression bars.

4. It adds significantly to the ductility of beams. Compression reinforcement

enables the beam to withstand large levels of movement and deformation

under extreme loading conditions that might occur during earthquakes.

5. It is frequently used where beams span more than two supports due to practical

considerations. The ACI Code requires a percentage of the tensile steel at

midspan to continue into the supports, and by a small extension this steel can

easily be used as compression reinforcement at the face of the supporting

column.

3.2.2 Analysis of Doubly-Reinforced Concrete Beams

It is possible to use compression reinforcement, in conjunction with additional

tensile reinforcement, to increase the strength of flexural members. The ACI Code

(Section 22.2.3.1) allows the use of deformed reinforcement to resist compressive

in addition to tensile forces. To develop the internal couple in a reinforced concrete

section, the total compression force, C, has to be equal to the total tensile force, T,
which is provided by the steel. In a doubly-reinforced beam, however, the com-

pression force is developed partly by the concrete, and partly by the compression

steel.

Utilizing the principle of superposition, it is assumed that part of the steel in

tension provides the tensile force to balance the compression force in the concrete

(C1¼ T1), and another part provides the tensile force that balances the force in the

compression steel (C2¼ T2). Figure 3.15 shows these forces.
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The following notations will be used in this section, and are shown in

Figure 3.16.

As
0 Area of compression steel

d 0 Distance from the center of the compression steel to the compression edge of the beam

As1 Area of tension steel for the concrete-steel couple

As2 Area of tension steel required to work with the compression steel

As Total area of tension steel (As¼As1 +As2)

Mn1 Nominal resisting moment of the concrete-steel couple

Mn2 Nominal resisting moment of the steel-steel couple

d Effective depth of the section

dt Effective depth of the extreme tension steel

εt Net tensile strain for extreme steel in tension

εs0 Strain in the compression steel

fs
0 Stress in the compression steel

Es Modulus of elasticity of the steel

Figure 3.16a shows a doubly-reinforced beam represented by the superposition

of two “beams”: (1) a singly-reinforced beam with an area of steel As1, and (2) an

imaginary tension-compression steel section, with As
0 as compression reinforcement

and As2 as tensile reinforcement. Therefore, the total area of tensile steel, As, is

equal to the sum of As1 and As2 As ¼ As1 þ As2ð Þ.
Figure 3.16b shows the distribution of strain in a doubly-reinforced beam at the

ultimate moment. In order for the beam to remain tension-controlled, εt� 0.005

when εc¼ 0.003. If εs0 � εy then fs
0 ¼ fy ; however, when εs0 < εy, fs

0 ¼ Es εs.
Therefore, in order to determine the stress level in the compression steel, fs

0, it is
always necessary to determine the strain, εs0, and check the above relationship.

Figures 3.16c and 3.16d show the forces generating the concrete-tensile steel and

compression steel–tensile steel couples, respectively. Consider the compression

steel–tensile steel couple. In order to form a couple, the compression force, C2,

must be equal to the tensile force, T2, as shown in Equation (3.13).

0.85fc'
b

A's

As

a C1
C2

T1 T2
fy

= +

Figure 3.15 Compression and tensile forces in doubly-reinforced beam
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A
= +

1

f

A¢s

As

A¢s

s1 As2

εc = 0.003

d ¢

A¢s

ε¢s

d

As

εt

a

b

c

d

0.85fc¢
b

a C1 = 0.85f ¢c ba

z = d − a
2

As1

T1 = As1fy 
y

d ¢

As¢
C2 = A ¢sf ¢s

As2

z2 = d − d ¢

T2 = As2fy

dt

c

d

d

Figure 3.16 Analysis of doubly-reinforced beams. (a) Doubly-reinforced beam¼ singly-

reinforced beam+ tension-compression steel. (b) Strain distribution in doubly-reinforced beam.

(c) Concrete-steel couple. (d) Steel-steel couple
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C2 ¼ T2

As
0 fs0 ¼ As2 fy

ð3:13Þ

The following steps present the analysis of a doubly-reinforced beam. Figure 3.17

summarizes these steps in a flowchart.

Step 1. Assume that the compression steel has yielded εs0 � εy
� �

before the concrete

in compression has reached its ultimate strain. Therefore, fs
0 ¼ fy and

As2fy ¼ As
0 fy

from which

As2 ¼ As
0

Because

As ¼ As1 þ As2

As1 can be calculated according to Equation (3.14).

As1 ¼ As � As2 ¼ As � As
0 ð3:14Þ

From Figure 3.16c, which is the part of the beam represented by the

concrete-tensile steel couple, Equation (3.15) can be written.

C1 ¼ T1 ð3:15Þ
0:85fc

0 ab ¼ As1fy

Step 2. Calculate the depth of the compression zone (a) using Equation (3.16).

a ¼ As1fy
0:85fc

0 b
ð3:16Þ

Then determine the location of the neutral axis:

c ¼ a

β1

Step 3. Determine the strain levels for the tensile steel (εt) from the similarity of

triangles (see Figure 3.16b).
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7. (c − d )
fs = c (87)

a = 1c

Section is ok.

Check beam
depth for 
deflection.

n1 s1 (

(

)

)

5.

Analysis of Doubly-Reinforced Concrete Beam

1. Assume that all steel in tension and compression yields.
(fs = f s = fy)

As2 = As

sAs1 = As − A

2. As1fya =
0.85 f cb

c = a
β

β

β

1

3.
ε

φ

φ

φφ

φ

φ

ε

ε

ε

ε

ε

≥

≥

ε

t = 0.003(dt −c)
c

Yes 3a.

4.
= 0.003(c − d )

c

<

<

= A1 + B1 t t 0.005?

No
= 0.90

Case 1
Yes

s y?  
No

Case 2

M    = A fy d − a
2

6.

5.
(0.85f cb 1)c2 + (87As− Asfy)c − 87d As = 0

Solve for c.

Mn2 = Asfy (d − d )

7.
Mn = Mn1 + Mn2

8.
MR = Mn

6.
t =

0.003(dt − c)
c

6a.

t 0.005?

No

Yes

= A1 + B1 t

8. = 0.9
aMn1 = (0.85f cba) d −
2

Mn2 = As f s(d − d )

Yes 9.
MR Mu? Mn = Mn1 + Mn2

No

Section is N.G.
MR = Mn

¢

¢
¢

¢

εs¢

ε¢

¢ ¢

¢ ¢ ¢ ¢

¢

¢

¢ ¢ ¢

¢

¢

Figure 3.17 Analysis of doubly-reinforced beams
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εt
dt � c

¼ 0:003

c

εt ¼ 0:003 dt � cð Þ
c

ð3:17aÞ

Step 3a. If εt< 0.005 (transition-controlled section), calculate ϕ accordingly.

! ϕ¼A1 +B1εt (A1 and B1 are obtained from Table A2.2a.)

Otherwise, ϕ¼ 0.90.

Step 4. Determine the strain in the compression reinforcement ðεs0Þ using the

similarity of triangles in Figure 3.16b:

εs0

c� d0
¼ 0:003

c

εs0 ¼ 0:003 c� d0ð Þ
c

ð3:17bÞ

Compare it to the yield strain of the compression reinforcement. There

will be two possibilities: Case 1 if εs0 � εy, and Case 2 if εs0 < εy.

Case 1 – Compression reinforcement yields.

εs0 � εy ð3:18Þ

This indicates that the compression steel yielded. In other words, fs
0 ¼ fy or the

assumption made earlier in step 1 is correct. Hence, proceed directly to calculating

the resisting moment of the section.

Step 5. Calculate the nominal resisting moment from the concrete–tensile steel

couple according to Equation (3.19).

Mn1 ¼ As1 fyz1 ¼ As1 fy

� �
d � a

2

� �
ð3:19Þ

Step 6. Calculate the nominal resisting moment from the compression steel–tensile

steel couple according to Equation (3.20).

Mn2 ¼ As
0 fs

0 d � d0ð Þ ¼ As
0 fy d � d 0ð Þ ð3:20Þ

Step 7. Calculate the nominal resisting moment for the doubly-reinforced beam

according to Equation (3.21).

Mn ¼ Mn1 þMn2 ð3:21Þ

Step 8. Calculate the design resisting moment (MR) using the strength reduction

factor (ϕ) and Equation (3.22).
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MR ¼ ϕMn ð3:22Þ

Case 2 – Compression reinforcement does not yield.

εs0 < εy ð3:23Þ

Step 5. Because εs0 < εy, the compression steel did not yield when the strain at the

extreme compression edge on the concrete section reached 0.003. From

similar triangles (see Figure 3.16b) the strain in the compression steel can

be calculated using Equation (3.24).

εs0 ¼ 0:003 c� d0ð Þ
c

ð3:24Þ

The stress in the compression steel ( fs
0) can then be calculated using

Equation (3.25).

fs
0 ¼ εs0Es ¼ 0:003 c� d0ð Þ

c

	 

Es ð3:25Þ

Thus, the assumption made in step 1 is not correct. The force provided by

the compression steel is less than was assumed. Hence a smaller amount of

tensile steel will work in the compression steel–tensile steel couple, and a

new location has to be determined for the neutral axis.

Equilibrium requires that the total compression on the section be equal to

the total tension, as expressed by Equations (3.26) and (3.27).

C1 þ C2 ¼ T1 þ T2 ð3:26Þ
0:85fc

0abþ As
0 fs

0 ¼ As1 fy þ As2 fy

0:85fc
0abþ As

0 fs0 ¼ As1 þ As2ð Þfy
ð3:27Þ

Because As¼As1 +As2:

0:85fc
0abþ As

0 fs
0 ¼ As fy ð3:28Þ

Substituting a¼ β1c and fs0 from Equation (3.25) into the above equation:

0:85fc
0 β1cbþ As

0 0:003 c� d0ð Þ
c

	 

Es ¼ As fy ð3:29Þ
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Multiplying the two sides of this equation by c:

0:85fc
0 bβ1ð Þc2 þ 0:003 c� d0ð ÞEsAs

0 � As fyc ¼ 0

Rearranging the equation:

0:85fc
0bβ1ð Þc2 þ 0:003EsAs

0 � As fy

� �
c� 0:003d0EsAs

0 ¼ 0 ð3:30Þ

Substituting Es¼ 29,000 ksi, the location of the neutral axis (c) can be

determined from the quadratic Equation (3.31).

0:85fc
0bβ1ð Þc2 þ 87As

0 � As fy

� �
c� 87d0As

0 ¼ 0 ð3:31Þ

(Note that fc
0 and fy are in ksi.)

Step 6. Once c is known, determine the net tensile strain in the extreme layer of

steel εtð Þ using Equation (3.32) (developed in step 3 above).

εt ¼ 0:003 dt � cð Þ
c

ð3:32Þ

Step 6a. If εt < 0:005 (transition-controlled section), calculate ϕ ¼ A1 þ B1εt (A1

and B1 are found from Table A2.2a). If εt � 0:005 (tension-controlled

section), set ϕ¼ 0.90.

Step 7. Calculate the stress in the compression steel, fs
0, using Equation (3.33),

which is derived by substituting the value of Es into Equation (3.25).

fs
0 ¼ 0:003 c� d0ð Þ

c
Es ¼ 0:003ð Þ c� d0ð Þ 29,000ð Þ

c

fs
0 ¼ c� d0ð Þ

c
87ð Þ

ð3:33Þ

The depth of the equivalent stress block (a) is:

a ¼ β1c

Calculate the component forces of the internal couples (see Figure 3.16c

and d) and determine whether equilibrium is satisfied, as expressed in

Equation (3.35).

C1 ¼ 0:85fc
0ba

C2 ¼ As
0 fs0

T1 þ T2 ¼ As fy ð3:34Þ
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T1 þ T2 ¼ C1 þ C2 ð3:35Þ

If Equation (3.35) is not satisfied, then most likely an error was made in

the computation of c.
Step 8. Calculate the nominal resisting moment of the doubly-reinforced section by

adding the concrete–tensile steel and compression steel–tensile steel cou-

ples as shown in Equations (3.36)–(3.38) (see Figure 3.16c, d).

Mn1 ¼ C1z1 ¼ C1 d � a

2

� �
¼ 0:85 fc

0 bað Þ d � a

2

� �
ð3:36Þ

Mn2 ¼ C2z2 ¼ C2 d � d0ð Þ ¼ As
0 fs

0 d � d0ð Þ ð3:37Þ
Mn ¼ Mn1 þMn2 ð3:38Þ

Calculate the design resisting moment, MR, using Equation (3.39).

MR ¼ ϕMn ð3:39Þ

Step 9. OnceMR is calculated, determine whether the beam has enough capacity by

comparing MR with the maximum factored moment, Mu (i.e., the demand):

MR � Mu Beam is adequate:ð Þ
MR < Mu Beam is not adequate:ð Þ

Check if the beam depth is large enough so that deflection does not need

to be computed.

Example 3.4 Calculate the design resisting moment,MR, of the doubly-reinforced

beam shown in Figure 3.18. fc
0 ¼ 4 ksi, fy¼ 40 ksi, Es¼ 29,000 ksi. The stirrups

are #4 bars. The beam is subjected to a positive bending moment.

Solution Use the flowchart of Figure 3.17.

14 in.

2 #7

#4 Stirrups

6 #9

30 in.

Figure 3.18 Beam section for Example 3.4
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Step 1. Assume that the tension and compression steel yield. The validity of this

assumption will be checked later in the analysis.

fs ¼ fs
0 ¼ fy ¼ 40ksi

FromTableA2:9 ! 6#9 ! As ¼ 6:0 in:2

! 2#7 ! As
0 ¼ 1:2 in:2

As1 ¼ As � As
0 ¼ 6� 1:2 ¼ 4:8 in:2

Step 2. Calculate the depth of the equivalent stress block (a) in the concrete for the
section:

a ¼ As1 fy
0:85 fc

0b
¼ 4:8� 40

0:85� 4� 14
¼ 4:03 in:

Therefore, the location of the neutral axis (c) is:

c ¼ a

β1
¼ 4:03 in:

0:85
¼ 4:75 in:

Step 3. Calculate the strain in the tension and compression steel and check for the

validity of the assumption made in step 1. Make a sketch of the strain

distribution as shown in Figure 3.19 and calculate the strains from similar

triangles.

dt ¼ 30 in:� 1:5þ 4

8
þ 1:128

2

� �
¼ 27:44 in:

εt ¼ 0:003 dt � cð Þ
c

εt ¼ 0:003 27:44� 4:75ð Þ
4:75

εt ¼ 0:0143

εt ¼ 0:0143 > εy ¼
fy
Es

¼ 40

29,000
¼ 0:00138

εc = 0.003
14 in.

c = 4.75 in. εs = 0.0015

dt   
d

d = 2.44 in. 2 #7

6 #9
30 in.

εt = 0.0143

¢ ¢

Figure 3.19 Strains for beam section of Example 2.10
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Step 3a.
εt ¼ 0:0143 > 0:005 ∴ϕ ¼ 0:90

(The section is tension-controlled.)

Step 4. Calculate the strain level in the compression steel εs0ð Þ. Check to see if the

steel yields when strain in the concrete reaches 0.003:

d0 ¼ 1:5þ 4

8
þ 0:875

2
¼ 2:44 in:

εs0 ¼ 0:003 c� d0ð Þ
c

εs0 ¼ 0:003 4:75� 2:44ð Þ
4:75

εs0 ¼ 0:00146 > εy ¼ 0:00138

Therefore, the compression steel yields, and the assumption in step 1 was

correct! Because the compression steel yields, follow the process under

case 1:

Step 5. Calculate the effective depth (d).

d ¼ 30� 1:5þ 4

8
þ 1:128þ 1

2

� �
¼ 26:37 in:

Note that the clear vertical space between the bars is 1.0 in.

Calculate the nominal resisting moment from the concrete–tensile steel

couple, Mn1.

Mn1 ¼ As1fy d � a

2

� �

Mn1 ¼
4:8ð Þ 40ð Þ 26:37� 4:03

2

� �
12

Mn1 ¼ 390ft-kip

Step 6. Calculate the nominal resisting moment for the compression steel–tensile

steel couple, Mn2.

Mn2 ¼ As
0 fy d � d0ð Þ

Mn2 ¼ 1:2ð Þ 40ð Þ 26:37� 2:44ð Þ
12

Mn2 ¼ 95:7ft-kip

Step 7. Calculate the total nominal resisting moment, Mn, which is the sum of the

concrete–tensile steel (Mn1) and compression steel–tensile steel (Mn2)

couples:
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Mn ¼ Mn1 þMn2

Mn ¼ 390þ 95:7 ¼ 485:7ft-kip

Step 8. Calculate MR.

MR ¼ ϕMn ¼ 0:90� 485:7 ¼ 437ft-kip

Example 3.5 Determine the design resisting moment, MR, for the doubly-

reinforced beam with 6 #8 bars used for steel in tension as shown in Figure 3.20.

Use fc
0 ¼ 4 ksi and fy¼ 40 ksi, Es¼ 29,000 ksi. The stirrups are #4 bars. The beam is

subject to a positive bending moment.

Solution Use the flowchart of Figure 3.17.

Step 1. Assume fs ¼ fs
0 ¼ fy ¼ 40 ksi

2 #7 ! TableA2:9 ! As
0 ¼ 1:20 in:2

6 #8 ! TableA2:9 ! As ¼ 4:74 in:2

As1 ¼ As � As
0 ¼ 4:74� 1:20 ¼ 3:54 in:2

Step 2. Calculate the depth of the equivalent stress block.

a¼ As1fy
0:85fc

0b
¼ 3:54� 40

0:85� 4� 14

a¼ 2:97 in:

The neutral axis is:

c ¼ a

β1
¼ 2:97

0:85
¼ 3:5 in:

14 in.

2 #7

#4 Stirrups

6 #8

30 in.

Figure 3.20 Beam section for Example 3.5
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Step 3. Calculate the strain in the tensile steel:

dt ¼ 30� 1:5þ 4

8
þ 1

2

� �
¼ 27:5 in:

From Equation (3.17a):

εt ¼ 0:003 dt � cð Þ
c

εt ¼ 0:003 27:5 in:� 3:5 in:ð Þ
3:5 in:

εt ¼ 0:0206 > εy ¼ 40

29,000
¼ 0:00138

Step 3a.
εt ¼ 0:0206 > 0:005 ∴ϕ ¼ 0:90

Step 4. Calculate the strain in the compression steel:

d0 ¼ 1:5þ 4

8
þ 0:875

2
¼ 2:44 in:

From Equation (3.17b):

εs0 ¼ 0:003 c� d0ð Þ
c

εs0 ¼ 0:003 3:5� 2:44ð Þ
3:5

εs0 ¼ 0:00091 < εy ¼ 0:00138

The compression steel does not yield when the strain in the concrete

reaches 0.003. Therefore, the assumption in step 1 was not correct. Hence,

follow the procedure outlined in case 2.

Step 5. Determine the location of the neutral axis, c, using Equation (3.31).

0:85fc
0bβ1ð Þc2 þ 87As

0 � Asfy

� �
c� 87d0As

0 ¼ 0

0:85� 4� 14� 0:85ð Þc2 þ 87� 1:2� 4:74� 40ð Þc� 87� 2:44� 1:2 ¼ 0

40:46c2 � 85:2c� 254:7 ¼ 0

This is a second order equation in the form of:

Ax2 þ Bxþ C ¼ 0

The solutions for x are:

x ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
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where A¼ 40.46, B¼ –85.20, C¼ –254.7.

Thusc ¼
85:20�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�85:20ð Þ2 � 4 40:46ð Þ �254:7ð Þ

q
2 40:46ð Þ

c ¼ 3:77 in:

(Quadratic equations have two roots. The one in the example has

c1¼ 3.77 in. and c2¼ –1.67 in. c cannot be a negative value, so the second

one obviously does not apply.)

Step 6. Determine the correct value of the net tensile strain at the extreme layer of

the reinforcement using Equation (3.32).

εt ¼ 0:003 dt � cð Þ
c

εt ¼ 0:003 27:5� 3:77ð Þ
3:77

Step 6a.
εt ¼ 0:0189 > 0:005 ∴ ϕ ¼ 0:90

Step 7. Calculate the stress in the compression steel ( fs
0) using Equation (3.33).

fs
0 ¼ c� d0ð Þ

c
87ð Þ

fs
0 ¼ 3:77� 2:44ð Þ

3:77
87ð Þ

fs
0 ¼ 30:69ksi < fy ¼ 40ksi

The corrected depth of the compression zone (a) is:

a ¼ β1c ¼ 0:85� 3:77 ¼ 3:20 in:

Step 8. Calculate Mn1 and Mn2, the nominal resisting moments for the concrete–

tensile steel couple and the compression steel–tensile steel couple,

respectively.

d ¼ 30� 1:5þ 4

8
þ 1þ 1

2

� �
¼ 26:5 in:

Mn1 ¼ 0:85fc
0bað Þ d � a

2

� �

Mn1 ¼
0:85� 4� 14� 3:2ð Þ 26:5� 3:2

2

� �
12

Mn1 ¼ 316 ft-kip

Mn2 ¼ As
0 fs

0 d � d0ð Þ
Mn2 ¼ 1:2� 30:69 26:5� 2:44ð Þ

12
Mn2 ¼ 74:0ft-kip
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Calculate the design resisting moment, Mn.

Mn ¼ Mn1 þMn2

Mn ¼ 316þ 74:0 ¼ 390ft-kip

Calculate the design resisting moment, MR.

MR ¼ ϕMn ¼ 0:90� 390

MR ¼ 351ft-kip

3.2.3 Design of Doubly-Reinforced Concrete Beams

If a singly-reinforced section cannot develop the required factored moment and the

beam size cannot be increased, a doubly-reinforced section may be appropriate. In

the design of doubly-reinforced beams, the section sizes are known, so only the

reinforcement needs to be determined.

The design of a doubly-reinforced section follows the same concept as that of the

analysis: Calculate the amount of steel necessary for the concrete–tensile steel and

compression steel–tensile steel couples and add the results. The step-by-step design

procedure is outlined below and summarized in a flowchart in Figure 3.21.

Step 1. Calculate the maximum factored moment, Mu, from the loads acting at the

section under consideration. Because the beam sizes (b and h) are known,
estimate the effective depth (d) as

d ¼ h � y assume y ¼ 2:5 in:ð Þ

Also, assume d0 ¼ 2.5 in. In the following two steps we determine

whether a doubly-reinforced beam is required or a singly-reinforced

beam will be adequate.

Step 2. In order to calculate the maximum moment capacity of a singly-reinforced

tension-controlled section (ϕMn1), obtain the maximum tension-controlled

steel ratio (ρtc) permitted by the ACI code from Table A2.3 and the

corresponding resistance coefficient (R) from Tables A2.5 through A2.7.

Step 3. Calculate the maximum .ϕMn1 for a singly-reinforced beam:

ϕMn1 ¼ Rbd2=12,000 ð3:40Þ

If Mu > ϕMn1 a doubly-reinforced beam is required. If Mu � ϕMn1 a

singly-reinforced concrete beam will suffice. If a singly-reinforced con-

crete beam will suffice, design the beam accordingly using the flowchart of
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s y

Design of Doubly-Reinforced Concrete Beams

1.
Calculate maximum Mu

Assume d = h − y and d = 2.5 in., y = 2.5 in.

2.
Use f and f to find ρtc (Table A2.3) and corresponding R from the resistancec y

coefficient tables (Tables A2.5 through A2.7).

3.
M   = Rbd 2 

n1 12,000

Mn1 < Mu?
No Design as a

singly-reinforced beam.

Yes

4. As1 = ρtc bd

Mn2 = Mu − Mn1

C2 =

b
Mn2

(d − d )
d

= 0.90

5. As1fy
a =

As

d dt

As

0.85f c b

y

c = a 
1

6.

s =
0.003(c − d )

c

f s = s Es
No

?
Yes

f s = fy

7.
As =

C2

f s

B A

′

′

′

′

′
′

′′ ′

′
′

′

′

′

φ

φ

φ

φ

φ
φ

φ

β

ε

ε εε ≥

Figure 3.21 Design of doubly-reinforced beams
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Figure 2.46. If a doubly-reinforced beam is needed i:e:, Mu > ϕMn1ð Þ,
then proceed as follows:

Step 4. For the concrete–tensile steel couple:

As1 ¼ ρtcbd ð3:41Þ

Calculate the difference between Mu and ϕMn1. This difference is the

moment that must be resisted by the compression steel–tensile steel couple.

ϕMn2 ¼ Mu � ϕMn1

Considering the compression steel–tensile steel couple, (see Figure 3.16d)

calculate the compression force, C2, from Equation (3.43).

ϕMn2 ¼ ϕC2z2 ¼ ϕC2 d � d0ð Þ ð3:42Þ

C2 ¼ As
0 fs

0 ¼ ϕMn2

ϕ d � d0ð Þ ð3:43Þ

Step 5. To calculate As
0 we must first determine the value of fs

0, as the compression

strain in the reinforcing may be less than the yield strain. In order to do this,

determine the location of the neutral axis and check the strain level in the

compression steel (see Figure 3.16c):

B
A

fsAs
As2 =

fy

8. As = As1 + As 2

Select the size and number of bars for As and As
from Tables A2.8 and A2.9.

9.
No

d ≥

≤

dassumed
and/or

d d assumed

Yes

End

¢

¢¢

¢ ¢

Figure 3.21 (continued)
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C1 ¼ T1

0:85fc
0ba¼ As1 fy

a¼ As1 fy
0:85fc

0b

c¼ a

β1

Step 6. Calculate εs0 (see Figure 3.16b):

εs0 ¼ 0:003 c� d0ð Þ
c

If εs0 � εy ! fs
0 ¼ fy (i.e., the compression steel has yielded). If, however,

εs0 < εy ! fs
0 ¼ Esεs0.

Step 7. Calculate As
0 from Equation (3.45).

C2 ¼ As
0 fs

0 ð3:44Þ

As
0 ¼ C2

f
0
s

ð3:45Þ

Calculate As2 using Equation (3.46) (see Figure 3.16d).

As
0 fs0 ¼ As2 fy

As2 ¼
As
0 fs0

fy

ð3:46Þ

Step 8. Calculate the total area of steel (As).

As ¼ As1 þ As2 ð3:47Þ

The result enables the selection of the size and number of bars for the

compression steel (As
0 ) and the tension steel (As) using Table A2.9.

Step 9. After the selection of the tensile and compression steel, calculate the actual

values of d and d0, and compare to the assumed values in step 1. If

d� dassumed or d0 � dassumed
0 , the assumptions are conservative. However,

if these relationships are violated by more than ½ in., a recalculation of As

and As
0 , is necessary using the adjusted d and d0 values by repeating the

process from step 2.

Example 3.6 Figure 3.22 shows the floor framing plan and sections of a reinforced

concrete building. The slab is 6 in. thick and there is a superimposed dead load of

25 psf. The floor live load is 125 psf. Assume that the beams are integral with the

columns, fc
0 ¼ 4ksi, fy ¼ 60ksi, and the unit weight of the concrete is 150 pcf. The
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stirrups are #4 bars. Design the reinforcements for the edge beam and the first

interior beam along column lines 1 and 2 (as shown in the sections A-A and B-B of

Figure 3.22) where the maximum negative moments occur. Consider doubly-

reinforced beams if necessary. Use ACI coefficients for the calculation of moments.

Solution Use the flowchart of Figure 3.21.
(a) Edge Beam Along Line 1

Step 1. Find the factored loads on the beam:

40'-0" 40'-0"

20
'-0

"
20

'-0
"

20
'-0

"
20

'-0
"

-
-

-

A B C

Columns
14 in. 14in.

(typical) A

1

A

B

2

B

3

6 in. 6 in.

#4 stirrups 30 in. 33 in. #4 stirrups

14 in. 

Section A-A
14 in. 

Section B-B

Figure 3.22 Floor framing plan and sections for Example 3.6

194 3 Special Topics in Flexure



Weight of slab ¼ 150
6

12

� �
¼ 75psf

Superimposed dead loads ¼ 25psf

Total dead load ¼ 100psf

Live load ¼ 125psf

The uniformly distributed dead and live loads on the beam are (tributary

width¼ 10.58 ft):

wD ¼ 100� 10:58þ 150
14

12
� 24

12

� �	 

=1,000 ¼ 1:41kip=ft

wL ¼ 125� 10:58

1,000
¼ 1:32kip=ft

(Note that live load reduction does not apply for the beams, because the

unit live load is in excess of 100 psf.)

wu ¼ 1:2wD þ 1:6wL ¼ 1:2� 1:41þ 1:6� 1:32 ¼ 3:8kip=ft

Beamclear span ¼ 40ft� 7

12
þ 7

12

� �
¼ 38:8ft

The maximum factored bending moment is next to the first interior

column (negative moment):

Muð Þ� ¼ wu‘
2
n

10
¼ 3:8 38:8ð Þ2

10
¼ 572ft-kip

Assuming y ¼ 2:5 in., the effective depth, d, can be calculated.

dassumed ¼ h � y ¼ 30 in:� 2:5 in: ¼ 27:5 in:

Also,

d0assumed ¼ 2:5 in:

Step 2. Use fc
0 and fy to obtain the maximum tension-controlled steel ratio (ρtc) from

Table A2.3:

fc
0 ¼ 4ksi ! TableA2:3 ! ρtc ¼ 0:0180
fy ¼ 60ksi

The corresponding resistance coefficient, R, from Table A2.6b is:
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ρ ¼ 0:0180 ! TableA2:6b ! R ¼ 818psi

Step 3. Calculate the design resisting moment based on the limit of reinforcement

for tension steel (ρtc):

ϕMn1 ¼ Rbd2

12,000
¼ 818 14ð Þ 27:5ð Þ2

12,000

ϕMn1 ¼ 722 ft-kip > 572 ft-kip

∴ϕMn1 > Mu Design as a singly-reinforced beam:

Because the beam is to be designed as a singly-reinforced section, follow

the flowchart of Figure 2.46. Continuing with step 3 of that flowchart:

R¼ 12,000Mu

bd2

R¼ 12,000� 572

14 27:5ð Þ2 ¼ 648psi

Step 4. From Table A2.6b, obtain the steel ratio (ρ) for this R value:

ρ ¼ 0:0137 > ρmin ¼ 0:0033 Table2:4ð Þ ∴ ok

Step 5. Calculate the required area of the steel (As):

As ¼ ρbd ¼ 0:0137ð Þ 14ð Þ 27:5ð Þ ¼ 5:27 in:2

From Table A2.9, use 6 #9 bars.

Step 6. Calculate the actual d.

/8y = 1.5 in. + 4 in.+1.128/2 in. = 2.56 in.

� � �
Cover #4 stirrup #9 bar

d = 30 – 2.56 = 27.44 in. » dassumed = 27.5 in. \ok

Figure 3.23 shows the final cross section and reinforcement.

(b) Interior Beam Along Line 2

Step 1. Using the total dead and live loads calculated in part (a) and a tributary width

of 20 ft, the uniformly distributed dead load (wD) and live load (wL) are:
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wD ¼ 100� 20þ 150
14

12
� 27

12

� �	 

=1,000 ¼ 2:40kip=ft

wL ¼ 125� 20

1,000
¼ 2:5kip=ft

wu ¼ 1:2wD þ 1:6wL ¼ 1:2� 2:40þ 1:6� 2:5 ¼ 6:88kip=ft

The maximum factored moment is:

Muð Þ� ¼ wu‘
2
n

10
¼ 6:88 38:8ð Þ2

10
¼ 1,036 ft-kip

dassumed ¼ h� y ¼ 33 in:� 2:5 ¼ 30:5 in:

d0assumed ¼ 2:5 in:

Step 2.
fc
0 ¼ 4ksi ! TableA2:3 ! ρtc ¼ 0:0180
fy ¼ 60ksi

ρ ¼ 0:018 ! TableA2:6b ! R ¼ 818psi

Step 3. The limit of resisting moment for a singly-reinforced tension-controlled

section is:

ϕMn1 ¼ Rbd2

12,000
¼ 818 14ð Þ 30:5ð Þ2

12,000
ϕMn1 ¼ 888ft-kip < Mu ¼ 1,036ft-kip

Since ϕMn1<Mu, the beam has to be designed as a doubly-reinforced

section.

y
6 in.

d
#4 Stirrups

30 in.

14 in.

Figure 3.23 Final design for Example 3.6 (edge beam)
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Step 4.
As1 ¼ ρtcbd ¼ 0:018ð Þ 14ð Þ 30:5ð Þ
As1 ¼ 7:69 in:2

ϕMn2 ¼ Mu � ϕMn1

ϕMn2 ¼ 1,036� 888 ¼ 148ft-kip

The compression force to be carried by the compression steel (C2) is:

C2 ¼ ϕMn2

ϕ d � d0ð Þ ¼
148� 12

0:9 30:5� 2:5ð Þ ¼ 70:5kip

Step 5. Determine the depth of the compression zone (a):

a¼ As1fy
0:85fc

0b
¼ 7:69� 60

0:85� 4� 14

a¼ 9:69 in:

c¼ a

β1
¼ 9:69

0:85
¼ 11:4 in:

Step 6. Calculate the strain in the compression steel εs0ð Þ :

εs0 ¼ 0:003 c� d0ð Þ
c

εs0 ¼ 0:003 11:4� 2:5ð Þ
11:4

¼ 0:0023

εy ¼
fy
Es

¼ 60

29,000
¼ 0:00207 < 0:0023

The compression steel will yield, thus

fs
0 ¼ fy ¼ 60ksi

Step 7. Calculate the required compression steel (As
0 ) and the additional tension

steel for the compression steel-tensile steel couple (As2).

As
0 ¼ C2

fs
0 ¼

70:5

60
¼ 1:18 in:2

As2 ¼ fs
0As

0

fy
¼ 60� 1:18

60
¼ 1:18 in:2

Step 8. Calculate the total required tensile steel (As) and select the bars.
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As ¼ As1 þ As2

As ¼ 7:69þ 1:18 ¼ 8:87 in:2

For tensile steel, select 9 #9 bars (As,provided¼ 9 in.2) and for compression

reinforcement As
0 ¼ 1:18 in:2 select 2 #7 bars As, provided

0 ¼ 1:20 in:2
� �

.

Step 9. Calculate the actual values of d and d 0, and compare to the assumed values.

d¼ h� y ¼ 33� 1:5þ 4

8
þ 1:128

2

� �
¼ 30:44 in: ’ dassumed ¼ 30:5 in:

d0 ¼ 1:5þ 4

8
þ 0:875

2
¼ 2:44 in: < dassumed

0 ¼ 2:5 in: ∴ ok

The final design of the beam is shown in Figure 3.24.

3.2.4 Lateral Support for Compression Steel

Any slender compression member is susceptible to buckling. Compression steel is

made up of slender reinforcing bars that can buckle and cause failure of the beam as

shown in Figure 3.25a. To prevent such catastrophic failures, Section 9.7.6.4.1 of

the ACI Code requires that compression reinforcement in beams be enclosed by ties

or stirrups, as shown in Figure 3.25b. The size of the stirrups must be at least #3 for

main bars that are #10 or smaller, and #4 for those that are #11 or larger, according

to Section 9.7.6.4.2 of the ACI Code. The maximum spacing, s, of the stirrups for
this purpose is given by ACI Code, Section 9.7.6.4.3 and is:

smax ¼ min 16db, 48dt, bminf g

where db is the diameter of the main bars, dt is the diameter of the transverse

reinforcement (stirrups), and bmin is the smaller dimension of the beam section.

#4 Stirrups

9 #9
6 in.

27 in.

2 #7

14 in.

Figure 3.24 Final design for Example 3.6 (interior beam)
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3.3 Deflection of Reinforced Concrete Beams

3.3.1 Introduction

The analysis of deflections in reinforced concrete flexural members is a very

complex and inexact process. The difficulty lies in three major uncertainties.

The first is the inelastic behavior of concrete. As previously discussed, concrete

in compression does not follow Hooke’s law: Stresses and strains are not linearly

related, even at relatively low stress values. The inelastic behavior of concrete,

however, may be the least of the difficulties, because the assumption of elastic

response does not lead to very large errors up to working stress or service load stress

levels.

The second uncertainty is much more difficult to get a handle on. In the formulae

for deflection calculations, the product EI is in the denominator. For example, the

elastic deflection formula for a simply-supported beam with uniformly distributed

loads is:

Buckling of compression reinforcement

A

A

a

b

s A-A

Figure 3.25 Lateral support for compression steel in doubly-reinforced beams. (a) Possible

buckling of compression reinforcement without adequate stirrups. (b) Stirrups for doubly-

reinforced beams
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Δ ¼ 5

384

w‘4

EI

The product E� I¼modulus of elasticity�moment of inertia. As mentioned in

Section 1.6 of Chapter 1, the Code gives the assumed modulus of elasticity of

concrete as:

E ¼ 33w1:5
c

ffiffiffiffi
fc
0p

where wc is the weight of the concrete in pounds per cubic ft and fc
0 is the 28-day

cylinder strength of the concrete in psi. (Normal-weight concrete is about 145 pcf.)

The Code formula for the modulus of elasticity is accurate only within a range of

about �15%.

Calculating the moment of inertia is even more problematic. Concrete flexural

members, as discussed earlier, develop cracks while subject to normal service load

conditions. Between the cracked sections and the points where the moments are less

than the cracking moment (Mcr), there is the full concrete section augmented by the

reinforcing. At the cracked sections, however, only a much smaller moment of

inertia is available. Correspondingly, the center region of a beam has considerably

less rigidity as shown in Figure 3.26.

The third major uncertainty is due to the creep behavior of concrete in compres-

sion. The first two uncertainties influence the ambiguity of calculating the so-called

instantaneous deflections, but creep influences long-term deformation (i.e., a grad-

ually increasing deformation under sustained loads). Fortunately, the rate of

increase of deformation dissipates with time, and it virtually stops after about

5 years.

Mcr

Uncracked 
section

Cracked section Uncracked 
section

Figure 3.26 Regions in a simply-supported beam
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3.3.2 The Effective Moment of Inertia (Ie)

The ACI Code simplifies the complex problem posed by uncracked and cracked

sections in different regions of beams by assuming that the effective moment of

inertia (Ie) lies somewhere between the gross section’s moment of inertia (Ig) and
the cracked section’s moment of inertia (Icr). Equation (3.48) [ACI Equation

24.2.3.5a] presents the ACI Code (Section 24.2.3.5) formula to calculate Ie.

Ie ¼ Mcr

Ma

� �3

Ig þ 1� Mcr

Ma

� �3
" #

Icr ð3:48Þ

where

Ig is the moment of inertia of the gross concrete section about its centroidal axis,

neglecting reinforcement

Icr is the moment of inertia of the cracked concrete section

Mcr is the cracking moment

Ma is the actual (unfactored) maximum moment in the member

The ACI Code (Section 24.2.3.6) recommends using an average of values

obtained from Equation (3.48) for the critical positive and negative moment

sections in calculating Ie for continuous beams. This averaged value should be

used in the appropriate deflection formulae for continuous beams.

a. Equation (3.49) gives the gross moment of inertia for a rectangular section.

Ig ¼ bh3

12
ð3:49Þ

Equation (3.50) gives the cracking moment.

Mcr ¼ frIg
yt

ð3:50Þ

where fr is the modulus of rupture given by Equation (3.51) (for values of λ refer
to Section 1.6)

fr ¼ 7:5λ
ffiffiffiffi
fc
0p

ð3:51Þ

and yt is the distance from the section’s centroidal axis (neglecting reinforce-

ment) to the extreme fiber in tension for a rectangular section, as shown in

Figure 3.27:

yt ¼
h

2
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b. For a typical T-beam section like the one shown in Figure 3.28, calculating yt
and the gross moment of inertia requires considerable computational effort. To

ease the difficulty, Table 3.1 is provided, which gives coefficients (Cyt) as a

function of the t/h and bw/b ratios. Then we can calculate the distance from the

section’s centroidal axis to the bottom using Equation (3.52).

yt ¼ Cyth ð3:52Þ

d

yt

bw

h

Figure 3.27 Rectangular section

b

t

d
h

yt

bw

Figure 3.28 T-beam section

Table 3.1 Coefficients (Cyt) to calculate yt for T-beams

bw/b

t/h

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.647 0.713 0.744 0.757 0.760 0.755 0.747 0.735 0.721 0.705

0.2 0.579 0.629 0.659 0.678 0.688 0.691 0.690 0.685 0.677 0.667

0.3 0.550 0.585 0.610 0.627 0.638 0.644 0.646 0.645 0.641 0.635

0.4 0.533 0.559 0.578 0.592 0.602 0.609 0.612 0.613 0.611 0.607

0.5 0.523 0.541 0.555 0.567 0.575 0.581 0.584 0.586 0.585 0.583

0.6 0.515 0.528 0.539 0.547 0.554 0.558 0.561 0.563 0.563 0.563

0.7 0.510 0.518 0.526 0.532 0.536 0.540 0.542 0.544 0.544 0.544

0.8 0.506 0.511 0.515 0.519 0.522 0.524 0.526 0.527 0.528 0.528

0.9 0.503 0.505 0.507 0.509 0.510 0.511 0.512 0.513 0.513 0.513
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The gross moment of inertia of T-beams about the centroidal axis can be

determined with the help of Table 3.2, which gives coefficients (CIg) for differ-

ent ratios of t/h and bw/b. Then we can use Equation (3.53) to calculate the gross
moment of inertia.

Ig ¼ CIg

� �
bh3 ð3:53Þ

Example 3.7 Calculate yt, Ig, fr, and Mcr for a T-beam made of normal-weight

concrete with the following data: b¼ 60 in., bw¼ 12 in., t¼ 4 in., h¼ 24 in., and

fc
0 ¼ 4,000psi:

Solution
bw
b

¼ 12

60
¼ 0:2,

t

h
¼ 4

24
¼ 0:167

From Table 3:1 interpolatingð Þ ! Cyt ¼ 0:665 ! yt ¼ Cyth

¼ 0:665� 24 ¼ 15:96 in:

From Table 3:2 interpolatingð Þ ! CIg ¼ 0:03077 ! Ig ¼ CIgbh
3

¼ 0:03077� 60� 243

¼ 25,522 in:4

The modulus of rupture is (λ¼ 1.0 for normal weight concrete)

fr ¼ 7:5λ
ffiffiffiffi
fc
0p
¼ 7:5� 1:0� ffiffiffiffiffiffiffiffiffiffiffi

4,000
p ¼ 474psi

The cracking moment in the positive moment regions (i.e., tension at the bottom) is:

Mcr ¼ frIg
yt

¼ 474� 25,522

15:96
¼ 757,984 in:-lb ¼ 63:2ft-kip

Table 3.2 Coefficients (CIg) to calculate Ig for T-beams

bw/b

t/h

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.01534 0.01800 0.01896 0.01922 0.01924 0.01930 0.01957 0.02018 0.02123 0.02282

0.2 0.02420 0.02830 0.03044 0.03142 0.03177 0.03183 0.03185 0.03201 0.03246 0.03333

0.3 0.03208 0.03655 0.03925 0.04074 0.04145 0.04171 0.04175 0.04177 0.04194 0.04239

0.4 0.03964 0.04395 0.04677 0.04850 0.04946 0.04989 0.05002 0.05003 0.05008 0.05030

0.5 0.04704 0.05091 0.05359 0.05533 0.05638 0.05693 0.05715 0.05719 0.05720 0.05729

0.6 0.05437 0.05763 0.05996 0.06156 0.06257 0.06315 0.06342 0.06350 0.06351 0.06354

0.7 0.06165 0.06418 0.06605 0.06738 0.06825 0.06878 0.06905 0.06915 0.06917 0.06918

0.8 0.06890 0.07063 0.07195 0.07290 0.07354 0.07395 0.07418 0.07428 0.07430 0.07431

0.9 0.07612 0.07701 0.07769 0.07820 0.07855 0.07878 0.07892 0.07898 0.07900 0.07900
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The cracking moment in the negative moment regions (i.e., tension at the top) is:

Mcr ¼ frIg
h� yt

¼ 474� 25,522

24� 15:96
¼ 1,504,655 in:-lb ¼ 125:4ft-kip

3.3.3 Cracked Section Moment of Inertia (Icr)

Rectangular Section The calculation of the cracked section’s properties is based on

the transformed section concept. This is a useful tool borrowed from the theory of

elasticity. Figure 3.29 shows the strains, the stresses, the internal couple, and the

location of the cracked section’s neutral axis for a rectangular section.

The internal couple’s components can be expressed as:

C ¼ fc kdð Þb
2

¼ Ecεc
kdð Þb
2

and T ¼ As fs ¼ AsEsεs

Substitute the area of steel with a “special kind” of material (As)tr, which can take

tension and has an elastic response similar to that of concrete. The tension force

then can be calculated as:

T ¼ AsEsεs ¼ Asð Þtr
� �

Ecεs

The transformed steel area (As)tr is shown in Figure 3.30 and can be calculated

using Equation (3.54).

Asð Þtr ¼
Es

Ec
As ¼ nAs ð3:54Þ

b
ec fc = Ec ec

kd

C = fc(kd)b/2

d − kd

es fs = Es es T = Asfs

a b c

Figure 3.29 The cracked rectangular section: (a) strains, (b) stresses, and (c) the internal couple
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where n is the modular ratio, which is the ratio of the steel’s and the concrete’s

modulus of elasticity. The value of n¼Es/Ecmay be rounded as shown in Table 3.3.

The centroidal axis (measured as kd from the top) is located where the first moments

of the areas above and below that axis balance each other.

b kdð Þ kd
2

¼ Asð Þtr d � kdð Þ ¼ nAs d � kdð Þ

By substituting As¼ ρbd, the value for k can be calculated using Equation (3.55).

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nρþ nρð Þ2

q
� nρ ð3:55Þ

The location of the neutral axis depends on only two parameters: the value of n that
depends on the concrete’s quality (because the modulus of elasticity of steel, Es, is

relatively constant and equal to 29,000 ksi), and the steel ratio, ρ, employed in the

section.

Then the moment of inertia about the centroidal axis can be expressed as:

Icr ¼ b kdð Þ3
3

þ nρbdð Þ d � kdð Þ2

After some mathematical manipulation, this equation can be written as shown in

Equation (3.56).

Icr ¼ bd3
k3

3
þ nρ 1� kð Þ2

	 

ð3:56Þ

b

kd

(As)tr = nAs

d - kd

Figure 3.30 The transformed section

Table 3.3 Values of n

fc
0 3,000 psi 4,000 psi 5,000 psi

n 9 8 7
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If the expression within the bracket is designated by Cr, the cracked moment of

inertia can be calculated easily from Equation (3.57) using values obtained from

Table 3.4.

Icr ¼ Crbd
3 ð3:57Þ

Table 3.4 lists k and Cr for different values of nρ.

Example 3.8 Given a rectangular section with b¼ 12 in., h¼ 20 in., As¼ three #8

bars, fc
0 ¼ 4,000psi, and fy¼ 60,000 psi; calculate the gross moment of inertia (Ig),

the location of the neutral axis at service load conditions (kd), and the cracked

section moment of inertia (Icr). Assume d¼ h� 2.5 in.¼ 17.5 in.

Table 3.4 Values of k and Cr for rectangular

sections

nρ k Cr

0.010 0.132 0.0083

0.020 0.181 0.0154

0.030 0.217 0.0218

0.040 0.246 0.0277

0.050 0.270 0.0332

0.060 0.292 0.0384

0.070 0.311 0.0433

0.080 0.328 0.0479

0.090 0.344 0.0523

0.100 0.358 0.0565

0.110 0.372 0.0605

0.120 0.384 0.0644

0.130 0.396 0.0681

0.140 0.407 0.0717

0.150 0.418 0.0752

0.160 0.428 0.0785

0.170 0.437 0.0817

0.180 0.446 0.0848

0.190 0.455 0.0878

0.200 0.463 0.0908

0.210 0.471 0.0936

0.220 0.479 0.0964

0.230 0.486 0.0990

0.240 0.493 0.1016

0.250 0.500 0.1042

0.260 0.507 0.1066

0.270 0.513 0.1090

0.280 0.519 0.1114

0.290 0.525 0.1137

0.300 0.531 0.1159
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Solution The gross moment of inertia is:

Ig ¼ bh3

12
¼ 12� 203

12
¼ 8,000 in:4

The steel ratio is:

ρ ¼ As

bd
¼ 2:37

12� 17:5
¼ 0:0113

From Table 3.3:

fc
0 ¼ 4,000psi ! n ¼ 8

Then:

nρ ¼ 8� 0:0113 ¼ 0:0904

From Table 3.4 (interpolating):

k � 0:344 and Cr � 0:0525

Hence, the location of the neutral axis from the top is:

kd ¼ 0:344� 17:5 ¼ 6:02 in:

and the cracked section inertia is:

Icr ¼ Crbd
3 ¼ 0:0525� 12� 17:53 ¼ 3,376 in:4

T-section Figure 3.31 shows a typical T-shaped concrete beam reinforced for

positive moment. The expression for k and the cracked section moment of inertia are

quite complicated for T-beams; however, there are easy solutions with certain

simplifying assumptions. During service load conditions, especially with large

amounts of reinforcing, the neutral axis may fall below the bottom of the flange

(in other words kd> t). Figure 3.32 shows the neutral axis and stresses for the general
case. If kd� t, or nρ is less than the value shown in Table 3.5, the neutral axis is

within the flange and Equation (3.57) and Table 3.4 can be used to calculate Icr.
In the introduction we stated that the calculation of deflections contains many

uncertainties, so the errors introduced with simplifying assumptions are minimal

and do not seriously influence the validity of the results. The main simplification for

calculating deflection for T-beams is that when the neutral axis at service load

conditions falls below the bottom of the flange, the portion of the compressive zone

that is within the web is neglected. As shown in Figure 3.32, this is usually a small
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area combined with small stresses, and so the error is small. Thus, the neutral axis is

located where the first moments of the transformed areas from above and from

below are equal:

bt kd � t

2

� �
¼ nAs d � kdð Þ

Introducing

As ¼ ρbd

b

t

d 
h

As

bw

Figure 3.31 T-beam section

b
fc

t
kd

nAs

d − kd 

fs

bw

Figure 3.32 The transformed section of a T-beam

Table 3.5 Values of nρ that satisfy the condition that kd� t

t/d 0.1 0.2 0.3 0.4 0.5

(nρ)limit 0.0055 0.0250 0.0643 0.1333 0.2500
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then solving for k gives:

k ¼
nρþ 1

2

t

d

� �2
nρþ t

d

� � ð3:58Þ

Table 3.6 provides k values for different nρ and t/d values. When kd> t, or nρ is

greater than the value shown in Table 3.5, the neutral axis is below the flange and

Table 3.6 should be used to find parameters required to calculate Icr. The heavy

horizontal line in each column of Table 3.6 represents the limiting values of

Table 3.5.

Table 3.6 Values of k in T-beams as a function of nρ and t/d

nρ
t/d

0.1 0.2 0.3 0.4 0.5

0.010 0.136

0.020 0.208

0.030 0.269 0.217

0.040 0.321 0.250

0.050 0.367 0.280

0.060 0.406 0.308

0.070 0.441 0.333 0.311

0.080 0.472 0.357 0.329

0.090 0.500 0.379 0.346

0.100 0.525 0.400 0.363

0.110 0.548 0.419 0.378

0.120 0.568 0.438 0.393

0.130 0.587 0.455 0.407

0.140 0.604 0.471 0.420 0.407

0.150 0.620 0.486 0.433 0.418

0.160 0.635 0.500 0.446 0.429

0.170 0.648 0.514 0.457 0.439

0.180 0.661 0.526 0.469 0.448

0.190 0.672 0.538 0.480 0.458

0.200 0.683 0.550 0.490 0.467

0.210 0.694 0.561 0.500 0.475

0.220 0.703 0.571 0.510 0.484

0.230 0.712 0.581 0.519 0.492

0.240 0.721 0.591 0.528 0.500

0.250 0.729 0.600 0.536 0.508 0.500

0.260 0.736 0.609 0.545 0.515 0.507

0.270 0.743 0.617 0.553 0.522 0.513

0.280 0.750 0.625 0.560 0.529 0.519

0.290 0.756 0.633 0.568 0.536 0.525

0.300 0.763 0.640 0.575 0.543 0.531
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The cracked moment of inertia of a T-beam depends on many parameters. Thus,

unlike a simple rectangular section, several tables would be required to give

coefficients for the calculations. This text will rely on the reader to perform the

necessary calculations.

By using the following parameters (Equation (3.59)):

ρ ¼ As

bd
αΔ ¼ t

d
βΔ ¼ bw

b
ð3:59Þ

we can calculate the coefficient CrT using Equation (3.60):

CrT ¼ βΔ
k3

3
þ nρ 1� kð Þ2 þ 1� βΔð Þ α3Δ

3
� α2Δk þ αΔk2

� �
ð3:60Þ

The cracked section moment of inertia for T-beams, where the neutral axis is below

the bottom of the flange, can finally be calculated using Equation (3.61).

Icr ¼ CrTbd
3 ð3:61Þ

Example 3.9 The cross section used in Example 3.7 has 6 #11 bars in two rows,

As¼ 6� 1.56¼ 9.36 in.2. Calculate the cracked section moment of inertia of the

T-beam.

Solution
Calculate the parameters required in Equation (3.60) for CrT. Because there are two

rows of reinforcing, use d¼ h� 4 in.; thus, d¼ 24� 4¼ 20 in.

fc
0 ¼ 4,000 psi ! n ¼ 8 from Table3:3ð Þ
ρ ¼ As

bd
¼ 9:36

60� 20
¼ 0:0078 ! nρ ¼ 8� 0:0078 ¼ 0:0624

αΔ ¼ t

d
¼ 4

20
¼ 0:2 βΔ ¼ bw

b
¼ 12

60
¼ 0:2

Solving from Equation (3.58) or using Table 3.6 (interpolating), k� 0.314.

kd ¼ 0:314� 20 ¼ 6:28 in:

Thus, the neutral axis is below the bottom of the flange.

Hence, from Equation (3.60):

CrT ¼ 0:2� 0:3143

3
þ 0:0624� 1� 0:314ð Þ2 þ 1� 0:2ð Þ

� 0:23

3
� 0:22 � 0:314þ 0:2� 0:3142

� �
¼ 0:0393

Then

Icr ¼ 0:0393� 60� 203 ¼ 18,864 in:4
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3.3.4 Applications

As mentioned earlier, the main application of calculating Icr is to find the effective

moment of inertia (Ie) required for computing deflections. The following examples

will demonstrate this.

Example 3.10 The cross section of the simple span beam shown in Figure 3.33 is

the same as that used in Example 3.8. Calculate the deflection due to the total

service loads. Assume the beam is made of normal-weight concrete with a unit

weight of 145 pcf.

Solution

From Example 3.8:

b¼ 12 in:, h ¼ 20 in:, d ¼ 17:5 in:, As ¼ 2:37 in:2, Ig ¼ 8,000 in:4, Icr ¼ 3,376 in:4

fr ¼ 7:5 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
4,000

p ¼ 474psi

For the given loads, the service load moment is:

Ma ¼ 0:7þ 0:4ð Þ 30ð Þ2
8

¼ 123:75ft-kip

The cracking moment is determined using Equation (3.50):

Mcr ¼ frIg
yt

¼ 474� 8,000

20

2

¼ 379,200 in:-lb ¼ 31:6ft-kip

The effective moment of inertia from Equation (3.48) is:

Ie ¼ Mcr

Ma

� �3

Ig þ 1� Mcr

Ma

� �3
" #

Icr

¼ 31:6

123:75

� �3

� 8,000þ 1� 31:6

123:75

� �3
" #

� 3,376 ¼ 3,453 in:4

This value is only about 2.3% higher than the cracked moment of inertia (Icr).
It hardly seems worth the trouble to go through the calculations.

LL = 0.4 kip/ft
DL = 0.7 kip/ft

30'-0"

Figure 3.33 Loads for Example 3.10
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The modulus of elasticity of the concrete is:

Ec ¼ 33 145ð Þ1:5 ffiffiffiffiffiffiffiffiffiffiffi
4,000

p ¼ 3:64� 106 psi

With these values the instantaneous deflection is:

ΔDLþLL ¼ 5w‘4

384EcIe
¼

5� 1,100

12
� 30� 12ð Þ4

384� 3:64� 106 � 3,453
¼ 1:6 in:

About 1 in. of this deflection is due to dead loads. The rest is due to live loads.

Example 3.11 Given the T-beam used in Examples 3.7 and 3.9, calculate the

instantaneous deflections due to the dead and live loads shown in Figure 3.34.

Solution From dead loads:

MDL ¼ 2:0� 402

8
¼ 400:0ft-kip

From live loads:

MLL ¼ 0:8� 402

8
¼ 160ft-kip

From Example 3.7:

Ig ¼ 25,522 in:4 and Mcr ¼ 63:2ft-kip

From Example 3.9:

Icr ¼ 18,864 in:4

Substituting into Equation (3.48), the effective moment of inertia is:

Ie ¼ 63:2

400

� �3

� 25,522þ 1� 63:2

400

� �3
" #

� 18,864 ¼ 18,890 in:4

LL = 0.8 kip/ft
DL = 2.0 kip/ft

40'-0"

Figure 3.34 Loads for Example 3.11
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Note again that the result is only slightly different from the value of Icr.
fc
0 ¼ 4,000psi, from Example 3.10, E¼ 3.64� 106 psi, and therefore the instanta-

neous deflections are:

ΔDL ¼ 5

384
�

2,000

12
40� 12ð Þ4

3:64� 106 � 18,890
¼ 1:68 in:

ΔLL ¼ 800

2,000
� 1:68 ¼ 0:67 in:

The calculation of the live load deflection (ΔLL not exactly according to the ACI

requirements, as this value has to be computed by subtracting the dead load

deflection from the total dead and live load deflection. This total deflection is

computed using the effective amount of inertia (Ie) based on the applied dead and

live load amounts. The difference in the results, however, is negligible.

3.3.5 Comments on the Effective Moment of Inertia (Ie)

The values of the cracked section moment of inertia and the effective moment of

inertia (as defined by the ACI Code) usually differ only slightly, as observed in

Examples 3.10 and 3.11. To make it easy to understand the reason, we now rewrite

Equation (3.48) as Equation (3.62).

Ie ¼ Mcr

Ma

� �3

Ig þ 1� Mcr

Ma

� �3
" #

Icr ¼ Icr þ Mcr

Ma

� �3

Ig � Icr
� � ð3:62Þ

In other words, Ie is equal to Icr plus a fraction of the difference between Ig and Icr.
Because the cracking moment (Mcr) is usually much smaller than the actual

moment (Ma), their ratio, raised to the third power, is a small number. In building

structures the actual moment is about 65–75% of the ultimate moment; and in most

members the ratio of the cracking moment to the actual moment is less than 0.3

where the required reinforcing is at least two or three times the minimum As,min.

Hence, the multiplier to the (Ig� Icr) is only 0.027 or less. Thus

Ie � Icr þ 0:03 Ig � Icr
� � � Icr

3.3.6 Long-Term Deflections

In addition to instantaneous (or elastic) deflections, designers must deal with

deformations caused by shrinkage and creep. The ACI Code treats these as
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additional deformations obtained by using a few empirically obtained multipliers

that represent “great national average” values.

Accordingly, Equation (3.63) (ACI Equation 24.2.4.1.1) gives us the additional
long-term deflection multiplier (ACI Code, Section 24.2.4.1.1). The additional

long-term deflection is computed by multiplying the immediate deflection by λΔ.

λΔ ¼ ξ
1þ 50ρ0

ð3:63Þ

where ρ0 is the ratio of compressive reinforcing (if any) in positive moment regions

of the beam i:e:, ρ0 ¼ As
0

bd

� �
; and the time-dependent factor ξ for sustained loads is

equal to one of the following:

5 years or more 2.0

12 months 1.4

6 months 1.2

3 months 1.0

Tests have shown that the presence of compression reinforcing steel decreases

the additional long-term deformation. If no reinforcing exists on the compression

side, the deflection due to sustained loads may grow to three times the instantaneous

deflection in 5 years or more. Fortunately the rate of growth dissipates and becomes

very slow after about 3 years. The growth in deflections virtually disappears after

about 5 years.

These additional deformations apply only to the part of the instantaneous

deflections that the structure must sustain on a continuous basis. Thus they apply

to the dead loads and the part of the live loads that is continuously present. For

example, in a residential structure or an office structure, probably less than 15% of

the design live loads are present continuously. In a library stack area or a storage

facility, on the other hand, 75–80% of the design live loads are present all the time;

thus, the live loads in these facilities contribute a great deal to the long-term

deformations as well.

Table 3.7 summarizes deflections that are permissible according to the ACI

Code Section 24.2.2. Note that the main concern is damage to nonstructural

elements that are supported by, or are attached to the concrete structure. These

elements most frequently are walls, or, in some rare occasions, ceilings. So aside

from the fact that some shallow elements with really long spans may also exhibit

undesirable vibrations (very rare in concrete structures), the issue is not the mag-

nitude of the deflection, but what it may cause. For example, when a beam or a slab

deflects, a partition wall may unintentionally become a support to the beam or slab.

If the partition wall cannot take that load without cracking or buckling, then that

partition wall will fail, while nothing terrible happens to the beam or slab whose

action caused the failure. So the designer’s job is to evaluate the consequences

arising from the inevitable deflections and take steps to avoid potential harm to
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neighboring elements. In the example cited above, the easy solution is to connect

the partition wall at its top in such a way that it permits the deflection of the

structure above it and, at the same time, provides lateral support to the wall.

3.4 Reinforcement Development and Splices

3.4.1 Bond Stresses

The integrity of reinforced concrete requires that there be no slippage between the

reinforcement and the surrounding concrete. The whole theory of design is based on

that assumption.

Figure 3.35 shows a small piece of a beam with applied moments. As the

moment changes along the length of a beam, so does the tension in the reinforcing

steel.

When the reinforcing is isolated, as shown in Figure 3.35b, the role of the bond

stresses becomes quite clear. They transfer the difference in the tensile force, ΔT,
from the steel to the concrete surface surrounding the bar, and vice versa.

The magnitude of the bond stresses varies along the length of the beam with the

rate of change in the moments. Where the moments change rapidly, the bond

stresses are high; and moments change rapidly where shears are high. Hence,

where shears are high, the bond stresses also are high.

The use of deformed bars results in three distinct effects that resist relative

slippage between the surface of the reinforcement and the concrete. The first is

chemical adhesion between the two materials. The second is friction on the surface

of the bar. (Reinforcing bars are not smooth; in fact, they have a rather rough

Table 3.7 Maximum permissible computed deflections [ACI Code Table 24.2.2]

Type of member Deflection to be considered
Deflection
limitation

Flat roofs not supporting or attached

to nonstructural elements likely to be

damaged by large deflections

Immediate deflection due to live,

snow or rain loads

‘/180

Floors not supporting or attached to

nonstructural elements likely to be

damaged by large deflections

Immediate deflection due to live load ‘/360

Roof or floor construction supporting

or attached to nonstructural elements

likely to be damaged by large

deflections

That part of the total deflection

occurring after attachment of

nonstructural elements (sum of the

time-dependent deflection due to all

sustained loads and the immediate

deflection due to any additional live

load)

‘/480

Roof or floor construction supporting

or attached to nonstructural elements

not likely to be damaged by large

deflections

‘/240
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surface.) The third comes from the concrete bearing on the ridges of the deforma-

tions. These effects are shown schematically in Figure 3.36.

Research has shown that the following sequence occurs at the bar/concrete

interface. Initially, chemical adhesion bonds the two together. After the adhesion

breaks down, friction and the reactions on the ribs become engaged. These reactions

are at an angle to the axis of the bar, as seen in Figure 3.36b. The angle depends on

the slope of the rib’s surface and the rib configuration. For simplicity ribs are shown

perpendicular to the bar, although they very often have different orientations.

Forces of the same magnitude but with opposite sense act on the surrounding

concrete. The component of these forces that acts parallel with the axis of the bar

counteracts ΔT. The component that is perpendicular to the bar axis, however,

develops outward pressures from the bar to the concrete. Figure 3.37 shows these

two components of the reaction. The perpendicular component, in turn, results in

circumferential tensions in the concrete, similar to those in a pipe under pressure.

The circumferential tensions affect a cylindrical portion of the concrete that surrounds

the bar, as shown in Figure 3.37b. If the bar is too close to the outside of the concrete,

the cylinder is too thin, and cracks may appear on the side or bottom of the beam,

indicating a splitting failure. If bars are too close to each other, the two cylinders

overlap, and a split may develop in a horizontal plane between the bars. Thus, the

closer the bar is to the surface (small concrete cover), or the closer parallel bars are to

each other, the greater is the likelihood of splitting failure due to bond stresses.

Bond stresses change along even a small length of the beam. Research has shown

that bond stresses spike next to flexural cracks (there is no bond across the crack

width), and also where a reinforcing bar terminates. These highly localized peak

M M + ΔM
Bond stresses

T T + ΔT T T + ΔT

Δx

a

b

Figure 3.35 (a) A Δx long portion of a beam and (b) isolated reinforcing as a free body

Chemical adhesion and friction

T T + ΔT T + ΔTT

Reactions from concrete to ribs
a b

Figure 3.36 (a) Adhesion and friction forces on the bar surface and (b) reactions on the

deformation ribs

3.4 Reinforcement Development and Splices 217



bond stresses do not significantly endanger the safety of the structure provided that

an adequate length of bar extends beyond where the bar will be fully stressed to

yield at ultimate strength. This extra bar length is called embedment length and is

defined as the length necessary for the bar to develop its full capacity. Another,

more common name for this length is development length.

3.4.2 Development Length for Bars in Tension

The ACI Code provides two ways to determine the required development length for

deformed bars and deformed wires.

The first method (Section 25.4.2.2 of the ACI Code) is a simplified one, whereas

the second method is more involved. In both of these methods, however, the

formulae include all the important variables that influence the bond strength. The

latter method, which is based on Equation (3.64) (ACI Code, Equation 25.4.2.3a of

Section 25.4.2.3), is the general approach used to calculate the development length.

Table A3.1 provides a description and values of the different factors.

‘d ¼ 3

40

fy

λ
ffiffiffiffi
fc
0p ψtψeψs

cb þ Ktr

db

� �
2
664

3
775db � 12 in: ð3:64Þ

where

cb þ Ktr

db
� 2:5

Table A3.2 summarizes the simplified equations allowed by the ACI for the

calculation of the required development length for reinforcing bars in tension in

Reactions from 
ribs to concrete

Outward (radial) 
component of 

reaction on 
concrete

Cylindrical zones of 
circumferential tensions 

surrounding the bars

Possible fractures

a
b

Figure 3.37 (a) Reactions on the surrounding concrete from the ribs and (b) outward-pointing
radial pressures on the concrete
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lieu of using Equation (3.64). The required development length cannot be less than

12 in. (‘d� 12 in.).

Table A3.3 shows the tensile bar development lengths (‘d) for fy¼ 60 ksi and

fc
0 ¼ 3ksi or 4 ksi. The reinforcing bars are assumed to be uncoated (ψe¼ 1.0) and

not top bars (ψt¼ 1.0), and the concrete is normal weight (λ¼ 1.0).

Example 3.12 Calculate the required development length, ‘d, for a #7

epoxy-coated bottom bar. Assume normal-weight concrete, fc
0 ¼ 4,000psi,

fy¼ 60,000 psi, #3 stirrups, 1.5 in. concrete cover over the stirrups, and a 5 in.

center-to-center spacing of bars.

Solution Both methods will be used here:

(a) Using Equation (3.64):

Step 1. Obtain the factors’ values from Table A3.1.

ψt ¼ 1:0 not a top barð Þ
ψe ¼ 1:5 epoxy coated, cover is less than 3dbð Þ
ψs ¼ 1:0 #7barð Þ
λ¼ 1:0 normal-weight concreteð Þ
cb ¼ 1:5þ 0:375þ 0:875=2 ¼ 2:31 in:,

5 in:

2

� �
¼ 2:31 in:

Assume Ktr¼ 0 (conservative)

Step 2. Check the requirement for Equation (3.64).

cb þ Ktr

db
¼ 2:31þ 0

0:875
¼ 2:64 > 2:5 ∴Use2:5

Step 3. Use values from steps 1 and 2 to calculate the required development

length.

‘d ¼ 3

40

60,000ð Þ1:0� 1:5� 1:0

1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
4,000

p
2:5ð Þ

	 

� 0:875 ¼ 38 in: > 12 in: ∴ ok

(b) Using the simplified expressions of Table A3.2:
The bar diameter is 0.875 in. Because clear cover¼ 1.5 in.> 0.875 and clear

spacing¼ 5� 0.875¼ 4.125 in.> 2(0.875), use condition A from Table A3.3:

‘d ¼ ψe‘d ¼ 1:5 42ð Þ ¼ 63 in: > 12 in: ∴ ok

The simplified expression results in a more conservative development

length.
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3.4.3 Tension Bars Terminated in Hooks

When there is not enough “space” or length to transfer stresses using the entire

development or embedment length (e.g., when a beam terminates into a column),

the ACI Code permits the use of hooks or mechanical anchorage devices, or a

combination of these. The bending radii and the extensions for hooks are standard-

ized by the ACI Code and are shown in Figure 3.38. Equation (3.65) (ACI Code,

Sections 25.4.3.1 and 25.4.3.2) gives the required development length, ‘dh, for bars
in tension when the end is terminated in a hook:

‘dh ¼
fyψeψcψr

50λ
ffiffiffiffi
f
0
c

q
0
B@

1
CAdb � max 8db, 6 in:f g ð3:65Þ

In the above equation, ψe is the reinforcement coating factor, ψc is the cover

factor, ψr is the confining reinforcement factor, and λ is the lightweight aggregate

concrete factor. The recommended values of these factors are shown in Table A3.4.

ACI Code Section 25.4.3.2 allows to use ψc ¼ ψr ¼ 1:0, conservatively.
Bars that are developed by standard hooks at a discontinuous end of a member

must be enclosed within ties or stirrups when both the top (bottom) cover and the

side cover over the bar are less than 2.5 in. The stirrup or tie spacing may not exceed

3db along the development length ‘dh, and the first stirrup or tie must be within 2db

ℓdh ℓdh

D

4db ≥ 2.5 in.

D = 6db  for #3 through #8 bars
= 8db  for #9 through #11 bars
= 10db  for #14 and #18 bars

D

12db

6db  for #3 through #5 bars
12db  for #6 through #8 bars

135

6db  for #3 through #8 bars

D D

D ≥ 4db  for #3 through #5 bars only;
for larger bars D is the same as for
primary reinforcing bars.

a

b

Figure 3.38 ACI Code standard hooks. (a) For primary reinforcement. (b) For stirrups and ties

220 3 Special Topics in Flexure

http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


of the outside of the bend, andψr ¼ 1:0, where db is the diameter of the hooked bar

(ACI Code Section 25.4.3.3).

Example 3.13 Calculate the development length (‘dh) for the bar in Example 3.12

if it is terminated in a standard hook.

Solution From Table A3.4:

ψe ¼ 1:2
ψc ¼ 1:0
ψr ¼ 1:0
λ¼ 1:0

‘dh ¼ 60,000� 1:2� 1:0� 1:0

50 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
4,000

p � 0:875 ¼ 19:9 in: > max 8 0:875ð Þ, 6 in:f g ¼ 7 in:

Example 3.14 Figure 3.39 shows a beam/column connection. The beam clear span

is 30 ft, wu¼ 2.2 kip/ft, Mu¼ 194 kip-ft, and Vu¼ 33 kip at the face of the column.

Calculate the cutoff points for the top bars. fc
0 ¼ 4,000psi, fy¼ 60,000 psi. Assume

uncoated bars with normal-weight concrete.

Solution Check to determine if there is any excess reinforcement:

ρ ¼ As

bd
¼ 3:16

16� 15:5
¼ 0:0127

FromTableA2:6b ! R ¼ 609psi

MR ¼ bd2R=12,000 ¼ 16� 15:52 � 609=12,000 ¼ 195kip-ft

The reinforcement is just adequate; no excess is provided. Calculate the point of

inflection, which is the theoretical point where the negative reinforcing is no longer

19
4 

ki
p-

ft

10
4 

ki
p-

ft

18 in.

ext1
> ℓdh

ext2
4 #8 bars

> ℓd h = 18 in.

d = 15.5 in.

b = 16 in.

3.03 ft

8.03 ft

> ℓd

Figure 3.39 Sketch for Example 3.14
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needed; in other words, where M¼ 0. Cutting a section at the distance x from the

face of column, the equation for moment, Mx, is:

Mx ¼ �Mu þ Vux� wux
2=2 ¼ 0

� 194þ 33x� 2:2x2

2
¼ 0 ! x ¼ 8:03ft

Calculate the theoretical point where two of the four bars may be terminated. With

only 2 #8 bars, ρ¼ 0.0064, R¼ 326 psi, and MR¼ 104 kip-ft. Then

�194þ 33x� 2:2x2

2
¼ �104 ! x ¼ 3:03 ft

Calculate ‘d using the general Equation (3.64). From Table A3.1 the necessary

factors are:

ψt ¼ 1:3 topbarsð Þ
ψe ¼ 1:0 uncoatedbarsð Þ
ψs ¼ 1:0 bars larger than #6ð Þ
λ¼ 1:0 normal-weightconcreteð Þ
cb ¼ 2:5 in:

Ktr ¼ 0 transverse reinforcementspresentð Þ
Then

‘d ¼ 3

40

60,000

1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
4,000

p 1:3� 1:0� 1:0

2:5þ 0

1

� �
2
664

3
7751:0 ¼ 37 in: ¼ 3:08ft

The theoretical cutoff point for two of the bars lies at 3.03 ft from the face of the

column. In addition, the ACI Code requires that bars must extend beyond

the theoretical cutoff point (see the dimension labelled as “ext1” in Figure 3.39)

by the greater of d (the effective depth of the beam) or 12db (ACI Code,

Section 9.7.3.3). Hence,

ext1 � max d, 12dbf g
� max 15:5 in:, 12� 1 in:f g Use15:5 in: ¼ 1:3ft

Thus, the two inner bars can be terminated at 3.03 + 1.3¼ 4.33 ft from the face of

the column.

The other two bars, however, must be extended the dimension shown as “ext2”

in Figure 3.39 according to ACI Code (Section 9.7.3.8.4).
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ext2 � max d, 12db, ‘n=16f g;

where ‘n is the clear (net) span of the beam. The ‘n/16 requirement covers the

uncertainty of the true location of the point of inflection.

ext2 � max 15:5 in:, 12� 1 in:, 30� 12=16f g Use22:5 in: ¼ 1:88 ft

Thus, the two outer bars may be cut off at 8.03 + 1.88¼ 9.91 ft¼ 90-1100 from the

face of the column.

These bars have to be long enough to develop their strength between their cut off

point and the theoretical cutoff point for the first two bars. This length is

9.91� 3.03¼ 6.88 ft, which is considerably greater than the required development

length of 3.08 ft.

If the bars were extended straight into the column, they would not have the

length needed to develop their strength because ‘d¼ 3.08 ft, but the width of the

column is only 18 in. These bars must be bent into the column with a 90� hook, as
shown in Figure 3.39. Considering the factors of Table A3.4, check for the

adequacy of the available length to develop ‘dh.

ψe ¼ 1:0 uncoatedbarsð Þ
ψc ¼ 0:7 sidecover ⩾ 2:5in:with concrete cover ⩾ 2in: beyond the 90-degree hookð Þ
λ¼ 1:0 normal-weightconcreteð Þ

‘dh ¼ 60,000� 1:0� 0:7� 1:0

50 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
4,000

p ¼ 13:3 in: > max 8 1ð Þ, 6 in:f g ¼ 8
00

The anchorage into the column will be satisfactory.

3.4.4 Development Length for Bars in Compression

Bars in compression require considerably less development length than bars in

tension, because there are no tensile cracks in the compression zone to weaken the

bond. In addition, the bars transfer some of their forces to the concrete in

end-bearing. Hooks are useless for bars in compression. Equation (3.66) is used

to compute the compression development length, ‘dc (ACI Code, Section 25.4.9.1):

‘dc ¼ max
fyψr

50λ
ffiffiffiffi
f
0
c

q
0
B@

1
CAdb; 0:0003fyψrdb

8><
>:

9>=
>; � 8 in: ð3:66Þ

where the constant 0.0003 has the unit of in.2/lb. The calculated length (‘dc) may be

multiplied by the reduction factors given in Table A3.5.

Table A3.6 gives the compression bar development length (‘dc) for fy¼ 60 ksi,

and fc
0 ¼ 3�5ksi, or more for λ ¼ ψr ¼ 1:0.
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3.4.5 Splices of Reinforcement

Splices are often needed in construction, either because the required length of a bar

cannot be supplied, or because of practical construction considerations, such as

splicing column reinforcing just above the most recently cast floor.

Splices for #11 or smaller bars may be made either by simple overlap, by butt or

lap welding them together, or by using a proprietary splicing device.

Tension Splices
Lap splices The ACI Code (Section 25.5.2.1) gives the minimum length of lap for

tensile reinforcing as

Class A splice . . . . . . . . .max{1.0 ‘d ; 12 in.}

Class B splice . . . . . . . . .max{1.3 ‘d ; 12 in.}

Generally speaking, Class B splice is required for most cases. Class A splice is

permitted only when both of the following conditions are satisfied:

a. The area of reinforcement provided is at least twice that required by analysis

everywhere along the length of the splice;

b. Only one-half or less of the total reinforcing is spliced within the required lap

length.

Welded splices
Splices may be butt welded or lap welded, as shown in Figure 3.40. The ACI Code

(Section 25.5.7.1) requires that they be able to develop 125% of the yield strength

of the reinforcing. Welding must conform to the Structural Welding Code–
Reinforcing Steel (ANSI/AWS D1.4).

Butt-welded splices are preferred over welded lap splices. In the former the

tensile force travels in a straight path. In the latter there is an eccentricity equal to

the bar diameter. The resulting moment develops forces on the concrete perpen-

dicular to the spliced bar. These forces may result in local cracking along the bars in

the lap zone.

Welded splices are expensive, as they are very labor intensive. Butt-welded bars

usually require extensive preparation of the ends, and lap-welded splices take more

time to weld.

a

b

Figure 3.40 (a) Butt-welded bar and (b) lap-welded bar
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Proprietary mechanical splices Many patented devices are available for

splicing reinforcing bars. Some are internally threaded sleeves into which the

threaded bar ends are screwed from both ends. Others are sleeves that fit around

the bar ends to be spliced; molten metallic filler is poured to provide the necessary

interlock.

Compression Splices
Lap splices The ACI Code (Section 25.5.5.1) defines compression lap splices,

‘sc, as

‘sc ¼ 0:0005fydb � 12 in: for fy � 60,000psi

and

‘sc ¼ 0:0009fy � 24
� �

db � 12 in: for fy > 60,000psi

When f
0
c < 3,000psi, the calculated lap length must be increased by one-third.

Welded splices Welded compression splices are permitted. The rules for the

welding are the same as those for welding tension splices.

Problems

In the following problems, assume concrete is normal-weight unless noted
otherwise.

3.1. Determine the nominal moment capacity, Mn, of the following T-beams. Use

fc
0 ¼ 3,000psi and fy¼ 60,000 psi:

(a) bw¼ 12 in., beff¼ 30 in., hf¼ 4 in., d¼ 21.5 in., and three #10 bars

(b) bw¼ 14 in., beff¼ 36 in., hf¼ 4 in., d¼ 27.5 in., and four #10 bars

(c) bw¼ 16 in., beff¼ 36 in., hf¼ 4 in., d¼ 33.5 in., and five #10 bars

Assume single-layer reinforcement at the bottom of the beams.

3.2. Rework Problem 3.1 assuming the beam is rectangular (i.e., beff¼ bw). How
much does the T-beam nominal moment capacity increase (in percent) as

compared to the rectangular beam assumption for each case?

3.3. Rework Problem 3.1 with fc
0 ¼ 4,000psi. What is the percentage of increase in

Mn for each case?

3.4. Calculate the positive moment capacity, MR, of the T-beam shown below,

which is part of a reinforced concrete floor system with beams having a

clear span of 190-800 and spacing of 80-000 on center. Use fc¼ 4,000psi,

fy¼ 60,000 psi, #4 stirrups and a cover of 1.5 in. Neglect the top bars in

computing the moment capacity.
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6 in.

30 in.

5 #9

16 in.

3.5. The figure below shows a cross section of the interior bay of a floor system.

The beam has a clear span of 240-000. The superimposed dead load is 20 psf.

What is the maximum allowable service live load on the floor in psf based on

the moment capacity of the beam at the midspan? For simplicity assume

the beam is simply-supported. Assume #4 stirrups and 1.5 in. cover. Use

fc
0 ¼ 4,000psi, fy¼ 60,000 psi. Neglect the top bars. Do not consider live

load reduction.

4 in.

2 #11

12 in.

18 in.

10'-0"

2 #11

3.6. Consider the floor system of Problem 3.5 with fc
0 ¼ 4,000psi, fy¼ 60,000 psi,

a superimposed dead load of 25 psf, and a live load of 60 psf. What is the

maximum allowable clear span for the beam? For simplicity assume the beam

is simply-supported. Do not consider live load reduction.

3.7. What are the required areas of reinforcement for the following T-beams? Use

fc
0 ¼ 4,000psi, and fy¼ 60,000 psi.

(a) beff¼ 66 in., bw¼ 12 in., hf¼ 4 in., h¼ 20 in., Mu¼ 200 ft-kip

(b) beff¼ 48 in., bw¼ 12 in., hf¼ 4 in., h¼ 18 in., Mu¼ 150 ft-kip

(c) beff¼ 32 in., bw¼ 10 in., hf¼ 3 in., h¼ 16 in., Mu¼ 100 ft-kip

3.8. Select the reinforcement for the beam of Problem 3.5 if the superimposed

dead load is 40 psf and live load is 40 psf. Assume the beam is singly

reinforced with bottom bars (positive moment). Consider live load reduction.
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3.9. What is the moment capacity, MR, of the doubly-reinforced beam shown

below? Use fy¼ 60,000 psi, #4 stirrups, 1.5 in. cover, and d0 ¼ 2.5 in.

(a) b¼ 12 in., h¼ 24 in., As¼ 3 #9 and, As
0 ¼ 2 #6; fc

0 ¼ 4,000psi

(b) b¼ 12 in., h¼ 30 in., As¼ 4 #9 and, As
0 ¼ 2 #7; fc

0 ¼ 3,000psi

(c) b¼ 16 in., h¼ 34 in., As¼ 5 #10 and, As
0 ¼ 2 #7; fc

0 ¼ 3,000psi

Note: Reinforcements are in single layers.

b

As

h

As

¢

3.10. Calculate the moment capacity, MR, of the rectangular beam shown below.

How much will this capacity increase if 3 #9 bars are added as compression

reinforcement? Assume d0 ¼ 2.5 in., fc
0 ¼ 4,000psi, fy¼ 60,000 psi, and #4

stirrups and a cover of 1.5 in.

32 in.

4 #11

16 in.

3.11. Design a rectangular reinforced concrete beam to resist service moments of

200 ft-kip from dead load (including the beam weight) and 150 ft-kip from

live load. Architectural requirements limit the beam width to 14 in. and the

total depth to 26 in. fc
0 ¼ 3,000psi, and fy¼ 60,000 psi. Assume #3 stirrups

and 1.5 in. cover. Use compression reinforcements if needed.

3.12. Calculate the gross moment of inertia (Ig) and the cracked section moment of

inertia (Icr) for the following rectangular reinforced concrete beam. Use

fc
0 ¼ 4,000psi, and fy¼ 60,000 psi.
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14 in.

#3 @ 12 in.
Stirrups

c/c

24 in.

1.5 in.
Clear cover

4 #9

3.13. Calculate the cracked and effective moments of inertia for the beam of

Problem 3.4 in the positive moment region (tension in the bottom). The

actual service load moment is Ma¼ 500 kip-ft.

3.14. Calculate instantaneous deflections due to the dead and live loads for the

T-beam of Problem 3.5. The floor live load is 100 psf.

3.15. The following rectangular reinforced concrete beam has a width bw¼ 12 in.,

and a total depth h¼ 24 in. It is reinforced with 2 #9 bars and #3@10 in.

c/c stirrups. Use fc
0 ¼ 3ksi, fy¼ 60 ksi, and clear cover¼ 1.5 in. Assume

normal-weight concrete.

Answer the following questions:

(a) Use Table A3.3 to see whether sufficient development length is avail-

able for the 2 #9 bars.

(b) Check to see whether sufficient development length is available if 2 #7

bars were used in lieu of the 2 #9 bars.

(c) Use the simplified formula given in Table A3.2 to see whether sufficient

development length is available for the 2 #9 bars if fc
0 ¼ 5ksi was used

in the beam.

(d) Calculate the required development length for the 2 #9 bars when

Equation (3.64) is used.

2 in.

Point of maximum moment

12 in.

2 #9

24in.

#3@10 in.

5'-6"

Beam Section

3.16. A 6-ft-wide wall footing supports a 12 in. thick concrete wall. fc
0 ¼ 3ksi and

fy¼ 60 ksi. The maximum moment in the footing occurs at the face of the

wall. Concrete is normal weight. Answer the following questions:
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(a) Use the simplified expressions shown in Table A3.2 to determine

whether #6 bars can develop their yield strength at the point of the

maximum moment without hooks at the ends.

(b) Determine whether #6 bars could be used if they have standard hooks at

their ends.

(c) What is the maximum bar size that could be used without hooks at the

ends? Use Equation (3.64).

3 in.

2'-6" 1'-0" 2'-6"

3.17. The reinforced concrete beam shown in the elevation below has a width of

15 in. and a total depth of 24 in. It is subjected to a factored moment of

260 kip-ft at the face of the column. Use fc
0 ¼ 4ksi, fy¼ 60 ksi, #3 stirrups,

and 1.5 in. clear cover. Answer the following questions:

(a) Determine the required development length (‘d) for the 4 #8 epoxy-

coated top bars using the simplified formulae shown in Table A3.2.

Calculate and use the permitted “excess reinforcement factor” (refer to

Table A3.1).

(b) Recalculate the required development length by using Equation (3.64).

Refer to Table A3.1 for definitions of the factors.

4 #8

#3 Stirrups @ 8 in. c/c

24 in.

ℓd
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3.18. Calculate the location (measured from the face of the support) where two of

the 4 #8 bars may be terminated. Use fc
0 ¼ 4ksi, and fy¼ 60 ksi.

wu = 2.5 kip/ft (includes the self-weight) 12 in.

18 in.

4 #8
#3 Stirrups

12'-0"

Self-Experiments

In the following self-experiments, you will learn the behavior of T-beams and

doubly-reinforced beams. Include in the final report all the test details (sizes, time

of day you cast the concrete, amounts of water/cement/aggregate, problems

encountered, etc., with images showing steps of the tests).

Experiment 1

Cut several pieces of Styrofoam in the form of rectangular beams and a slab. Place

the beams and slab on two supports as shown in Figure SE 3.1.

Apply a load (a few pounds) on top of the slab and observe how much the beams

bend. Record the maximum deflection of the beams.

Next, glue the rectangular beams to the slab and repeat the test. How much do

the beams deflect? Compare the maximum deflection between the two cases.

Explain the difference, if any, in the results obtained. What is the importance of

gluing the pieces together?
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Slab

Beam

Loading

Supports

Figure SE 3.1 T-beam test

Experiment 2
In this experiment, make the T-beams of Experiment 1 from concrete. First, build

the forms for the beams and slab. Then, place wires at the bottom of the beams and

slab (with about ¼ in. cover), and place concrete in the form. Make stirrups to hold

the beam wires together as shown in Figure SE 3.2. Record all the different stages

of casting the beams and slab and placing the wires. Record your observations and

any problems encountered.

Stirrups

Main bars

Figure SE 3.2 Reinforced concrete T-beam
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Experiment 3

This experiment demonstrates the behavior of doubly-reinforced beams. Get a

piece of Styrofoam and cut it as a rectangular beam. Make two holes at the bottom

of the beam using a heated wire. Then pass wires through these holes. Place the

beams on two supports and apply a load at the center of beam. Record how much

and the manner in which the beam bends under the load.

Figure SE 3.3 Doubly-reinforced Styrofoam beam

Now, remove the wires and apply some glue to them. Again pass the wires

through the holes and wait for the glue to harden. Load the beam as before and

record how much and the manner in which the beam deflects under the load. Is there

a change in the amount of deflection? Why?

Make two holes at the top of the beam, apply some glue to the two wires, pass the

wires through the holes and wait for the glue to harden. Load the beam as before and

record how much and the manner in which the beam deflects under the load. Do you

notice any differences? Does the addition of top wires help the beam in resisting the

load?

Experiment 4
In this experiment we construct a doubly-reinforced concrete beam. Using wood

and cardboard, make forms for the beam. Place two rows of wires at the top and

bottom and tie them together with smaller-sized wire representing stirrups

according to Figure SE 3.4.
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Record all the different stages of making forms, placing bars, and casting

concrete. Record your observations and any problems encountered.

Figure SE 3.4 Doubly-reinforced concrete beam
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Chapter 4

Shear in Reinforced Concrete Beams

4.1 Introduction

In the classic two-dimensional structural studies of beams typically three separate

internal forces are identified on any selected section. These are the axial force, P,
(tension or compression) that acts along the axis of the member; the shear force, V,
that acts in the plane of the section perpendicular to the axis of the member; and the

bending moment, M (see Figure 4.1).

So far we have treated the bending moments as being the only force acting on a

given section. It is true that the shear is zero where the bending moment is the

largest, and thus it has no influence on the strength of the beam there. But elsewhere

along the length of the element shear has a major effect on resulting tensile stresses.

To fully understand the problem, we briefly review elementary strength of materials

and the analysis of stresses and strains in homogeneous materials.

4.2 Shear in Beams

Figure 4.2 shows a reinforced concrete beam and its shear and moment diagrams

due to some applied load. A small length of the beam, dx, bounded by sections 1 and
2, is selected. The shear and the moment are different at the two respective sections

(i.e., V1>V2 and M1<M2).

The change in the moment equals the area under the shear diagram, and the rate

of change in the moment equals the magnitude of the shear. This is expressed

mathematically as

dM

dx
¼ V or

M2 �M1

dx
¼ V
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The internal couples are substituted for the moments (see Figure 4.3);

(i.e., M1¼ T1z¼C1z and M2¼ T2z¼C2z), therefore T1< T2 because M1<M2.

When a small part of the beam that is below the horizontal section is isolated

(see lower part of Figure 4.3), equilibrium requires that the horizontal force acting

on that section balance the applied loads. The area of that horizontal section is bdx,
and if the stress (i.e., the force per unit area) is designated by v, we can derive

the following relationship:

T2 � T1 ¼ M2

z
�M1

z
¼ dM

z
ð4:1Þ

From equilibrium:

T2 � T1 ¼ vbdx ð4:2Þ

V
M

P

Figure 4.1 Internal forces on a section

1 2

V1

M1

dx

M2

V2

Figure 4.2 Shear and bending moment diagrams on a beam
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Hence:

dM

z
¼ vbdx ð4:3Þ

Rearranging the terms of Equation (4.3):

V ¼ dM

dx
¼ vbz ð4:4Þ

The horizontal shear stress value may then be calculated as

v ¼ V

bz
ð4:5Þ

Figure 4.4 shows an isolated part of the beam in elevation. Inside this portion of

the beam a small 1 in.� 1 in.� 1 in. cube is selected. The shear stresses are

indicated on the elevation of this cube. Previously we showed what causes the

horizontal shears. The horizontal shears form a couple (shown in Figure 4.4 as a

counterclockwise couple). Because a couple can be kept in equilibrium only by

another couple, a clockwise couple must be acting on this cube. The clockwise

couple is furnished by equal-magnitude shears on the vertical sides of the cube.

C1 C2

V2

T2

V1

T1

Horizontal
section

v· b· dx

T1 T2

b

dx

z

Figure 4.3 The internal couples on a short (dx) length of reinforced concrete beam

vv

v

v

Figure 4.4 Shears on a unit-size cube within the beam
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The existence of shears on both the horizontal and vertical sections of a beam is

known as the “duality of shears.” This means that shears of equal magnitude are

always present on both the horizontal and the vertical surfaces of a small cube

inside the beam.

Shears do not cause a problem for concrete. As a matter of fact, concrete is quite

strong in shear. Figure 4.5 shows the cube with the components of the shear stresses

parallel to the diagonals.

In Figure 4.6 we substitute the shears with their components. Then we cut the

cube into two triangular wedges along the diagonal planes. Figure 4.7 shows that

tensile stresses are generated along one of the diagonal faces to maintain equilib-

rium. Figure 4.8 shows a section of the cube along the opposite diagonal. In this

case, compression stresses will exist to maintain the equilibrium. So the conclusion

here is that horizontal and vertical shears cause tension and compression in the

diagonal directions.

By looking at one of the wedges in Figure 4.7 we can derive the magnitude of the

diagonal tension. Because the area of the diagonal plane is
ffiffiffi
2

p
(the cube is

v

v

v

v

1

1

Components of v

Figure 4.5 Resolution of the shears into diagonal components

v
2√

v
2√

v
2√

v
2√

Figure 4.6 The shears substituted by their diagonal components
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1 in.� 1 in.) the magnitude of the diagonal tension is t
ffiffiffi
2

p
, where t is the diagonal

tensile stress. The equilibrium equation for forces along the diagonal is:

t
ffiffiffi
2

p� �
¼ 2

vffiffiffi
2

p
� �

ð4:6Þ

Thus

t ¼ v ð4:7Þ
In other words, the magnitude of the diagonal tensile stresses equals that of the
shear stresses.

We can perform a similar calculation for the wedges shown in Figure 4.8.

The result would show that the magnitude of the compressive stresses on the

diagonal face equals that of the shear stresses.

The above conclusion is valid only on a unit cube that is not subject to axial

stresses, as these do not occur at the neutral axis. Flexural compressive stresses

occur above the neutral axis while below the neutral axis we have flexural tensile

stresses, for the beam shown in Figure 4.2.

Tensile stresses

v
2√

v
2√

v
2√

v
2√

Figure 4.7 Equilibrium on one triangular wedge, resulting in tensile stresses

Compressive stresses

v
2√

v
2√

v
2√

v
2√

Figure 4.8 Equilibrium on the perpendicular triangular wedge, resulting in compressive stresses
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Figure 4.9 shows a cube that is above the neutral axis. This cube, therefore, is

subject to axial compression as well as to shears. Imagine now a series of sections

cut through this cube. These sections are rotated by an angle, ϕ, from the horizontal

section. A detailed mathematical analysis can show that among all the possible

planes there exists a pair of planes, perpendicular to each other, where the resulting

normal stresses are the largest compressions or tensions, respectively. These planes

are called the principal planes. The stresses that act on the planes are the principal
stresses. Figures 4.10 and 4.11 show the orientation of the principal compression

and tensile stresses, respectively, on a section above the neutral axis.

The angle ϕ can be calculated as:

tan 2ϕ ¼ 2v

f
ð4:8Þ

and the principal stresses as:

f 1,2 ¼ 1=2 f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ 4v2

q� �
ð4:9Þ

v

v

v

v

f

f

Figure 4.9 Stresses on a unit cube above the neutral axis

f

Figure 4.10 Orientation of the principal compressions above the neutral axis
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The axial stress below the neutral axis is tension (see Figure 4.12). Thus, the

orientations of the principal tensions will be similar to those shown in Figure 4.13.

Because the magnitudes of the flexural stress and the shearing stress vary along

the beam as well as in relation to their distance from the neutral axis, the orientation

and the magnitude of the principal stresses also vary accordingly. Of the two

principal stresses, the tensile stress is the main concern here, as concrete is weak

in tension. The diagonal tensions, therefore, may tear the beam apart. A potential

crack starts out vertically at the bottom surface (because there is no shear at the

outer edge), then changes orientation gradually as shear is introduced, causing a

change in the principal stress direction. It crosses the neutral axis at 45�, because no
axial forces exist at that location (pure shear), and then flattens out as it invades the

zone of larger compressive stresses. Figure 4.14 shows two such cracks that follow

the principal tensile stresses.

Shear (or, more precisely, diagonal tension) is a very complex problem. Thus a

simplified approach is used in the analysis and design of beams for shear. Although

simplified, the approach has been shown to provide safe and satisfactory design.

Figure 4.11 Orientation of the principal tensions above the neutral axis

f

v

v

v

v

f

Figure 4.12 Stresses on a unit cube below the neutral axis
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4.3 The Design of Shear Reinforcement

The basic concept of shear reinforcement is the same as that of flexural reinforcing.

If cracks begin to open due to lack of tensile strength in the concrete, reinforcement

is needed to transfer the tensile forces across the crack.

Vertical stirrups are used almost exclusively in modern concrete construction

for shear reinforcement in beams (see Figure 4.15). The terminology shear
reinforcement comes from the fact that shear is used as a measure of the diagonal

tension. (To confuse the issue even further, shear reinforcement is often also

referred to as web reinforcement.) Vertical stirrups typically are U-shaped #3

or #4 bars. They surround the tensile reinforcing on the bottom and are anchored

into the compression zone by a hook at each end. (See the beam section

in Figure 4.15).

R

Figure 4.14 Potential cracks perpendicular to the principal tensions

v

v

f

Figure 4.13 Orientation of the principal tensions below the neutral axis
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The relationship between the design resisting shear, VR, and the nominal

resisting shear is:

VR ¼ ϕVn ð4:10aÞ

where ϕ is the strength reduction factor. As discussed in Chapter 2, the ACI Code

uses this factor to account for possible understrength of the materials and construc-

tion inaccuracies. The ϕ factor for shear (ACI Code, Section 21.2.1) is:

ϕ ¼ 0:75 ð4:10bÞ

which is smaller than the value for bending (ϕ¼ 0.90). The main reason for the

difference is that reinforced concrete beams are less ductile in shear than in

bending.

The design principle is to supply a greater strength than the required strength.

Expressed mathematically (Section 9.5.1.1 of the ACI Code):

VR � Vu ð4:11Þ

The left side of the equation, VR, is the design shear strength of the section under
investigation. The right side, Vu, is the demand, or the shear acting on the section.

To describe the Vn, or the nominal strength of the section against shear failure,

Figure 4.15 shows a simple model that has been adapted in lieu of the very complex

interaction of the concrete and the various reinforcements. Other theoretical models

try to provide a practical solution to the problem. The empirical model adapted by

the ACI Code and discussed here is an easy-to-follow representation of the different

components of the available strength.

1. The first component of the model is the shear strength of the concrete section, Vc.
The compression zone provides resistance due to friction and aggregate

Vertical stirrups

Vc

Approximate d

VnVd

Vs

Vertical
stirrup

Stirrup support bar

bw

d

s s

Figure 4.15 Model of shear resistance according to the ACI Code
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interlock. To make calculation easy, the ACI Code relates the value of Vc to an

average shear over the whole working section of the concrete beam (ACI Code,

Equation 22.5.5.1):

Vc ¼ 2λ
ffiffiffiffi
fc
0p
bwd ð4:12Þ

In this expression fc
0 must be entered in psi, and bw and d are in inches. λ is the

light-weight concrete factor, which is equal to 0.75 for concrete made of “all-

light weight” aggregates, and is equal to 0.85 for “sand-light weight” concrete.

It is equal to 1.0 for “normal weight” concrete. The resulting Vc is in pounds.

Tables A4.1a, A4.1b, and A4.1c include Vc for different sizes of beam (bw and h)
and compressive strengths ( fc

0) of normal weight concrete.

2. The second component of the model is the sum of the tensions developed by the

vertical component of the diagonal tensions in the stirrup legs (Vs). All stirrup
legs that cross a potential crack (Figure 4.15 shows three stirrups with two legs

each) will provide this strength. Thus

Vs ¼ n Av fyt

� �
ð4:13Þ

where n is the number of stirrups crossing the potential 45� crack. Because the
stirrups are placed at a spacing of s, and ns is approximately equal to d, we can
calculate the strength, Vs, (ACI Equation 22.5.10.5.3) as:

Vs ¼
Av fytd

s
ð4:14Þ

where

Av¼ sum of the cross sectional areas of the stirrup legs in square inches

s¼ spacing of the stirrups in inches

bw¼width of the web of concrete beams in inches

d¼ distance from the extreme compression fiber to the centroid of the tensile

reinforcement in inches

fyt¼ the specified yield strength of the transverse reinforcing steel (i.e., stirrups)

in ksi or psi (consistent units must be used)

Tables A4.2a and A4.2b show Vs for #3 and #4 stirrups with different s and h,
and fyt¼ 60,000 psi.

3. The third component of the model that provides strength against shear is the

so-called “dowel action.” This results from the vertical shear resistance of

the horizontal reinforcing after the sides of the crack are vertically separated.

The contribution from this source is neglected by the ACI Code.

The final design equation (based on ACI Code Sections 9.5.1.1, 9.5.3.1, and

22.5.1.1) is:
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VR ¼ ϕVn ¼ ϕ Vc þ Vsð Þ � Vu ð4:15Þ

From what was mentioned above, if Vu�ϕVc (ϕVc is the shear that concrete can
carry), theoretically we do not need any stirrups. The ACI Code

(Section 9.6.3.1), however, requires a minimum amount of stirrups where

Vu>ϕVc/2. There are exceptions to this requirement as indicated in Table

9.6.3.1 of the ACI Code. This minimum amount of stirrups (ACI Code

Section 9.6.3.3) is:

Av,min ¼ max 0:75
ffiffiffiffi
fc
0p bws

fyt
,
50bws

fyt

( )
ð4:16Þ

The use of minimum amount of stirrups required by the code prevents

sudden shear failures when inclined cracking occurs. This rule has a few

exceptions, such as for slabs, footings, and concrete joist construction; in these

cases there is a possibility of load sharing between the weak and strong areas, so

no shear reinforcements are needed when Vu�ϕVc (more on these topics in

Chapters 6 and 7). In any case, the ACI Code requires no shear reinforcements

where Vu�ϕVc /2 in reinforced concrete beams.

In general, therefore, a reinforced concrete beam has three possibilities

(or zones) when designing for stirrups. Figure 4.16 shows these zones.

Note that design of beams for shear involves finding the spacing of stirrups

because almost all construction uses the same size stirrups for the entire beam.

The spacing is changed based on the level of shear force the stirrups have

to resist.

ZoneZone

(Shear diagram)

Zone

123

d

d

2 in. or 3 in.

Vu

wu
Critical section

Vc

Vc /2

–

Figure 4.16 Different zones for stirrup spacing
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4.3.1 Zone 1 (Vu�ϕVc /2)

No stirrups are needed where Vu�ϕVc/2. For a symmetrically loaded beam this

condition usually occurs in a region close to the center of the beam, as shown in

Figure 4.16. Although the ACI Code does not require any stirrups in this zone, a few

stirrups are used to hold the main reinforcements in place.

4.3.2 Zone 2 (ϕVc/2<Vu�ϕVc)

This is a zone where theoretically no stirrups would be needed. The ACI Code,

however, requires a minimum area of stirrups. Because our objective here is to

determine the stirrup spacings, we rewrite Equation (4.16) to obtain the maximum

allowable spacing (s1) in terms of the selected stirrup size, the width of the beam’s

web, and the materials used in the beam.

s1 ¼ min
Av fyt

0:75
ffiffiffiffi
fc
0p
bw

,
Av fyt
50bw

( )
ð4:17Þ

The units used for this empirical equation are as follows: Av in:2ð Þ, fyt psið Þ,
fc
0 psið Þ, bw in:ð Þ, and s1 (in.).
The ACI Code (Section 9.7.6.2.2) places a further restriction on the maximum

allowable spacing in this zone (smax):

smax ¼ min s1,
d

2
, 24 in:

� �
ð4:18Þ

This requirement ensures that each 45� potential crack is intercepted by at least one
stirrup (Figure 4.15). Therefore, Equation (4.18) determines the stirrup spacing in

Zone 2 of the beam.

4.3.3 Zone 3 (ϕVc<Vu)

This is the only part of the beam for which we need to design the stirrups (i.e., this

zone may require closer stirrup spacing than the allowable maximum found in

Equation (4.18)). To determine the spacing of the stirrups in this zone, we need to

calculate how much shear the stirrups must carry (Vs). This is accomplished by

rearranging Equation (4.15):
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Vu ¼ ϕ Vc þ Vsð Þ

Vs ¼ Vu
ϕ
� Vc

ð4:19Þ

The first term on the right side of this equation
Vu
ϕ

� �
is the total factored shear on

the beam at the section under consideration magnified by the strength reduction

factor in the denominator and the second term (Vc) is the shear to be carried by the

concrete. The remainder is to be resisted by the stirrups (Vs). Rearranging

Equation (4.14) to find the stirrup spacing:

s ¼ Av fyt d

Vs
ð4:20Þ

Usually Av, fyt, and d are the same for the entire beam. Therefore, the stirrup spacing

(s) changes with the shear to be resisted by the stirrups (Vs). Clearly the stirrup

spacing is smaller near the supports as Vs is larger. The calculated stirrup spacing

increases continuously as we move toward the midspan and the shear diminishes.

Although theoretically this is true, in reality only a few (two or three) different

spacings are used. While we could save a few stirrups by continuously varying the

stirrup spacings, this complicates construction, as locating and placing the stirrups

become difficult. As Figure 4.16 shows, the first stirrup is usually placed 2 in. or

3 in. from the face of the support.

Because stirrups cannot resist shear unless they cross an inclined crack, the

ACI Code (Section 9.7.6.2.2) limits the maximum stirrup spacing. The maximum

allowable stirrup spacing is:

if Vs � 4
ffiffiffiffi
fc
0p
bwd or Vs � 2Vcð Þ ! smax ¼ min s1,

d

2
, 24 in:

� �

if Vs > 4
ffiffiffiffi
fc
0p
bwd or Vs > 2Vcð Þ ! smax ¼ min s1,

d

4
, 12 in:

� � ð4:21Þ

The first part of Equation (4.21) limits the stirrup spacing such that each

potential 45� crack will be intercepted by at least one stirrup (Figure 4.15).

Where the shears are so large that the stirrups are required to carry Vs> 2Vc, the
maximum allowable spacing is limited to that shown in the second part of

Equation (4.21). This is necessary to provide better control of the width of the

potential inclined cracks.

Example 4.1 Determine the total resisting shear, VR, for the beam shown in

Figure 4.17. The shear reinforcements provided are #3 stirrups @ 8 in. on center.

Assume fc
0 ¼ 4,000psi and fyt¼ 60,000 psi. Concrete is normal weight.

4.3 The Design of Shear Reinforcement 247



Solution

λ¼ 1.0 (normal weight concrete)

From Equation (4.12)

Vc ¼ 2� 1:0� ffiffiffiffiffiffiffiffiffiffiffi
4,000

p � 12� 18:5 ¼ 28,081 lb ¼ 28:1kip

From Equation (4.14)

Vs ¼ 2� 0:11ð Þ � 60,000� 18:5

8
¼ 30,524 lb ¼ 30:5kip

From Equation (4.15)

VR ¼ ϕVn ¼ 0:75 28,081þ 30,524ð Þ ¼ 43,954 lb ¼ 43:95kip

Solution Using Tables
From Table A4.1b (interpolating for h¼ 21 in.)

Vc ¼ 28:1kip

From Table A4.2a (interpolating for h¼ 21 in.)

Vs ¼ 30:5kip

Thus

VR ¼ ϕVn ¼ 0:75 28:1þ 30:5ð Þ ¼ 43:95kip

Example 4.2 A reinforced concrete beam section with a width, bw¼ 15 in.,

and, a total depth, h¼ 24 in., is subjected to a shear force, Vu ¼ 60kip. Find the

spacing of #3 stirrups at the section. fc
0 ¼ 3,000psi, and fyt¼ 60,000 psi. Concrete is

normal weight.

bw  12 in.

d  18.5 in.
h  21 in.

Figure 4.17 Section in Example 4.1
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Solution
dest ¼ h� 2:5 ¼ 24� 2:5 ¼ 21:5 in:

λ¼ 1.0 (normal weight concrete)

From Equation (4.12)

Vc ¼ 2� 1:0� ffiffiffiffiffiffiffiffiffiffiffi
3,000

p � 15� 21:5

1,000
¼ 35:3kip

From Equation (4.19)

Vs ¼ Vu
ϕ
� Vc ¼ 60

0:75
� 35:3 ¼ 44:7kip

From Equation (4.20)

s ¼ 2� 0:11ð Þ � 60� 21:5

44:7
¼ 6:35 in:

Rounding down to the nearest ½ in., we use stirrups at 6 in. on centers at this

section.

Solution Using Tables
From Table A4.1a (interpolating for bw¼ 15 in.)

Vc ¼ 35:3kip

Then

Vs ¼ 60

0:75
� 35:3 ¼ 44:7kip

Entering into Table A4.2a with h¼ 24 in., #3 stirrups with two legs at 6 in. spacing

will provide Vs ¼ 47:3kip, which is slightly more than we need.

4.4 Additional Requirements for the Design of Shear
Reinforcing

The following are additional ACI requirements:

(a) The value of
ffiffiffiffi
fc
0p
must be less than 100 psi (ACI Code, Section 22.5.3.1)

unless minimum web reinforcement is used in the flexural member. This

limitation has been placed because of the limited amount of experience with

the use of concrete strength in excess of fc
0 > 10,000psi.
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(b) The design yield strength of the shear reinforcing bars is limited to 60,000 psi

(ACI Code, Section 20.2.2.4). This requirement limits the crack width. The

limit is 80,000 psi when welded wire reinforcement is used as shear

reinforcing.

(c) The value of Vs is limited to 8
ffiffiffiffi
fc
0p
bwd (ACI Code, Section 22.5.1.2). This

provision effectively limits the maximum value of Vn to 10
ffiffiffiffi
fc
0p
bwd.

Stating it differently, Vs may not exceed 4Vc (Vs� 4Vc). Thus, if Vu is too

large to satisfy this requirement, the concrete section must be enlarged by

making the beam wider or deeper. Note that Vs,max for a beam usually is at its

critical section Vs
� �

.

(d) The critical section for stirrup design (within zone 3) may be taken at distance

d from the face of the support in beams and joists, when the loads are applied

onto the top of the beam. In the portion between the face of the support and the
critical section the support reaction introduces vertical compressions into the

end zone of the member, which significantly increases the shear strength in

that region. Sections located between the face of the support and the critical

section may be designed for Vu at the critical section Vu
� �

. This means that for

design purposes the shear force from the critical section to the face of the

support is taken as,Vu, as shown in Figure 4.18. Note that we use the “bar” here

to indicate the value at the critical section (i.e., Vu,Vs and s represent the total
shear at the critical section, shear to be resisted by the stirrups at the critical

section, and the required stirrup spacing at the critical section, respectively).

(e) Limit the stirrups’ size to #3, #4, or #5, as these bar sizes are easier to bend.

(This is only a recommendation, not an ACI requirement.) Also, the bend radii

at the corners of the stirrups require a minimum beam width for each size of

stirrup, as shown in Table 4.1.

Critical section

d

Figure 4.18 Location of the critical section

Table 4.1 Recommended

minimum beam width to

accommodate different

stirrup sizes

Stirrup size Minimum beam width (bw) (in.)

#3 10

#4 12

#5 14
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Sometimes, to avoid very small (less than 3 in.) required spacing, the designer

may employ four, six, or more legs for stirrups. This increases Av in Equation (4.20),

and consequently the calculated spacing, s. The use of multiple legs is also

recommended in wide beams, as shown in Figure 4.19.

4.5 Stirrup Design Procedure

The steps for designing stirrups are summarized in Figure 4.20 and given below:

Step 1. Determine the distribution of shear along the beam to calculate the stirrup

spacing. (You can do this by drawing the shear force diagram.) Use either

the beam clear span or the center-to-center span. If you use the center-to-

center span, include half the support width when locating the critical

section.

Step 2. Determine the shear at the critical section Vu
� �

. As mentioned in Section 4.4,

the critical section is at a distance d from the face of the support. Vu is the
largest shear acting on the beam that needs to be considered.

Step 3. Calculate the shear capacity of concrete (Vc):

Two legs
Av  2Ast

bw  24 in.

Four legs
Av  4Ast

24 in. bw  48 in.

Six legs
Av  6Ast

bw 48 in.

Figure 4.19 Recommended number of legs of stirrups based on beam width.

Note: Ast¼ area of each leg of the stirrups
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Draw Vu diagram.

Section size is
inadequate:

revise.

No stirrups are needed.

Place stirrups at
smax up to the location of 

Vc 2

8.

Vs V
^

s@smax?

Design of Shear Reinforcements
 in Beams

3.
Vc  2λ√fc bwd

4.

Vs 4Vc?
Vu Vc

0.75

5.

Determine the location of 
on the Vu diagram.

If Vs  2Vc :

smax  min s1,    , 12 in.d
4

If Vs  2Vc :

smax  min s1,    , 24 in.d
2

Vu ?
Vc
2

 Calculate the stirrup spacings:
Av fyt d

Vs
s

Av fyt d

s
Vs

Vu (Vc Vs)

No

No

No

Yes

Yes

Yes

 Calculate Vu (shear at the critical section).

s1  min                    ,
7.

6.

Av fyt

smax  min s1,    , 24 in.d
2

0.75 fcbw 50bw

Av fyt

1.

2.

9.

Vc 2

Figure 4.20 Flowchart for stirrup design
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Vc ¼ 2λ
ffiffiffiffi
fc
0p
bwd

λ depends on the unit weight of concrete. If concrete is normal-weight

(145–150 pcf), λ¼ 1.0. For concrete made of “all-light weight” aggregates,

λ¼ 0.75, and for “sand-light weight”, λ¼ 0.85.

Step 4. Calculate the shear to be carried by the stirrups at the critical section (Vs). If

Vs > 4Vc, we have to increase the beam section size, and repeat the proce-

dure. Otherwise, the beam size is ok.

Step 5. If Vu � ϕVc
2
, the beam does not require any stirrups to resist the shear force.

If Vu � ϕVc
2
, we need at least a minimum area of stirrups.

Step 6. Determine the locations of ϕVc /2 on the Vu diagram to identify the location

where no stirrups are needed.

Step 7. Determine the maximum spacing of the stirrups:

s1 ¼ min
Av fyt

0:75
ffiffiffiffi
fc
0p
bw

,
Av fyt
50bw

( )

smax ¼ min s1,
d

2
, 24 in:

� �

Step 8. Calculate V̂s ¼
Av fytd

smax

. If Vs � V̂s, only minimum stirrups (at smax spacing)

are required. Place them up to the point of ϕVc/2. If Vs > V̂s , go to step 9.

Step 9. Calculate the stirrup spacing:

s ¼ Av fytd

Vs

Check for the maximum allowable spacing:

smax ¼ min s1,
d

2
, 24 in:

� �
if Vs � 2Vc

smax ¼ min s1,
d

2
, 12 in:

� �
if Vs > 2Vc

This calculation may need to be repeated at different locations. Use one or

two different spacings, at most, in this zone.

Example 4.3 Design the stirrups for the beam shown in Figure 4.21. The columns

are 15 in.� 15 in. The load includes the beam’s self-weight. Use fc
0 ¼ 3,000psi and

fyt¼ 60,000 psi. Concrete is normal weight.
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Solution

Step 1. Draw the Vu diagram:

R ¼ wu‘

2
¼ 5 30ð Þ

2
¼ 75kip

See the shear force diagram in Figure 4.21.

Step 2. Calculate Vu:
The estimated effective depth (d) is:

d ¼ h� 2:5 ¼ 24� 2:5 ¼ 21:5 in:

The critical section is at the distance d from the column face. Thus, from

the column centerline this distance is:

x ¼ 15

2
þ 21:5 ¼ 29 in: ¼ 2:42ft

Because the factored shear decreases from the support to the midspan

(Figure 4.21) at a rate of 5 kip/ft (the slope of the shear is the load), the

shear at the critical section Vu
� �

is:

Vu ¼ 75� 5 2:42ð Þ ¼ 62:9kip

Step 3. λ¼ 1.0 (normal weight concrete)

Vc ¼ 2λ
ffiffiffiffi
fc
0p
bwd ¼ 2 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi

3,000
p

12ð Þ 21:5ð Þ=1,000 ¼ 28:3kip

30'-0"

75 kip

wu 5 kip/ft

Vu 62.9 kip

Vc/2 10.6 kip

2.42 ft

12.9 ft

12 in.

24 in.

Beam section–

(Vu)

Figure 4.21 Elevation of beam in Example 4.3
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Step 4.

ϕ ¼ 0:75

Vs ¼ Vu
ϕ
� Vc ¼ 62:9

0:75
� 28:3 ¼ 55:6kip

4Vc ¼ 4 28:3ð Þ ¼ 113:2kip > 55:6kip ∴ ok

The beam size is adequate.

Step 5. Determine whether stirrups are required:

ϕVc
2

¼ 0:75 28:3ð Þ
2

¼ 10:6kip < Vu ¼ 62:9kip

∴ Stirrupsareneeded!

Step 6. Determine the location of ϕVc/2 on the Vu diagram.

Write the equation for the shear force diagram:

Vu ¼ 75� 5x

Note that x in this equation is measured from the centerline of the

column.

Vu ¼ ϕVc
2

75� 5x¼ 10:6

x¼ 12:9 ft

Therefore, from 12.9 ft to the center of the beam (i.e., x¼ 15 ft), no

stirrups are needed because Vu � ϕVc
2

in this zone.

Step 7. Determine the maximum allowable stirrup spacing:

Using #3 stirrups with two legs (bw¼ 12 in., see Figure 4.19)!
Av¼ 2(0.11)¼ 0.22 in.2

s1 ¼ min
Av fyt

0:75
ffiffiffiffi
fc
0p
bw

,
Av fyt
50bw

( )

s1 ¼ min
0:22 60,000ð Þ

0:75
ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
12ð Þ ,

0:22 60,000ð Þ
50 12ð Þ

� �
s1 ¼ min 26:8 in:, 22 in:f g ¼ 22 in:

smax ¼ min s1,
d

2
, 24 in:

� �

smax ¼ min 22 in:,
21:5 in:

2
, 24 in:

� �
smax ¼ 10:5 in: rounded down to closest 1=2 in:

� �
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Step 8. Determine whether the beam needs more than minimum stirrups. With #3

stirrups at smax¼ 10.5 in.

V̂s ¼
Av fytd

smax

¼ 0:22ð Þ 60ð Þ 21:5ð Þ
10:5

¼ 27:0kip < Vs ¼ 55:6kip

∴ Needs more than the minimum stirrups!

Step 9. Calculate the spacing of the stirrups:

The smallest required spacing of stirrups is at the critical section sð Þ,
where Vs ¼ 55:6kip (step 4):

s ¼ Av fytd

Vs
¼ 0:22 60ð Þ 21:5ð Þ

55:6
¼ 5:1 in:

We round the spacing down to the closest ½ in., so s ¼ 5 in:

Because Vs ¼ 55:6kip < 2Vc ¼ 2 28:3ð Þ ¼ 56:6kip, the maximum

allowable stirrup spacing is:

smax ¼ min s1,
d

2
, 24 in:

� �

smax ¼ min 22,
21:5

2
, 24

� �
¼ 10:5 in:

At this point we have calculated two stirrup spacings ( s ¼ 5 in:, and

smax¼ 10.5 in.). These spacings are acceptable, so we may just use them. But if

we want to save a few stirrups, we could select another spacing between these two

values (say, s¼ 8 in.).

Then we would have three different stirrup spacings, s¼ 5 in., 8 in., and 10.5 in.

The question now is, where do these spacings start and where do they end? The first

stirrup starts 2 in. from the face of the support, and then the stirrups are placed at

s ¼ 5 in: This spacing ends where the 8 in. spacing starts. Use Equations (4.14) and

(4.15) with s¼ 8 in.:

Vs ¼
Avfytd

s
¼ 0:22 60ð Þ 21:5ð Þ

8
¼ 35:5kip

Vu ¼ ϕ Vc þ Vsð Þ ¼ 0:75 28:3þ 35:5ð Þ ¼ 47:9kip

The s¼ 8 in. starts (or s¼ 5 in. ends) where Vu¼ 47.9 kip. Determine the location of

this point on the shear diagram:

75� 5x¼ 47:9

x¼ 5:42 ft

from the center line of the column.

Therefore, the number of 5 in. spacings (N ) is:
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To column face   First spacing 

5.42(12) − 7.5 − 2
N =

5
= 11.1

We conservatively round this spacing up to N¼ 12 or 12 @ 5 in.

Next we need to determine where s¼ 8 in. ends or the maximum allowable

spacing (smax¼ 10.5 in.) begins. To locate this point, use Equations (4.14) and

(4.15) with s¼ 10.5 in.:

Vs ¼
Avfytd

s
¼ 0:22 60ð Þ 21:5ð Þ

10:5
¼ 27kip

Vu ¼ ϕ Vc þ Vsð Þ ¼ 0:75 28:3þ 27ð Þ ¼ 41:5kip

75� 5x ¼ 41:5

x ¼ 6:7ft

This is the end point of s¼ 8 in. The number of 8 in. spacings (N ) is:

N ¼ 6:7 12ð Þ � 7:5þ 2þ 12� 5ð Þ
8

¼ 1:4 ∴ 2 @ 8in:

Finally, we will determine the portion of the beam in which a stirrup spacing of

10.5 in. can be used. Because 10.5 in. is the maximum spacing and no stirrup is

needed after that, the end point is x¼ 12.9 ft (found in step 6 for Vu¼ϕVc /2). The
number of 10.5 in. spacings is:

N ¼ 12:9 12ð Þ � 7:5þ 2þ 12� 5þ 2� 8ð Þ
10:5

¼ 6:6 ∴ 7 @ 10:5 in:

Therefore, the stirrup spacing from each end of the beam is 1 @ 2 in. + 12 @ 5 in.

+ 2 @ 8 in. + 7 @ 10.5 in. Figure 4.22 shows the resulting stirrup layout.

12@5 in.2"

Column center line

2@8 in.

15'-0"

7@10.5 in.

Figure 4.22 Resulting stirrup layout for Example 4.3
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Example 4.4 Design stirrups for the floor beam shown in Figure 4.23. The

loads include the beam’s self-weight. The columns are 15 in.� 15 in. Use

fc
0 ¼ 4,000psi, and fyt¼ 60,000 psi. Assume that the minimum cover is 1.5 in.

Concrete is normal weight.

Solution

Step 1. Draw the Vu diagram (see Figure 4.24):

‘n ¼ 15� 15

12

¼ 13:75ft

R¼ 75� 2þ 1� 15

2
¼ 82:5kip

Alternatively, we can use the clear span.

The reaction at the face of column is:

R ¼ 75� 2þ 1� 13:75

2
¼ 81:88kip

Step 2. Calculate Vu:

d ¼ h� 1:5þ 3

8
þ 1:27=2

� �
¼ 27� 2:5 ¼ 24:5 in:

Section A-A

5'-0"

a

b

5'-0"

A

A

15'-0"

Elevation

5'-0"

wu  1.0 kip/ftPu  75 kipPu  75 kip

2 #10

15 in.

27 in.

Figure 4.23 Elevation and section of beam in Example 4.4. (a) Elevation. (b) Section A-A

258 4 Shear in Reinforced Concrete Beams



The location of the critical section from the column center is:

x¼ 15=2þ 24:5 ¼ 32 in:=12 ¼ 2:67ft

Vu ¼ 82:5� 1:0 2:67ð Þ ¼ 79:8kip

The shear at the critical section using the clear span is:

Vu ¼ 81:88� 1:0 24:5=12ð Þ ¼ 79:8kip

As expected, the shear at the critical section, Vu, is the same when using

the center-to-center span or clear span.

Step 3. Calculate the concrete resisting shear, Vc:
λ¼ 1.0 (normal weight concrete)

Vc ¼ 2λ
ffiffiffiffi
fc
0p
bwd ¼ 2 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

4,000
p

15ð Þ 24:5ð Þ=1,000 ¼ 46:5kip

Step 4. Calculate the shear to be resisted by the stirrups (determine whether the

beam size is adequate):

Vs ¼ Vu
ϕ
� Vc ¼ 79:8

0:75
� 46:5 ¼ 59:9kip

4Vc ¼ 4 46:5ð Þ ¼ 186kip > 59:9kip ∴ ok

The beam size is adequate.

5'-0" 5'-0"

1.0 kip/ft

Critical section

R

82.5

2.5

x

77.5 kip

5'-0"

Vu  79.8 kip

(Vu)

x  2.67 ft

75 kip 75 kip

 17.4 kipVc/ 2

Figure 4.24 Shear force diagram for Example 4.4

4.5 Stirrup Design Procedure 259



Step 5. Determine whether stirrups are required.

ϕVc
2

¼ 0:75 46:5ð Þ
2

¼ 17:4kip < Vu ¼ 79:8kip

∴ Stirrups are required:

Step 6. Locate ϕVc/2 (17.4 kip) on the Vu diagram. This point lies on the vertical

part of the shear force diagram (Figure 4.24). Determine the stirrup spacing

for the first 5 ft of beam from each end; the 5 ft at the center do not require

any stirrups for shear.

Step 7. Calculate the maximum stirrup spacing:

Use #3 stirrups with two legs (bw¼ 15 in., see Figure 4.19),

Av¼ 2� 0.11¼ 0.22 in.2

s1 ¼ min
Av fyt

0:75
ffiffiffiffi
fc
0p
bw

,
Av fyt
50bw

( )

s1 ¼ min
0:22 60,000ð Þ

0:75
ffiffiffiffiffiffiffiffiffiffiffi
4,000

p
15ð Þ ,

0:22 60,000ð Þ
50 15ð Þ

� �

s1 ¼ min 18:6; 17:6f g ¼ 17:6 in:

The maximum allowable spacing is:

smax ¼ min s1,
d

2
, 24 in:

� �

smax ¼ min 17:6 in:,
24:5 in:

2
, 24 in:

� �
smax ¼ 12 in:

Step 8. Determine whether more than the minimum amount of stirrups

(or maximum stirrup spacing) are required.

V̂s ¼
Av fyd

smax

¼ 0:22� 60� 24:5

12

¼ 27:0kip < Vs ¼ 59:9kip

∴ Needs more than the minimum amount of stirrups. (or stirrups to be

closer than the maximum allowable spacing.)
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Step 9. Calculate the stirrup spacing.

The stirrup spacing at the critical section sð Þ is:

s ¼ Av fytd

Vs
¼ 0:22 60ð Þ 24:5ð Þ

59:9
¼ 5:4 in: ∴ s ¼ 5 in:

Find the stirrup spacing at the end of this zone, where Vu¼ 77.5 kip:

Vs ¼ Vu
ϕ
� Vc ¼ 77:5

0:75
� 46:5 ¼ 56:8kip

s¼ Av fytd

Vs
¼ 0:22 60ð Þ 24:5ð Þ

56:8
¼ 5:7 in:

Because Vs ¼ 59:9kip < 2Vc ¼ 2 46:5ð Þ ¼ 93kip the maximum stirrup

spacing is the same value found in step 7.

smax ¼ 12:0 in: > s ¼ 5 in: ∴ ok

Because the portion of the beam to have s ¼ 5 in: is a short distance

(5 ft), we use 5 in. spacing for the entire 5 ft. The number of spacings (N ) is:

N ¼ 5 12ð Þ � 7:5þ 2ð Þ
5

¼ 10:1 ∴ Use 11@5in:

Figure 4.25 shows the stirrup layout. As a practical matter, we usually

place a few stirrups where stirrups are not required to hold the main

reinforcements in place.

11@5 in.

7'-6"

2 in.

Figure 4.25 Stirrup layout for Example 4.4
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4.6 Additional Formulas to Calculate the Shear Strength
of a Beam Section

4.6.1 Beams Subject to Flexure and Shear Only

Equation (4.12) Vc ¼ 2λ
ffiffiffiffi
fc
0p
bwd

� �
is the simplest expression that the ACI Code

permits in calculating Vc. This equation neglects the influence of the longitudinal

reinforcing, ρw ¼ As

bwd
and the ratio

Vud

Mu
both of which affect the shear strength. If

the designer wishes to take the contribution of these parameters into account

as well, then the following equation (ACI Code, Table 22.5.5.1) may be used

(ACI Code, Section 22.5.5.1):

Vc ¼ 1:9λ
ffiffiffiffi
fc
0p
þ 2,500ρw

Vud

Mu

� �
bwd � 3:5λ

ffiffiffiffi
fc
0p
bwd ð4:22Þ

where

Vud

Mu
� 1:0

4.6.2 Members Subject to Axial Compression

The presence of significant axial compression (in addition to flexure and shear)

increases the shear strength of a section. This is because the compressive loads can

prevent cracks from developing. The ACI Code provides the following equation

(ACI Code, Section 22.5.6.1) to account for the contribution of axial compression:

Vc ¼ 2 1þ Nu

2,000Ag

� �
λ
ffiffiffiffi
fc
0p
bwd ð4:23Þ

where Nu is the axial compression calculated from factored loads and Ag is the gross

cross-sectional area of the concrete section. In the formula Nu/Ag must be expressed

in psi. Nu is positive for compression. A more detailed calculation of Vc considering
Nu is given in the ACI Code Table 22.5.6.1.

4.6.3 Members Subject to Significant Axial Tension

The presence of significant axial tension (in addition to flexure and shear) decreases

the shear strength of the section. The ACI Code mandates the use of the following
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equation (ACI Code, Equation 22.5.7.1) to account for the presence of axial

tension:

Vc ¼ 2 1þ Nu

500Ag

� �
λ
ffiffiffiffi
fc
0p
bwd ð4:24Þ

where Nu is negative for tension. Nu/Ag must be expressed in psi. Vc cannot be less
than zero.

Example 4.5 Calculate the nominal shear capacity, Vc, of the section shown below
for the following cases (normal weight concrete with fc

0 ¼ 3,000psi):

d  22 in.
25 in.

3 #9

12 in.

(a) Without any axial load or consideration of flexure.

(b) Considering the effects of flexure where Vu¼ 20 kip and Mu¼ 100 kip-ft.

(c) The section is subjected to an axial compressive force, Nu¼ 100 kip.

(d) The section is subjected to an axial tensile force, Nu¼�100 kip.

Solution

λ¼ 1.0 (normal weight concrete)

(a) The shear capacity of the concrete section according to Equation (4.12) is:

Vc ¼ 2λ
ffiffiffiffi
fc
0p
bwd ¼ 2 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

12ð Þ 22ð Þ=1,000 ∴ Vc ¼ 28:9kip

(b) Using Equation (4.22):

Vc ¼ 1:9λ
ffiffiffiffi
fc
0p þ 2,500ρw

Vud

Mu

� �
bwd � 3:5λ

ffiffiffiffi
fc
0p
bwd

Vud

Mu
� 1:0
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ρw ¼ As

bwd
¼ 3:0

12ð Þ 22ð Þ ¼ 0:0114

Vud

Mu
¼ 20 22ð Þ

100 12ð Þ ¼ 0:37 < 1:0 ∴ ok

Vc ¼ 1:9 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p þ 2,500 0:0114ð Þ 0:37ð Þ� �
12ð Þ 22ð Þ=1,000

� 3:5 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
12ð Þ 22ð Þ=1,000

Vc ¼ 30:3kip � 50:6kip

∴Vc ¼ 30:3kip

(c) Using Equation (4.23):

Vc ¼ 2 1þ Nu

2,000Ag

� �
λ
ffiffiffiffi
fc
0p
bwd

Vc ¼ 2 1þ 100 1,000ð Þ
2,000 12ð Þ 25ð Þ

� �
1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

12ð Þ 22ð Þ=1,000

∴Vc ¼ 33:7kip

(d) Using Equation (4.24):

Vc ¼ 2 1þ Nu

500Ag

� �
λ
ffiffiffiffi
fc
0p
bwd

Vc ¼ 2 1þ �100ð Þ 1,000ð Þ
500ð Þ 12ð Þ 25ð Þ

� �
1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

12ð Þ 22ð Þ=1,000

∴Vc ¼ 9:6kip

4.7 Corbels and Brackets

The ACI Code has special provisions for brackets and corbels. Figure 4.26 shows a

typical corbel. These are special elements on the side of a column or at the end of a

wall. In Figure 4.26, Vu is the factored vertical load from some building element,

which may be a precast or prestressed building girder, or a crane girder. Nuc is the

factored tension force on the corbel acting simultaneously with Vu. This horizontal
tension force results from any restraint against free relative horizontal movement

between the bracket and the supported element. Most often Nuc comes from

frictional restraint that occurs in the presence of volumetric changes in

the supported girder. The use of special bearing pads helps to minimize the

magnitude of Nuc.
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The ACI Code’s design methodology (Section 16.5) is based on the satisfying

of the equilibrium of four forces (assumed to be concurrent). The method is

applicable when the following conditions are satisfied: (1) av /d� 1.0, (2) Nuc�Vu,
and (3) the depth of the bracket at the front is not less than d/2. (ACI Code Sections
16.5.1.1–16.5.2.2).

From Figure 4.26 it is clear that the shear plane at the level of the primary tension

reinforcement is subject to a moment:

Mu ¼ Vuav þ Nuc h� dð Þ ð4:25Þ

It is also subject to the tensile force, Nuc, and the shear force, Vu.
Figure 4.27 shows the typical reinforcement of a corbel. The required amount of

primary reinforcement, Asc, is determined from two parts. The first part, Af, resists

the moment in Equation (4.25). Its design follows the procedure of the flexural

design of rectangular sections. The second part, An, resists the tensile force, Nuc.

Hence:

Asc ¼ Af þ An ð4:26Þ
where

An ¼ Nuc

ϕfy
, ϕ ¼ 0:90 ð4:27Þ

Imaginary 
compression

strut

Vu

av

h

0.5 d≥

Nuc

Shear
plane

T

d

Figure 4.26 Corbel (or bracket)
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The design of Ah, total area of closed stirrups parallel to the primary tension

reinforcement, is based on the shear-friction concept. If a crack forms at a shear

plane, reinforcing is needed to prevent a relative displacement (slippage) between

the surfaces. This type of reinforcement is shown in Figure 4.28. The reinforcement

ties together the two halves and ensures that the friction resistance parallel to the

crack is maintained.

When the shear-friction reinforcing is perpendicular to the shear plane, as is the

case for the corbel shown in Figure 4.27, the shear strength can be calculated as

(ACI Code Equation 22.9.4.2):

Asc (tension reinforcement)

Ah (horizontal closed stirrups)

Anchor bar

Stirrup support bars

2d/3

d

Figure 4.27 Reinforcing required in a corbel

Assumed crack at shear plane

Shear-friction  
reinforcement 
at an angle

Shear-friction 
reinforcement 
perpendicular
to the crack

Avf

Avf

Assumed crack at shear plane

Figure 4.28 Reinforcing at an assumed crack
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ϕVn ¼ ϕ μAvf fy

� �
, ϕ ¼ 0:75 ð4:28Þ

where μ is the coefficient of friction defined by the ACI Code for different types of

concrete and different pouring sequence scenarios. Avf is the area of reinforcement

crossing the shear plane to resist shear. (Refer to Section 22.9.4.2 of the ACI Code.)

For a corbel cast monolithically with the column (always the case), μ¼ 1.4 for

normal-weight concrete.

The ACI Code imposes the following limitations to ensure that the corbel will

act in concurrence with the proposed design model:

1. The depth of the corbel at the outside edge of the bearing area shall be not less

than d/2. (ACI Code Section 16.5.2.2.)

2. The corbel must be deep enough so that Vn for normal-weight concrete may not

exceed the smaller of 0.2 fc
0bwd, 480 þ 0:08fc

0ð Þbwd, and 1600 bwd (ACI Code

Section 16.5.2.4).

3. The corbel’s minimum primary reinforcement, Asc,min, must be the greater of the

following (ACI Code Section 16.5.5.1):

Af þ An

� �
, 2Avf =3þ An

� �
, and 0:04 fc

0=fy
� �

bwdð Þ

Assuming Vu¼ϕVn and rearranging Equation (4.28), the expression for Avf is

obtained as

Avf ¼ Vu
ϕfyμ

¼ Vu
0:75fy 1:4ð Þ ¼

Vu
1:05fy

ð4:29Þ

for corbels cast monolithically with normal-weight concrete. The minimum total

area of closed stirrups parallel to the tension reinforcement, Ah,min, is equal to (ACI

Code Equation 16.5.5.2):

Ah,min ¼ 0:5 Asc � Anð Þ ð4:30Þ

A few words must also be said about the anchor bar. The tensile reinforcement

(Asc) must develop its strength between the outer edge of the corbel and the face of

the column. (For a discussion of development of tensile reinforcing, see Chapter 3.)

This length is not adequate in most cases, hence some device is needed to add

mechanical anchorage. One such device is a large–diameter bar (#9 or larger) to

which the reinforcing bars representing Asc are welded (see Figure 4.27). Another

way to provide mechanical anchorage is to weld the bars to an edge angle, as shown

in Figure 4.29.
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Example 4.6 Design the required reinforcement for the corbel shown in Figure 4.30.

Assume the following data: Vu¼ 62 kip, Nuc¼ 6 kip, av¼ 8 in., b¼ 16 in.,

fc
0 ¼ 5,000psi, and fy¼ 60,000 psi.

Solution

Step 1. Assume 1.5 in. cover and #6 bars for the primary reinforcement.

d ¼ 18� 1:5� 0:75

2
¼ 16:12 in:

From Equation (4.25):

Mu ¼ 62� 8þ 6 18� 16:12ð Þ ¼ 507kip-in:

R¼ Mu

bd2
¼ 507� 1,000

16 16:12ð Þ2 ¼ 122psi

From Table A2.6c

ρ¼ 0:0023

Af

� �
required

¼ ρbd ¼ 0:0023� 16� 16:12 ¼ 0:59 in:2

Asc (tension reinforcement)

Edge angle

Figure 4.29 Tension bars anchored to an edge angle
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From Equation (4.27)

Anð Þrequired ¼
Nuc

ϕfy
¼ 6

0:9� 60
¼ 0:11 in:2

Hence

Ascð Þrequired ¼ 0:59þ 0:11 ¼ 0:7 in:2

Select 2 #6 bars Table A2.9! 0.88 in.2

Step 2. Design the required shear reinforcement:

Check for Vu,max:

ϕ 0:2fc
0bwdð Þ ¼ 0:75� 0:2� 5,000� 16� 16:12=1,000

¼ 193:4kip > 62kip ∴ ok

ϕ 480þ 0:08fc
0ð Þbwd ¼ 0:75ð Þ 480þ 0:08� 5,000ð Þ 16ð Þ 16:12ð Þ=1,000

¼ 170kip > 62kip ∴ o:k:

ϕ 1,600bwdð Þ ¼ 0:75� 1,600� 16� 16:12=1,000

¼ 309:5kip > 62kip ∴ ok

10 in.

8 in.

62 kip

6 kip

18 in.

Figure 4.30 Sketch of the corbel in Example 4.6
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From Equation (4.29)

Avf

� �
required

¼ Vu
1:05fy

¼ 62

1:05� 60
¼ 0:98 in:2

Using #4 stirrups! two legs provide 2� 0.2¼ 0.4 in.2 Thus, the

required number of horizontal stirrups is

n ¼ 0:98=0:40 ¼ 2:45 ! Use a minimum of three stirrups:

Because (2/3)d¼ (2/3)� 16.12¼ 10.7 in., place stirrups at 3.5 in.

center-to-center to have the three stirrups within the ACI Code-required

distance 2/3d. Then use additional stirrups at the same spacing to the

bottom of the corbel.

Step 3. Check for Asc,min:

#4 Closed stirrups

#9 Anchor bar.  
Weld 2 #6 bars to
the anchor bar.

2 #5 Stirrup support bars

2 #6

4 Spaces
@ 3.5 in. c/c

Figure 4.31 Sketch of result for Example 4.6
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Asc,min ¼ 2=3Avf þ An ¼ 2=3 � 0:98þ 0:11 ¼ 0:76 in:2 < 2#6barsð Þ
¼ 0:88 in:2 ∴ ok

Asc,min ¼ 0:04 fc
0=fy

� �
bwdð Þ ¼ 0:04 5,000=60,000ð Þ 16ð Þ 16:12ð Þ

¼ 0:86 in:2 < 0:88 in:2 ∴ o:k:

Ah,min ¼ 0:5 Asc � Anð Þ
Ah,min ¼ 0:5 0:7� 0:11ð Þ

¼ 0:3 in:2 < 4#4stirrups 4� 0:4 ¼ 1:6 in:2ð Þ ∴ o:k:

Figure 4.31 shows the final design of the corbel.

Problems

In the following problems, assume concrete is normal-weight unless noted otherwise.

4.1. A rectangular reinforced concrete beam has been designed for moment only,
without any stirrups for shear. It is, however, subjected to a shear at the critical

section,Vu ¼ 10kip. The beam width, b, is 12 in., and the effective depth, d, is
26 in. Use fc

0 ¼ 4,000psi. Determine whether this beam is adequate.

4.2. Abeam is subjected to a uniformly distributed load and has amaximum shear of

60 kip at the face of its supports. The beam clear span is 30 ft–0 in., b¼ 12 in.,

d¼ 24 in., fc
0 ¼ 4,000psi, and fyt¼ 60,000 psi. What is the shear at the critical

section? What is the required spacing for #3 stirrups at the critical section?

4.3. Design stirrups for the beam shown below. The dead load includes the beam’s

self-weight. Use fc
0 ¼ 4,000psi, fyt¼ 60,000 psi, and 1½ in. cover.

PL 10 kip PL 10 kip wD 1.0 kip/ft
wL 2.0 kip/ft

A

A

3 #11

32 in.

A-AA-A

16 in.

8'-0" 12'-0" 8'-0"
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4.4. Rework Problem 4.3 for a beam subjected only to the concentrated load on the

left in addition to the distributed loads.

4.5. The shear force at the critical section, Vu, of a reinforced concrete beam is

60 kip. If the beam has bw¼ 14 in., fc
0 ¼ 3,000 psi, and fyt¼ 60,000 psi,

what is the required effective depth, d, so that the minimum spacing of #3

stirrups is 9 in.?

4.6. Design stirrups for the beam shown below. The dead load is 0.70 kip/ft (beam

weight not included), and the live load is 1.5 kip/ft. Use fc
0 ¼ 4,000psi,

fyt¼ 60,000 psi, and 1½ in. cover. The unit weight of the concrete is 150 lb/ft3.

A

A

"0-'5"0-'5 20'-0" ."21."21

A-A

24 in.

12 in.

2 #8

3 #8

4.7. A 6 in. thick one-way reinforced concrete slab has #6 @ 8 in. main reinforce-

ment. The cover is ¾ in. and fc
0 ¼ 3,000psi. The unit weight of the concrete

is 150 pcf. Answer the following questions:

(a) What is the maximum shear (Vu) the slab can carry?

(b) What is the maximum live load the slab can support based on shear

requirements? Assume that the slab is simply-supported and has a clear

span of 10 ft–0 in.

4.8. Design stirrups for the interior beam (B-1) shown below. The mechanical/

electrical systems weigh 5 psf, the partitions are 20 psf, and the ceiling,

carpeting, and so on, weigh 5 psf. The floor live load is 80 psf. Consider live

load reduction, if applicable. Use fc
0 ¼ 4,000psi, fyt¼ 60,000 psi, and 1½ in.

for cover. Use ACI Code coefficients to determine the beam shear force. The

unit weight of the concrete is 150 pcf.
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12 in.

2 #11
(typical)

6 in.

18 in.

A-A

Columns
12 in.    12 in.

(typical)

10'-0"
(typical)

A

A

(B-1)

Plan

30'-0" 30'-0"

4.9 Design stirrups for the beam shown below. The applied loads do not include

the beam’s self-weight. Use fc
0 ¼ 4,000psi, fyt¼ 60,000 psi, and 1½ in. for

cover. The concrete is ‘all-lightweight’ with a unit weight of 110 pcf.

Pu  20 kip wu    3 kip/ft

A

A

3 #8

27 in.

A-AA-A

10'-0" 10'-0"

12 in.
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4.10 Rework Problem 4.3, considering the effects of moment on the shear strength

of concrete. Use the moment and the shear at the critical section for purposes

of simplification.

4.11 Rework Problem 4.3 for a beam subjected to an axial compressive live load of

150 kip. Compare the results with Problem 4.3.

4.12 Rework Problem 4.3 for a beam subjected to an axial tensile live load of

50 kip. Compare the results with Problem 4.3.

4.13 Design the required reinforcement for the corbel shown below. Use

fc
0 ¼ 4,000psi, fy¼ fyt¼ 60,000 psi, b¼ 18 in., and 1½ in. for cover.

Nuc = 10 kip

Vu = 50 kip

5 in.

9 in.

16 in.

Self-Experiments

In these self-experiments you learn about shear in beams. You will use both

Styrofoam and reinforced concrete models. Remember to include in your report

all the details of your tests (sizes, time of day you poured, amount of water/cement/

aggregate, problems that you encountered, etc.) together with images showing the

steps of the tests.
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Experiment 1

In this experiment we use Styrofoam models to learn about the vertical and

horizontal components of shear in beams.

Test 1: Horizontal Shear
Stack several layers of Styrofoam, one on top of the other, and place them on two

supports, as shown in Figure SE 4.1a. Apply a load, P, at the center of the beam.

Measure how much the beam deflects at the center under the load. Now glue the

layers together and repeat the test. Compare the measured deflection for the two

cases, and discuss your observation.

P

Figure SE 4.1a Horizontal shear test

P

Plastic wire

Figure SE 4.1b Vertical shear test

Test 2: Vertical Shear
Place layers of Styrofoam next to each other and run a plastic wire through them.

Anchor the wire at both ends. Place the beam on two supports and apply a load on

the beam, as shown in Figure SE 4.1b.

Observe how the different pieces of Styrofoam move with respect to each other.

Record your observations.

Experiment 2

In this experiment we use different sizes of wire as main and shear reinforcements

for a reinforced concrete beam, as shown in Figure SE 4.2. The sizes of beam,

reinforcement, and span length are your choices. However, they have to be in

reasonable proportions for further testing. Cast the reinforced concrete beam.

Describe all the different stages of casting the beam and placing the bars. Also,

include a drawing and show the sizes and dimensions you used. After the beam
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cures, apply a load at the center of the beam. Increase the load until you notice the

concrete cracks. Record your observations and any problems encountered.

Stirrups (smaller size)

Main bars
A

A

A-A

Figure SE 4.2 Reinforced concrete beam with main and shear reinforcements
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Chapter 5

Columns

5.1 Introduction

Columns are the main supporting elements of a building structure. If we compare a

building to a tree, we can think of columns as the trunk of the tree. Any damage to

columns may result in catastrophic failure of at least part of the building. Columns

mainly carry loads in compression, although they also may be subjected to bending

moments transferred by the beams and girders connected to them.

Aside from walls, the compression members of reinforced concrete structures

are divided into two groups: pedestals and columns. Section 2.3 of the ACI Code

indicates that an upright compression member is considered to be a pedestal if its

height is less than three times its least lateral dimension. Pedestals may be designed

with plain or reinforced concrete. Figure 5.1a shows a pedestal.

Columns, on the other hand, are compression members whose height is more

than three times their least lateral dimension. Figure 5.1b shows a typical column.

The ACI Code requires all structural columns to be reinforced in order to prevent

unexpected brittle failure.

5.2 Types of Columns

Figure 5.2 shows the various classifications of reinforced concrete columns. Columns

can be classified by the type of their reinforcement (main and lateral), by their shape,

by the type of loads that they will resist, by the type of structural system of which they

are part, and by their length. We now will study each class of columns.

5.2.1 Based on Reinforcement

Three main types of columns fall in this category: tied columns, spiral columns, and

composite columns.

© Springer International Publishing Switzerland 2017
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5.2.1.1 Tied Columns

Because columns are subjected mainly to axial loads, they are reinforced with

longitudinal bars along their length. Because these bars are very slender, they need

to be laterally supported to keep them in place during concrete placement, and they

need lateral support when subjected to loads. Small-diameter (#3 or #4) bars,

referred to as ties, are used to fulfill these requirements. Columns that use ties for

lateral reinforcement are called tied columns. Figure 5.3a shows a square tied

column. The ties are wired to the longitudinal bars to make a cage, which then is

placed into the form and properly positioned before casting the concrete. The cage

of bars and ties keep the longitudinal bars straight and the ties provide resistance

against buckling. Ties generally follow the perimeter of the column’s cross section

(rectangular in rectangular columns and circular in circular columns).

Tied columns are the most common because their construction costs are lower

than those for spiral and composite columns. In fact, over 95 % of all columns in

concrete buildings located outside earthquake-prone regions are tied columns. The

area inside the ties is called the core, and the area outside them is the shell of the
column (see Figure 5.3a).

5.2.1.2 Spirally Reinforced Columns

Spirals are used in spirally reinforced columns to provide lateral support to the

main reinforcements. Spirals are helical-shape wires, which are placed around

the main reinforcements as shown in Figure 5.3b. Because most spiral columns

h

ba

h
b

 3

h

b

h
b

 3

b

Figure 5.1 (a) Pedestal, (b) column
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are circular in shape, a spirally reinforced core sometimes may be placed inside a

square cross section. Spiral reinforcing is a more expensive construction (about

twice as much) than using ties. Spiral columns provide larger capacity than do tied

columns, but their main advantage is their ductility and toughness when large

overloads, such as loads occur in earthquakes, are expected. Similar to tied

columns, the area confined by the spirals is the core, and the area outside them is

the shell (see Figure 5.3b).

Column
Types

Axially loaded columns
(small eccentricity)

Eccentrically loaded columns
(large eccentricity)

Spiral columns

Tied columns

Composite columns

Square columns

Circular columns

Rectangular columns

Other shape columns

Braced columns

Unbraced columns

Short columns

Slender (long) columns

Based on reinforcements

Based on structural system

Based on shape

Based on loading

Based on length

Figure 5.2 Different types of columns
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5.2.1.3 Composite Columns

Composite columns are constructed by placing a steel shape, such as a pipe or

I-section, inside the form and casting concrete around it. These columns may have

additional reinforcing bars around the steel shape, as shown in Figure 5.3c. Com-

posite columns are often used in multistory buildings to increase the capacity of the

steel sections. The surrounding concrete also provides fireproofing to the steel core.

5.2.2 Based on Shape

Selecting a column shape is generally an architectural and structural decision and

depends on the framing system, costs, reinforcement arrangement, and aesthetics.

TieCore

Shell

Spiral

Core

Pipe

AA

BB

A-A

Tied column

Spiral column

Composite column

B-B

Shell

I-shape

a

b

c

Figure 5.3 Types of columns based on reinforcements
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Square and rectangular shapes are the most common, as they are the simplest to

form and construct. Circular columns may be formed by using cardboard or

plastic tubes, or by using hinged steel forms, which can be removed easily. Other

column shapes besides circular and rectangular are also used. Figure 5.4 shows a

few of them. Figure B5.1 in Appendix B shows the tapered reinforced concrete

columns used for a train station.

Figure 5.4 Different column shapes
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5.2.3 Based on Loading

Columns primarily carry loads in compression. But they can also be subjected to

moments, depending on the building’s geometry and loading. Therefore, columns

are grouped into two classes: axially loaded columns, and eccentrically loaded
columns. (Sometimes these are referred to as columns with small eccentricity, and
columns with large eccentricity, respectively).

A concentric axial load and a moment can be combined into an eccentric load.

The term eccentricity refers to the distance between the point of load application

and the center of the section. To better understand the consequence of an eccen-

tricity on the behavior of columns, consider Figure 5.5a, which shows a column

subjected to a compression force, P, acting at the center of the section (point 1).

Because the force acts at the center of the section, the internal compression stresses

are distributed uniformly on the section.

If we move P to a new location (point 2) at a distance e from the column center,

as shown in Figure 5.5b, the load generates bending stresses in addition to axial

compressive stresses. The bending stress is the result of the moment caused by the

off-center load (M¼Pe). The action of P at the eccentricity, e, is equivalent to the

load P acting at the center and an additional moment, M¼Pe.
If the moment acting on the column is negligible compared to its axial load, we

consider the column to be an axially loaded column, or a column with small

eccentricity. If the applied moment is large, the column is an eccentrically loaded

column, or a column with large eccentricity. In former ACI Codes, tied and spiral

columns were considered to be axially loaded columns when the eccentricity was

less than 0.1 h and 0.05 h, respectively (h¼ the cross-sectional dimension in the

direction of the eccentricity).

Now that we know that the effects of eccentric loads are the same as adding

moments on columns and vice versa, let us review the sources of moments or

eccentricities. Figure 5.6a shows a reinforced concrete building frame under gravity

loads (Refer to Figures 2.10 and 2.11). The column on line B is subjected to

moments from the adjoining beams. If the beam spans and loads are equal, the

applied moments have the same magnitude but opposite directions, thus canceling

each other. As a result, the column on line B is subjected only to an axial load. Even

though this is theoretically correct, in reality there is always some moment on the

column because the loads on the neighboring beams are never the same and the

column is not perfectly straight.

The columns on lines A and C, on the other hand, are subjected to moments from

the beams on one side in addition to axial loads. Therefore, these columns are

subjected to large moments or have large eccentricities. Also, the column between

the two bays (column B) will be subjected to moment in addition to axial loads if

the live load is larger on one span than on its adjacent span.

Another example of a column with large eccentricity is shown in Figure 5.6b, in

which the column is part of a precast concrete structure. The beams and columns are

cast off the construction site, and then transported to the site for assembly.
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In precast construction, beams are often placed on brackets and connected together

through steel plates embedded in both the beam and the bracket. As a result, there is

always an eccentricity between where the beam is supported and the column

centerline. This eccentricity generates a moment on the column, which needs to

be considered in the analysis and design of the column.

Lateral loads, such as high winds and earthquakes, can generate large moments

on the columns of monolithic concrete structures. Such columns usually have large

eccentricity. Figure 5.6c shows how the columns of a two-story building undergo

P
P P

M  Pe

22

View A

P

11

View A

b

a

ee

A

A

P

Figure 5.5 (a) Axially loaded column (column with small or no eccentricity); (b) eccentrically
loaded column
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large bending moments when subjected to lateral loads. Columns subjected to loads

with large eccentricity will be studied in greater detail later in this chapter.

5.2.4 Based on Structural System

Column and beam assemblies can be divided into two categories, depending on the

building structural framing systems used: braced frames and unbraced frames. The
columns within such systems are called braced columns and unbraced columns,
respectively.

In a braced frame, lateral loads are resisted by shear walls, elevator or stairwell

shafts, diagonal braces, or a combination thereof. The large stiffness of these

elements prevents the columns of such a frame from undergoing large lateral

motion or sidesway, and from experiencing significant moments due to lateral

loads. In an unbraced frame, on the other hand, the columns (unbraced columns)

are subject to large bending moments due to the lateral loads and have to withstand

large lateral motions. These columns generally have large eccentricities. Figure 5.7

shows braced and unbraced columns in two different structural framing systems.

A
a

b

C

P
e

c

B

Figure 5.6 (a) and (b) Gravity loading, (c) lateral loading
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5.2.5 Based on Length

Columns may be divided into two groups based on their length, or more accurately

their slenderness ratio. Slenderness ratio (k‘/r) is the ratio of the column’s effective

length (k‘) to the least radius of gyration (r) of the section. Short columns are

columns whose slenderness ratio is low enough that their failure occurs from

excessive stress levels rather than by buckling. Slender columns, on the other

hand, may buckle when subjected to large axial loads.

Most reinforced concrete columns in normal building structures are short col-

umns. In fact, the results of a study conducted by the ACI (Notes on ACI 318-71,
Building Code with Design Applications, p. 10-2) indicate that 90% of braced

columns and about 40% of unbraced columns could be considered to be short

columns. As a result, the emphasis in this book will be on short columns.

5.3 Behavior of Short Columns with Small
Eccentricity Under Load

Figure 5.8 shows the failure mechanisms of an axially loaded square tied column

and round spiral column. When a short tied column is subjected to increasing axial

loads, the column fails suddenly. First the longitudinal reinforcing reaches yield,

a

b

Shear wall Braced columns

Unbraced columns

Figure 5.7 (a) Braced columns, (b) unbraced columns
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and then the concrete fails when the ultimate strain is reached. The failure is usually

accompanied by plastic buckling of the longitudinal bars. Figure 5.9 shows a typical

load-deformation relationship for tied and spiral columns. The tied column reaches

the maximum capacity at point A, and fails soon thereafter at point B.

A spiral column, on the other hand, does not fail suddenly because the closely

spaced spirals keep the core confined while the column shell spalls (Figure 5.8b).

This confinement does increase the column’s deformability significantly. The outer

P

P

P

Concrete being crushed Plastic buckling of
bars between ties

P

a

b

P

P

PP

Figure 5.8 Short columns under axial loads: (a) tied columns; (b) spiral columns
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shell is not confined, thus it falls away readily. The inner core, however, is still able

to carry loads, even after the concrete has been crushed by large compressive

stresses. The column behaves like a bag of flour: As long as the paper sack does

not burst, the flour column will support loads. For this reason, in this type of

column, the ACI Code requires a minimum spiral reinforcement that will prevent

the column from bursting until well after the concrete has reached its assumed

ultimate strain of 0.003. Thus, a typical spiral column will have a second maximum

point in its load-deformation diagram (point C in Figure 5.9). The yielding of the

spirals makes the column failure ductile, which makes a spiral column ideal for

unexpected large overloads such as seismic loads.

P

Spiral column

Tied column

P

A

B

C

D

P

Figure 5.9 Load-deformation relationship of axially loaded columns
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5.4 General ACI Code Requirements for Columns

The ACI Code has several requirements for the design of columns:

1. Limits on the amount of longitudinal reinforcements. Column steel ratio, ρg, is
defined as the ratio of the area of the longitudinal reinforcement (Ast) to the gross

area of the column (Ag):

ρg ¼
Ast

Ag
ð5:1Þ

The ACI 318-14 no longer uses the column steel ratio notation (ρg); however, the
authors have kept it for purposes of clarity.

The ACI Code (Section 10.6.1.1) limits the area of the longitudinal reinforce-

ment, Ast, in columns between 0.01 Ag to 0.08 Ag. This means that the steel ratio,

ρg, can average as shown in Equation (5.2):

0:01 � ρg � 0:08 ð5:2Þ

The minimum steel ratio of 0.01 provides resistance to bending, which may exist

whether or not calculations show the column is subjected to bending moments.

In addition, a minimum amount of steel reduces creep and shrinkage of the

concrete under sustained compression loads. It is common practice to use a

minimum bar size of #5 for the longitudinal reinforcement.

Although the maximum steel ratio is 0.08, in practice it is very difficult to use

such a high amount of steel in the column, especially where the bars are spliced

above a floor level. Such congestion may be avoided by using #14 or #18 bars.

(A #14 bar has a cross sectional area of 2.25 in.2, a #18 bar has one of 4.0 in2.)

These bars are not used in beams, but are very useful in columns.

Bundled bars may be used if the column is subjected to a large load and a large

number of bars is needed. Bundles consist of three or four bars (a maximum of

four bars according to the ACI Code, Section 25.6.1.1) tied together in direct

contact, and are usually placed at the corners of the column, as seen in

Figure 5.10. Each bundle of bars is treated as if it were a single round bar of

area equal to the sum of the areas of the bundled bars. The main drawback of

bundled bars is that they cannot be lap-spliced.

Figure 5.10 Column reinforced with bundled bars
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2. Limit on the number of bars. According to the ACI Code (Section 10.7.3.1), the

minimum number of main longitudinal bars is four for rectangular or circular tied

columns, three for triangular tied columns, and six for spiral columns (see

Figure 5.11).

3. Limit on the clear cover. According to the ACI Code (Section 20.6.1.3.1), the

minimum clear cover for columns is 1.5 in., measured from the edge of the

column to the transverse reinforcement. This cover is for interior columns that

are not exposed to weather or in contact with the ground. The clear cover is 2 in.

for formed surfaces exposed to weather or in contact with the ground. If the

concrete is cast directly against the earth without forming (as in drilled piles), the

cover must be increased to 3 in.

4. Limit on tie spacing. In general, there are four main reasons for having ties in a

column:

A. They hold the longitudinal reinforcement in place during construction.

B. They provide a confined core and, as a result, increase the column’s strength

and ductility.

C. They act as shear reinforcement.

D. They provide lateral support for the longitudinal bars and prevent them from

elastic buckling. Columns need sufficiently large tie sizes that are well

connected to the longitudinal bars at sufficiently close vertical spacings (s).
To satisfy the above requirements, the ACI Code (Sections 10.7.6.1.2 and

25.7.2.2) requires that at least #3 ties be used for #10 or smaller longitudinal

bars, and at least #4 ties be used for #11, #14, and #18 and bundled bars.

a

b

Figure 5.11 Minimum number of bars: (a) tied columns, (b) spiral columns
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In addition, the ACI Code (Sections 10.7.6.1.2 and 25.7.2.1) requires that the

vertical center-to-center spacing of ties (s) be limited to:

s � min 16db, 48dt, bminf g

where db is the diameter of the longitudinal bars, dt is the diameter of the ties,

and bmin is the minimum dimension of the column. The clear spacing of ties has

to be at least equal to 4/3 of the maximum aggregate size (dagg). According to the
ACI Code (Sections 10.7.6.1.2 and 25.7.2.3), a bar is adequately supported

laterally if it is located at a corner of a tie, with an enclosed angle not exceeding

135�, or if it is located between laterally supported bars with a clear spacing of

6 in. or less. Figure 5.12 shows typical tie arrangements that satisfy this

4 bars 6 bars
6 in. 6 in.

6 bars
6 in. 6 in.

8 bars
6 in. 6 in.

8 bars
6 in. 6 in.

10 bars

10 bars 12 bars

6 in.

6 in.

6 in.

6 in.

6 in.

6 in.

6 in.

6 in.

a b c

d e

g h

f

Figure 5.12 Typical tie arrangements
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requirement. Figure B5.2 in Appendix B shows the main reinforcements and ties

for arrangement e before concrete placement.

5. Limit on longitudinal bar spacing. Sections 10.7.2.1 and 25.2.3 of the ACI Code
requires that the clear distance between longitudinal bars be at least equal to the

greatest of 1.5 times the bar diameter (db), 1.5 in. or 4/3 of maximum aggregate

size (dagg), to allow concrete to flow between the reinforcements. Reinforced

concrete columns in multistory buildings are generally cast one level at a time.

Therefore, the longitudinal reinforcements in columns typically are spliced

above every floor. An exception is columns in seismic zones where splicing is

usually near midheight between floors. There are different methods of splicing

bars in columns. Figure 5.13 shows one common method of splicing reinforce-

ments in a multistory building. Table A5.1 lists the maximum number of bars

that can be placed in a square or circular column based on minimum bar spacing

requirements and the splicing method shown in Figure 5.13. The spiral and tie

sizes are assumed to be #4 with 1.5 in. cover. Figure B5.3 in Appendix B shows

the reinforcements at the end of a concrete column during construction.

6. Limit on spacing and amount of spiral reinforcement. Spirals are often made of

smooth bars rather than deformed bars; and the spacing and amount of spirals need

to be such that they confine the column core. For these reasons, the ACI Code

(Sections 10.7.6.1.2 and 25.7.3.1) requires that clear spacing between spirals

(sclear) be at least equal to
4=3 dagg and between 1 and 3 in. (see Figure 5.14a). In

cast-in-place construction spirals must be at least 3=8 in. in diameter.

Spiral steel ratio is defined as:

ρs ¼
Volume of spiral steel in one turn, s

Volume of column core in height, s
ð5:3Þ

If the diameter of the spiral steel is dsp and the area of the spiral steel is Asp, the

volume of column core in height s (see Figure 5.14b) is:

πh2c
4

� s

The volume of spiral steel in one turn, s, is:

πhs � Asp

Substituting the above into Equation (5.3), we get:

ρs ¼
πhs � Asp

π
h2c
4
� s

¼ 4Asphs

h2cs

Because hs¼ hc�dsp, and dsp is negligible compared to hc, we can assume that hs
and hc are approximately equal (hsffi hc). Substituting hc for hs into the above
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equation allows us to calculate the spiral steel ratio for columns, ρs, using the

simplified Equation (5.4).

ρs ¼
4Asp

hcs
ð5:4Þ

The ACI Code requires a minimum spiral steel ratio to ensure ductility and

toughness. According to Equation (25.7.3.3) in Section 25.7.3.3 of the ACI

Code, the minimum spiral steel ratio (ρs,min) is:

ρs,min ¼ 0:45
Ag

Ach
� 1

� �
fc
0

fyt
fyt � 100 ksi

ð5:5Þ

Lap splice of reinforcement

Three ties @ maximum 3 in. c/c

AA

s

Section A-A

Figure 5.13 Reinforcements in a multistory building
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In this equation, Ag is the gross area of the column:

Ag ¼ πh2

4

Ach is the area of the core (measured from outside-to-outside edge of spiral

reinforcement). See Figure 5.14:

Ach ¼ πh2c
4

and fyt is the specified yield strength of the transverse (spiral) reinforcement. The

required spiral pitch, s, can then be calculated from Equation (5.4) based on an

assumed spiral size, which must be at least 3/8 in. in diameter.

h

hs

hc

hc

Pitch (s )

s

Clear pitch(sclear)

1 in. sclear 3 in.

3
sclear

4AA

Section A-A

a

b

 dagg

Figure 5.14 Spiral columns
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5.5 Some Considerations on the Design of Reinforced
Concrete Columns

When designing reinforced concrete columns, we must consider a number of

factors in order to minimize the overall cost of construction.

5.5.1 Column Size

In general, columns in multistory buildings are designed based on their floor-to-floor

height. In order to simplify the formwork, the size of columns in a multistory

building is usually kept the same throughout the height of the structure whereas

the amount of reinforcement, and perhaps the concrete’s compressive strength, are

increased for the lower stories. Smaller size columns are easier to conceal in walls

and less intrusive architecturally, which results in larger rentable floor spaces for

building owners. Therefore, the structural designer tends to select as small a column

size as possible. The ACI Code does not require a minimum column size, but in

practice rectangular columns are at least 10 in. wide and round columns have a

minimum diameter of 12 in. Smaller columns are very difficult to construct properly.

5.5.2 High-Strength Material Use

Because most columns are in compression, it is more economical to use high-

strength concrete. High-strength concrete with compressive strength exceeding

16,000 psi has been used for the columns supporting lower stories in large, tall

buildings. The reliable production of such ultra-high-strength concrete requires

very special technology, so it is less commonly used; but 8,000–10,000 psi concrete

is commonly available.

In most cases, however, the compressive strength of concrete in columns in low

or mid-rise buildings is in the 5,000–6,000 psi range. Although the cost of concrete

increases as compression strength increases, the strength increases at a greater rate

than the cost. Grade 60 rebars are used in most concrete structures. Grade 75 bars

may provide better economy for columns in high-rise structures, especially when

they are used in conjunction with high-strength concrete.

5.6 Analysis of Short Columns with Small Eccentricity

Most reinforced concrete columns are categorized as short columns. This means

that they will fail in compression under large loads rather than undergo elastic

buckling. In this section we will study the load carrying capacity and the design of

short columns with small eccentricity.
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We first find the axial load strength of a column. Figure 5.15a shows a typical

column subject to a concentrated load at its center. From equilibrium of forces in

the vertical direction (along the column axis), the axial load capacity of a column

(Po) is equal to the sum of the volume of stresses in the concrete and the steel (see

Figure 5.15b). Based on the results of tests carried out at the University of Illinois

and Lehigh University from 1927 to 1933, the ACI Code uses 0.85fc
0 for the

ultimate concrete compression stress. At ultimate load the stress in the steel is

equal to the yield stress ( fy). Therefore, according to ACI Equation 22.4.2.2:

Po = +

Concrete contribution Steel contribution

0.85 fc (Ag 
_ Ast) fyAst

ð5:6Þ

The stress in the concrete (0.85fc
0) is applied on the net column area (Ag�Ast), which

is the area of the concrete. In reality, however, the loads acting on columns always

have an eccentricity (e.g., due to vertical misalignment of the form). The ACI Code

accounts for “accidental eccentricity” by requiring that the theoretical capacity be

reduced by 20 % for tied columns and 15 % for spirally reinforced columns. Then

the nominal load capacity of columns is:

Pn ¼ 0:8Po ¼ 0:8 0:85fc
0 Ag � Ast

� �þ fyAst

h i
tied columnsð Þ ð5:7Þ

Pn ¼ 0:85Po ¼ 0:85 0:85fc
0 Ag � Ast

� �þ fyAst

h i
spiral columnsð Þ ð5:8Þ

To find the design resisting load, PR, we must reduce Pn by the strength reduction

factor, ϕ:

Po

Po

fy

Ast

Ag

0.85 fc

fy

Poa b

Figure 5.15 Axial load capacity of a column
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PR ¼ ϕPn ð5:9Þ

According to the ACI Code (Sections 10.5.1.2 and 21.2.2), columns with small

eccentricity have the following strength reduction factors:

ϕ ¼ 0:65 tiedcolumnsð Þ
ϕ ¼ 0:75 spiral columnsð Þ ð5:10Þ

The values of ϕ for pure compression are less than those used for beams in

bending (0.90). The main reasons that the strength reduction factors are consider-

ably lower are the following:

1. A column failure is a much more severe event than the local failure of a beam,

because a column supports larger areas of a building.

2. The quality of concrete used in columns is less reliable than that used in beams

and slabs. The difficulty of consolidating the concrete in narrow column forms

and between the longitudinal and lateral reinforcements often leads to honey-

combs that are difficult to repair (even when visible).

3. The strength of the concrete has a much greater role in the ultimate strength of a

column than it does in beams and slabs, where the reinforcing has the most

influence on the ultimate strength.

After introducing the ϕ factor, we calculate the strength of an axially loaded

column (ACI Code Sections 10.5.2.1, 22.4.2.1 and 22.4.2.2) as follows:

PR ¼ ϕPn ¼ 0:8ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i
tiedcolumnsð Þ ð5:11Þ

PR ¼ ϕPn ¼ 0:85ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i
spiral columnsð Þ ð5:12Þ

The steps of the analysis of short columns with small eccentricity are shown in

Figure 5.16 and are as follows:

Step 1. Check the steel ratio. When we analyze a column, we know its dimensions

and the size and number of its reinforcements. Therefore, we have the gross

area of concrete (Ag) and the total area of steel (Ast), from which we can

determine the column steel ratio (ρg):

ρg ¼
Ast

Ag

The steel ratio is limited by:

0:01 � ρg � 0:08

If the steel ratio does not fall within these limits, the column does not

conform to the current ACI Code requirements.
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Step 2. Determine whether the spacing between the longitudinal bars meets the

ACI Code requirements by obtaining the maximum number of bars that can

be placed in the column according to Table A5.1. The remaining steps

differ depending on whether the column is tied or spiral:

(a) Tied Columns

Analysis of Columns 
(short with small eccentricity)

Check the steel ratio:
0.01 g 0.08

Check the maximum number of bars (Table A5.1).

Check tie spacing:
smax  min {16db , 48dt , bmin}

CalculatePR Pn where  0.65: 
PR 0.8 [0.85fc (Ag Ast) fyAst]

Calculate PR Pn where  0.75: 
PR 0.85 [0.85fc (Ag Ast) fyAst]

Tied column

Column is N.G.

Spiral column

Check the spiral steel:

s s,min?

s
4Asp

hcs

s,min 0.45 1
Ag

Ach

fc
fyt

Check the clear vertical
space of the spirals:
1 in. sclear 3 in.

PR  Pu?PR  Pu?
No

seYseY

No

1.

4. 4.

5.5.

6. 6.Check the tie arrangement
using Figure 5.12.

2.

3. 3.

Figure 5.16 Flowchart for analysis of reinforced concrete columns
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Step 3. Calculate the column capacity, PR:

ϕ ¼ 0:65

PR ¼ ϕPn ¼ 0:8ϕ 0:85 fc
0 Ag � Ast

� �þ fyAst

h i
Step 4. Calculate the factored loads, Pu, and determine whether the column can

resist the applied loads (PR�Pu).
As indicated in Chapter 2, Section 2.10, depending on the value of the total

floor load, PL, compared to the total roof live load, PLr, one of the load

combinations of Equation (2.3d) is used to compute Pu:

Pu ¼ 1:2 PD þ 1:6 PL þ 0:5 PLr if PL � 1:83PLrð Þ
Pu ¼ 1:2 PD þ 1:6 PLr þ 1:0 PL if PL < 1:83PLrð Þ

Step 5. Check the tie spacing:

smax ¼ min 16db, 48dt, bminf g
Step 6. Check the arrangement of the ties using Figure 5.12.

(b) Spiral Columns

Step 3. Calculate the spiral column capacity, PR:

ϕ ¼ 0:75

PR ¼ ϕPn ¼ 0:85ϕ 0:85fc
0 Ag � Ast

� �þ fyAst

h i
Step 4. Calculate the factored loads, Pu, and determine whether the column can

resist the applied loads (PR�Pu).
Step 5. Check the spiral steel. Calculate the spiral steel ratio (ρs) and compare it

with the minimum amount required by the ACI Code:

ρs ¼
4Asp

hcs

ρs,min ¼ 0:45
Ag

Ach
� 1

� �
fc
0

fyt

ρs � ρs,min

Step 6. Check the clear space (sclear) between each turn of the spirals:

1 in: � sclear ¼ s� dsp � 3 in:

Example 5.1 Determine the maximum factored axial load that a short tied column

with the cross section shown below can resist. There is no moment on the column.

Determine whether the ties are appropriate. The compressive strength of the

concrete is 4,000 psi, and the reinforcement is A615 grade 60 steel.
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8 #8

#3 @ 14 in.

14 in.

14 in.A A

PR  ?

Section A-A

11
2 in. cover
(typical)

Solution

Step 1. Determine and check the steel ratio, ρg:

8#8 ! TableA2:9 ! Ast ¼ 6:32 in:2

14 in:� 14 in:column ! Ag ¼ 14� 14 ¼ 196 in:2

ρg ¼
Ast

Ag
¼ 6:32

196
¼ 0:032

0:01 < 0:032 < 0:08 ∴ ok

Step 2. Check the spacing of the longitudinal bars by obtaining the maximum

number of #8 bars that can be placed into the column from Table A5.1:

h ¼ 14 in: ! Maximumof 12#8bars

Step 3. Calculate the column load capacity, PR:

PR ¼ ϕ Pn ¼ 0:8ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i
PR ¼ 0:8� 0:65 0:85� 4 196� 6:32ð Þ þ 60� 6:32½ 	
PR ¼ 533 kip

Therefore, the maximum design (factored) load for this column is 533 kip.

Step 4. We skip this step because we need only the load capacity.

Step 5. Check the adequacy of the ties. The maximum spacing of the ties (smax) is:
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smax ¼ min 16db, 48dt, bminf g
smax ¼ min 16� 1, 48� 3=8 , 14 in:f g
smax ¼ min 16 in:, 18 in:, 14 in:f g ¼ 14 in:

∴ Therefore, #3 @ 14 in. for the ties is adequate.

Step 6. Check the tie arrangement, according to Figure 5.12. Determine the clear

space between the bars:

Cover Tie #8

# # #

Clear space ¼ 14� 2 1:5ð Þ � 2 3

8

� �� 3 1:0ð Þ
2

Clear space ¼ 3:6 in: < 6 in:

Because the clear space between the bars is less than 6 in., no additional

ties are necessary on the non-corner longitudinal reinforcing. Therefore, the

tie arrangement meets the ACI Code requirements.

Example 5.2 The circular spiral column shown below is subjected to a dead load

of 200 kip and a roof live load of 225 kip. The eccentricity of the loads is small.

The compressive strength of the concrete is 4,000 psi, and the reinforcement is

A615 grade 60 steel. Check the adequacy of the column including the spirals.

A A

PD 200 kip
PLr 225 kip

16 in.

6 #9 

3
8 in. diameter @ 2 in.

Section A-A
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Solution

Step 1. Determine and check the steel ratio:

6#9 ! Table A2:9 ! Ast ¼ 6:0 in:2

16 in:diameter column ! Ag ¼ π 16ð Þ2
4

¼ 201:1 in:2

ρg ¼
6:0

201:1
¼ 0:03

0:01 < 0:03 < 0:08 ∴ ok

Step 2. Obtain the maximum number of #9 bars for a 16 in. diameter column from

Table A5.1. The answer is nine bars. Therefore, 6 #9 bars can easily fit into

the column.

Step 3. Calculate the design resisting load, PR, using ϕ¼ 0.75 for spiral columns:

PR ¼ ϕ Pn ¼ 0:85ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i
PR ¼ 0:85� 0:75 0:85� 4 201:1� 6:0ð Þ þ 60� 6:0½ 	
PR ¼ 652 kip

Step 4. Determine the total factored load on the column:

Pu ¼ 1:2PD þ 1:6PLr ¼ 1:2ð Þ 200ð Þ þ 1:6ð Þ 225ð Þ
Pu ¼ 600 kip

Because PR¼ 652 kip>Pu¼ 600 kip, the column has enough strength to

carry the load.

Step 5. Check the amount of spiral steel:

Asp ¼ 0:11 in:2 3

8
in : dia: spiral

� �
hc ¼ h� 2 1:5ð Þ ¼ 16� 3 ¼ 13 in:

s ¼ 2:0 in: fromfigureð Þ
Calculate the spiral steel ratio, ρs:

ρs ¼
4Asp

hcs
¼ 4 0:11ð Þ

13ð Þ 2:0ð Þ ¼ 0:0169

The minimum spiral steel ratio, ρs,min is:

ρs,min ¼ 0:45
Ag

Ach
� 1

� �
fc
0

fyt
¼ 0:45

201:1

π 13ð Þ2
4

� 1

0
BB@

1
CCA 4

60

¼ 0:0155 < 0:0169 ∴ ok

Therefore, enough spiral steel is provided.
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Step 6. Check the clear space between each turn of spiral:

sclear ¼ s� dsp ¼ 2� 3

8
¼ 1:625 in:

1 in: < 1:625 in: < 3 in : ∴ ok

Therefore, the column is adequate for the given loading condition.

5.7 Design of Short Columns with Small Eccentricity

Design of reinforced concrete columns is a task that requires the involvement of

both the architect and the structural engineer. The shapes and sizes are usually

based on architectural requirements such as aesthetics and space needs. The con-

struction costs also play an important role. These costs can be reduced by doing the

following:

1. Make the forms reusable by making the column shapes and sizes as uniform as

possible.

2. Typically it is cost effective to use the fewest longitudinal reinforcements

(or largest bar size) possible. This also reduces the cost of ties, as fewer ties will

be required. In addition, difficulties in placement of the concrete will be reduced.

Often the column size (Ag) is preselected, or decided by factors other than

strictly structural considerations. In these cases, the structural designer needs only

to find the required amount of steel (Ast) in addition to designing the ties or spirals.

In other cases, however, the structural designer may want to determine the mini-

mum size of a “workable” column.

In the following we consider two cases: Ag¼ known, Ast¼ unknown; and Ag and

Ast¼ unknown.

5.7.1 Ag¼Known, Ast¼Unknown

A safe column requires that:

PR ¼ ϕPn � Pu

The load capacity of a tied column according to Equation (5.11) is:

PR ¼ 0:8ϕ 0:85fc
0 Ag � Ast

� �þ fyAst

h i

The useful capacity of the column (PR) must be at least equal to the factored load

on the column (Pu). Thus,
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Pu ¼ 0:8ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i

Because the area of concrete (Ag) is known we can solve the above equation for the

area of steel (Ast):

Ast 0:8ϕ fy � 0:85 fc
0

� �h i
¼ Pu � 0:8ϕ 0:85 fc

0Ag

� �
ϕ ¼ 0:65

Ast ¼
Pu � 0:8ϕ 0:85 fc

0Ag

� �
0:8ϕ fy � 0:85 fc

0
� � ð5:13Þ

Similarly, the required area of steel, Ast, for spiral columns is:

ϕ ¼ 0:75

Ast ¼
Pu � 0:85ϕ 0:85 fc

0Ag

� �
0:85ϕ fy � 0:85 fc

0
� � ð5:14Þ

Note that if the numerator in Equations (5.13) or (5.14) results in a negative value,

the column requires only 1 % longitudinal reinforcement (ρmin). The design steps

are shown in Figure 5.17 and are as follows:

Step 1. Determine the factored axial load on the column, Pu (as indicated in the

previous section):

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr if PL � 1:83PLrð Þ
Pu ¼ 1:2PD þ 1:6PLr þ 1:0PL if PL < 1:83PLrð Þ

Which steps you perform next depends on whether the column is to be tied

or spirally reinforced:

Tied Columns

Step 2. Calculate the required area of steel using Equation (5.13). Use ϕ¼ 0.65.

Step 3. Use Tables A2.9 and A5.1 to select bars. The minimum number of bars

for tied square columns is four. Determine whether 0.01� ρg� 0.08. If

ρg< 0.01, use ρg¼ 0.01. Also, if ρg> 0.08, or you cannot find any arrange-

ments of bars to fit inside the column, the column dimensions are not

enough and its cross-sectional area (Ag) must be increased.

Step 4. Design the ties. Use #3 ties for #10 and smaller longitudinal bars. Other-

wise, use #4 ties. The tie spacing, smax, is:

smax ¼ min 16db, 48dt, bminf g

Round down smax to the nearest 0.5 in. Check the tie arrangement using

Figure 5.12.
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Spiral Columns

Step 2. Calculate the required area of steel using Equation (5.14). Use ϕ¼ 0.75.

Step 3. Use Tables A2.9 and A5.1 to select bars. The minimum number of bars for

spiral columns is six. Determine whether 0.01� ρg� 0.08. Similar to

the tied columns, if ρg< 0.01, use ρg¼ 0.01; and if ρg> 0.08 or bars do

not fit inside the column, increase the column cross-sectional sizes.

Step 4. Design the spiral steel by equating the spiral steel ratio (ρs) to ρs,min (use

a minimum spiral diameter of 3

8
in.):

Design of Columns
(short with small eccentricity)
Ag known, Ast unknown

Calculate Pu

Design spirals:

s
4Asp

hcs

s,min 0.45
Ag

Ach

fc
fyt

1

Set s s,min and solve for pitch
(s). Round down to the nearest

0.25 in.
1 in. sclear 3 in.

Design ties:
smax min{16db , 48dt , bmin}
Check the tie arrangement

using Figure 5.12.

Tied column

1.

2. 2.

3.3.

4. 4.

 0.65

Calculate Ast :

Ast

Pu 0.8 (0.85fcAg)
0.8 (fy 0.85fc)

Use Tables A2.9
and A5.1 to select bars.

Calculate Ast :

Ast

Pu 0.85 (0.85fcAg)
0.85 (fy 0.85fc)

Use Tables A2.9
and A5.1 to select bars.

Spiral column

 0.75

Figure 5.17 Flowchart for the design of a short column with small eccentricity (Ag¼ known,

Ast¼ unknown)
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ρs,min ¼ 0:45
Ag

Ach
� 1

� �
fc
0

fyt

ρs ¼
4Asp

hcs
ρs ¼ ρs,min

Solve for s (spiral pitch) and round down to the nearest 1/4 in. Check

the clear pitch where sclear¼ s�dsp, which must be between 1 and 3 in.

If sclear is less than 1 in., increase the spiral size; if sclear is more than 3 in.,

use 3 in.

Example 5.3 Figure 5.18a shows the typical partial floor plan and sections of a

three-story reinforced concrete office building. The mechanical and electrical

systems for the floor and the roofing and insulation weigh 5 psf. The weight of

the partitions is 15 psf. The floor live load is 50 psf and the roof snow load is 30 psf.

Assume fc
0 ¼ 4,000psi and fy¼ 60,000 psi Design the square 16 in.� 16 in. tied

interior columns between the ground and second levels. Moments acting on the

columns are not significant, and you should not consider live load reduction in load

calculations. Assume that the unit weight of the concrete is 150 pcf. Neglect the

self-weight of the columns.

Solution

Step 1. Determine the loads acting on the columns:

Floor Loads

Weight of concrete slab ¼ 150 6=12ð Þ ¼ 75 psf

Mechanical and electrical ¼ 5 psf

Partitions ¼ 15 psf

Floor dead load ¼ 95 psf

The tributary area for the columns is 30 ft� 30 ft¼ 900 ft2. In

addition to supporting the slab, the columns also support beams B-1

and B-2.

Slab B-1 B-2

95 150 24 16 150 24 16
(900) 3 30 30

1,000 1,000 12 12 1,000 12 12

85.5 36 12.0 133.5kip

50
(900) 45kip

1,000

PD,floor

PD,floor

PL,floor

= + × × × + × ×

= + + =

= =
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EL 39'-0"
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EL 27'-0"

2nd level
EL 15'-0"

Ground
EL 0.00

Figure 5.18a Framing plans and sections for Example 5.3
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Roof Loads

Weight of concrete slab ¼ 150 6

12

� � ¼ 75 psf

Roofing and insulation ¼ 5 psf

Roof dead load ¼ 80 psf

The tributary area of the columns at roof level is the same as that of a

floor (900 ft2). Therefore

Slab B-1 B-2

80 150 24 16 150 24 16
(900) 3 30 30

1,000 1,000 1,000

1,000

12 12 12 12

72.0 36.0 12.0 120.0kip

30
snow load= (900) = 27.0 kip

PD,roof

PD,roof

PL,roof

= + × × × + × ×

= + + =

=

Because the column self-weight is small compared to the applied

loads, we neglect the column weight. The columns between the ground

and second levels carry two floor loads and one roof load:

PD ¼ 2PD, floor þ PD, roof

PD ¼ 2 133:5ð Þ þ 120:0 ¼ 387:0 kip

PL ¼ 2PL, floor

PL ¼ 2 45ð Þ
PL ¼ 90:0 kip

PLr ¼ 27:0 kip

Since 1.83PLr¼ 1.83(27)¼ 49.4kip<PL¼ 90kip, therefore, from Equa-

tion (2.3d):

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr

Pu ¼ 1:2 387ð Þ þ 1:6 90ð Þ þ 0:5 27ð Þ
Pu ¼ 621:9 kip

Step 2. Determine the required area of steel, Ast:

Ast ¼
Pu � 0:8ϕ 0:85 fc

0Ag

� �
0:8ϕ fy � 0:85 fc

0
h i

Ast ¼ 621:9� 0:8 0:65ð Þ 0:85 4:0ð Þ 16� 16ð Þ½ 	
0:8 0:65ð Þ 60� 0:85 4:0ð Þ½ 	

Ast ¼ 5:75 in:2
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Step 3. Using Table A2.9, select 8 #8 bars (As¼ 6.32 in2). Based on Table A5.1, the

maximum number of #8 bars for a 16 in.� 16 in. column is 12. Therefore,

8 #8 bars are ok. The provided column steel ratio, ρg, is:

ρg ¼
Ast

Ag
¼ 6:32

16� 16
¼ 0:0247

0:01 < ρg ¼ 0:0247 < 0:08 ∴ ok

Step 4. Design ties:

Use #3 ties for #8 longitudinal bars. The maximum tie spacing, smax, is:

smax ¼ min 16db, 48dt, bminf g
smax ¼ min 16 1:0ð Þ, 48 3=8ð Þ, 16f g
smax ¼ 16:0, 18:0, 16:0f g
smax ¼ 16:0 in:

Check the tie arrangement based on Figure 5.12:

Clear space ¼ 16� 2 1:5ð Þ � 2 3=8ð Þ � 3 1:0ð Þ
2

Clear space ¼ 4:6 in: < 6 in: ∴ One tie per set

Figure below shows the cross section of the designed column.

16 in.

8 #8

#3 @ 16 in.

16 in.

Figure 5.18b Final design of Example 5.3

5.7.2 Ag and Ast¼Unknown

Because we have to determine both the size of the column and the required area of

steel, and only one equation defines the column load capacity, we must assume

one unknown. According to the ACI Code, ρg can vary between 0.01 and 0.08.

If ρg¼ 0.01, the column size may be excessively large. On the other hand, ρg¼ 0.08

is not practical as the reinforcement will be very congested. Exceeding ρg¼ 0.04 is

not recommended, so for this process we use ρg¼ 0.03.
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A safe column must satisfy the following relationship:

PR ¼ ϕPn � Pu

From Equation (5.11) the load capacity of a tied column is:

PR ¼ 0:8ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i
� Pu

For design, we consider PR¼Pu. The column steel ratio, ρg, is defined as:

ρg ¼
Ast

Ag
! Ast ¼ ρgAg

Substituting Ast in the equation for Pu:

Pu ¼ 0:8ϕ 0:85 fc
0 Ag � ρgAg

� �
þ fy ρgAg

h i

and simplifying:

Pu ¼ 0:8ϕAg 0:85 fc
0 1� ρg
� �

þ fy ρg
h i

Solving Ag for tied columns:

Ag ¼ Pu

0:85ϕ 0:85 fc
0 1� ρg
� �

þ fyρg
h i ϕ ¼ 0:65 ð5:15Þ

Similarly, for spiral columns, the required column area, Ag, is:

Ag ¼ Pu

0:85ϕ 0:85 fc
0 1� ρg
� �

þ fyρg
h i ϕ ¼ 0:75 ð5:16Þ

Now that we have determined the column area, we can calculate the column

dimensions, h and b, as follows:

Ag ¼ h2�!h ¼ ffiffiffiffiffi
Ag

p
squarecolumnð Þ

Ag ¼ h� b rectangular columnð Þ

Ag ¼ πh2

4
�!h ¼ 2

ffiffiffiffiffi
Ag

π

r
roundcolumnð Þ
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As we mentioned before, the minimum practical size for a rectangular or square

column is 10 in. and for a round column is a diameter of 12 in.

Use the column area, Ag, to calculate the required area of steel, Ast using

Equations (5.13) or (5.14):

Ast ¼
Pu � 0:8ϕ 0:85 fc

0Ag

� �
0:8ϕ f y � 0:85 fc

0
� � tied columnð Þ

Ast ¼
Pu � 0:85ϕ 0:85 fc

0Ag

� �
0:85ϕ fy � 0:85 fc

0
� � sprial columnð Þ

ð5:17Þ

The steps for the design of short columns with small eccentricity are shown in

Figure 5.19 and are as follows:

Step 1. Determine the factored axial load on column, Pu:

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr if PL � 1:83PLrð Þ
Pu ¼ 1:2PD þ 1:6PLr þ 1:0PL if PL < 1:83PLrð Þ

and assume a column steel ratio ρg¼ 0.03.

Based on the type of column (i.e., tied or spiral), follow the appropriate

subsequent steps:

Tied Columns

Step 2. Calculate the required gross area of the column, Ag:

Ag ¼ Pu

0:8ϕ 0:85 fc
0 1� ρg
� �

þ fyρg
h i ϕ ¼ 0:65

Step 3. Determine the column size:

h¼ ffiffiffiffiffi
Ag

p
square columnð Þ

h� b¼ Ag rectangular columnð Þ

h¼ 2

ffiffiffiffiffi
Ag

π

r
round columnð Þ

Round h or b to the nearest full or even inch.

Step 4. Calculate the required area of steel, Ast:

Ast ¼
Pu � 0:8ϕ 0:85 fc

0Ag

� �
0:8ϕ fy � 0:85 fc

0
� �

310 5 Columns



Step 5. Use Tables A2.9 and A5.1 to select the size and number of longitudinal

bars. Remember that the minimum number of bars for square tied columns

is four.

Step 6. Design the ties. Use #3 ties for #10 and smaller longitudinal bars.

Otherwise, use #4 ties. The tie spacing, smax, is:

Design of Columns
(short with small eccentricity)

Ag , Ast unknown

Calculate Pu .
Assume g 0.03

Design spirals:

s
4Asp

hcs

s,min 0.45
Ag

Ach

fc
fyt

1

Set s s,min and solve for 
pitch(s). Round down to the 

nearest 1 4 in.
1 in. sclear 3 in.

Design ties:
smax min{16db , 48dt , bmin}
Check the tie arrangement

using Figure 5.12.

Tied column

 0.65

Calculate Ag :

Ag

Pu

0.8 [0.85fc (1 g) fy g ]

Calculate Ag :

Ag

Pu

0.85 [0.85fc (1 g) fy g ]

Determine the column size, b
 and h. Round to the nearest inch.

Determine the column size, h.
Round h to the nearest inch.

Use Tables A2.9
and A5.1 to select bars.

Use Tables A2.9
and A5.1 to select bars.

Calculate Ast :

Ast

Pu 0.8 (0.85fcAg)
0.8 (fy 0.85fc)

Calculate Ast :

Ast

Pu 0.85 (0.85fcAg)
0.85 (fy 0.85fc)

Spiral column

 0.75

1. 

2. 

3. 

4. 

5. 

6. 

2. 

3. 

4. 

5. 

6. 

Figure 5.19 Flowchart for the design of a short column with small eccentricity
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smax ¼ min 16db, 48dt, bminf g

Round down smax to the nearest 1/2 in. Check the tie arrangement using

Figure 5.12.

Spiral Columns

Step 2. Calculate the required gross area of the column, Ag:

Ag ¼ Pu

0:85ϕ 0:85 fc
0 1� ρg
� �

þ f yρg
h i ϕ ¼ 0:75

Step 3. Calculate the column size:

h¼ ffiffiffiffiffi
Ag

p
squarecolumnð Þ

h� b¼ Ag rectangular columnð Þ
h¼ 2

ffiffiffiffiffi
Ag

π

r
roundcolumnð Þ

Round h to the nearest full or even inch.

Step 4. Determine the required area of steel, Ast:

Ast ¼
Pu � 0:85ϕ 0:85 fc

0 Ag

� �
0:85ϕ fy � 0:85 fc

0
� �

Step 5. Use Tables A2.9 and A5.1 to select the size and number of longitudinal

bars. Remember that the minimum number of bars for spiral columns is six.

Step 6. Design the spiral steel by equating the spiral steel ratio, ρs, to ρs,min. Use a

minimum spiral diameter of 3/8 in.:

ρs,min ¼ 0:45
Ag

Ach
� 1

� �
fc
0

fyt

ρs ¼
4Asp

hcsρs ¼ ρs,min

Solve for s (spiral pitch) and round down to the nearest 1/4 in. Check the

clear pitch, sclear¼ s�dsp, which must be between 1 and 3 in. If sclear is less
than 1 in., increase the spiral size; if sclear is more than 3 in., use 3 in.

Example 5.4 Design a short square tied column to carry an axial dead load of

300 kip and a floor live load of 175 kip and a roof live load of 80 kip. Assume

that the applied moments on the column are negligible. Use fc
0 ¼ 4;000psi and

fy¼ 60,000 psi.
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Solution

Step 1. Compute the factored load, Pu.
1.83PLr¼ 1.83(80)¼ 146.4kip<PL¼ 175kip, therefore from Equation

2.3d:

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr
Pu ¼ 1:2 300ð Þ þ 1:6 175ð Þ þ 0:5 80ð Þ
Pu ¼ 680kip

Assume ρg¼ 0.03.

Step 2. The required area of the column, Ag, is:

Ag ¼ Pu

0:8ϕ 0:85 fc
0 1� ρg
� �

þ fy ρg
h i

Ag ¼ 680

0:80 0:65ð Þ 0:85 4ð Þ 1� 0:03ð Þ þ 60 0:03ð Þ½ 	
Ag ¼ 257 in:2

Step 3. For a square column, the size, h, is:

h ¼ ffiffiffiffiffi
Ag

p ¼ ffiffiffiffiffiffiffiffi
257

p

∴ h ¼ 16:0 in:

Try a 16 in.� 16 in. column:

Ag ¼ 16ð Þ 16ð Þ ¼ 256 in:2

Step 4. The required amount of steel, Ast, is:

Ast ¼
Pu � 0:8ϕ 0:85 fc

0Ag

� �
0:8ϕ fy � 0:85 fc

0
� �

Ast ¼ 680� 0:8� 0:65 0:85� 4� 256ð Þ
0:8� 0:65 60� 0:85� 4ð Þ ¼ 7:73 in2

Step 5. Select the size and number of bars. For a square column with bars uniformly

distributed along the edges, we keep the number of bars as multiples of

four. Using Table A2.9, 8 #9 bars (As¼ 8 in2) are selected.

From Table A5:1�! Maximum of 12 #9 bars ∴ ok

Step 6. Because the longitudinal bars are #9, select #3 bars for the ties. The

maximum spacing of the ties (smax) is:
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smax ¼ min 16db, 48dt, bminf g
smax ¼ min 16 1:128ð Þ, 48 3=8ð Þ, 16f g
smax ¼ min 18:0; 18:0; 16:0f g

∴ smax ¼ 16 in:

The selected ties are 3 @ 16 in.

To check the tie arrangement, use Figure 5.12. To check the number of

ties per set, calculate the clear space between the longitudinal bars:

Cover #3Ties #9 Bars

# # #

Clear space ¼
16� 2 1:5ð Þ � 2 3


8

� �
� 3 1:128ð Þ

2
Clear space ¼ 4:4 in: < 6:0 in:

Therefore, one tie per set is enough, as shown below:

16 in

16 in

#3 @ 16 in.

8 #9

Example 5.5 Solve Example 5.4 for a circular spiral column. fyt¼ 60,000 psi.

Solution

Step 1. The factored load was determined in Example 5.4: Pu¼ 680 kip. Assume

ρg¼ 0.03.

Step 2. The required gross area of column, Ag, is:

Ag ¼ Pu

0:85ϕ 0:85 fc
0 1� ρg
� �

þ fy ρg
h i

Ag ¼ 680

0:85 0:75ð Þ 0:85 4ð Þ 1� 0:03ð Þ þ 60 0:03ð Þ½ 	
Ag ¼ 209 in:2
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Step 3. The column size, h, is:

h ¼ 2

ffiffiffiffiffi
Ag

π

r
¼ 2

ffiffiffiffiffiffiffiffiffi
209

3:14

r
¼ 16:3 in:

We round down to 16 in.

∴ h ¼ 16 in:

The provided gross area of the columns, Ag, is:

Ag ¼ πh2

4
¼ 3:14 16ð Þ2

4
¼ 201 in:2

Step 4. The area of steel required, Ast, is:

Ast ¼
Pu � 0:85ϕ 0:85 fc

0Ag

� �
0:85ϕ fy � 0:85 fc

0
� �

Ast ¼ 680� 0:85� 0:75 0:85� 4� 201ð Þ
0:85� 0:75 60� 0:85� 4ð Þ

Ast ¼ 6:77 in:2

Step 5. Using Table A2.9, select 7 #9 bars. The provided area of steel is 7.00 in2.

Table A5:1 ! Maximum of 9 #9 bars ∴ok

Step 6. Design the required spiral:

Because the longitudinal bars are #9 bars, try 3

8
in. diameter spirals. The

cross-sectional area of the spiral, Asp, is 0.11 in
2. The column core size, hc, is:

hc ¼ h� 2 1:5ð Þ ¼ 16� 2 1:5ð Þ ¼ 13 in:

Therefore, the spiral steel ratio, ρs, is:

ρs ¼
4Asp

hcs
¼ 4 0:11ð Þ

13s

In the above equation, the pitch of spiral, s, is the unknown. The

minimum required spiral steel ratio, ρs,min, is:

ρs,min ¼ 0:45
Ag

Ach
� 1

� �
fc
0

fyt

where Ach is the area of core.

Ach ¼ πh2c
4

¼ 3:14 13ð Þ2
4

¼ 132:7 in:2
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Substituting the above into the equation for ρs,min:

ρs,min ¼ 0:45
201

132:7
� 1

� �
4

60

ρs,min ¼ 0:0154

Calculate the spiral maximum pitch, smax:

ρs ¼ ρs,min

4 0:11ð Þ
13smax

¼ 0:0154

smax ¼ 4 0:11ð Þ
13 0:0154ð Þ ¼ 2:20 in:

Use s¼ 2:0 in:

In addition, the spiral clear pitch, sclear, should be between 1 and 3 in.:

sclear ¼ s� dsp ¼ 2� 3

8
¼ 1:625 in:

1 in: < 1:625 in: < 3 in: ∴ok

Therefore, the spiral to be used for this column is 3/8 in. diameter at 2 in.

The following figure shows the final design of the column.

16 in.

7 #9

3 8 in. diameter @ 2 in.

5.8 Behavior of Short Columns Under Eccentric Loads

There are two types of columns, based on the applied loads: axially loaded and

eccentrically loaded. In monolithic concrete construction, most columns are eccen-

trically loaded, which means that the applied load is not acting at the center of the

column. In other words, the column is subjected to a moment in addition to the

axial load. In the following, we explore the behavior of such columns in more

detail.
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Figure 5.20a shows a column subject to a load, Pu, at a distance e from the center

of the column. By adding two equal and opposite forces of magnitude Pu at the

center of the column, as shown in Figure 5.20b, we nullify the net effect because

these forces cancel each other out.

The two equal and opposite forces at a distance e form a couple or moment with

magnitude Mu¼Pue, and a concurrent axial load of Pu applied concentrically as

shown in Figure 5.20c. Hence, we conclude that a column subjected to a load Pu at a
distance e from its center is equivalent to a concentric load, Pu, and a moment,

Mu¼Pue. Similarly, a concentric load, Pu, and a moment,Mu, may be represented by

an eccentric load, Pu, at an eccentricity e equal to Mu/Pu from the centroid.

The concentric load, Pu, creates a uniform compression stress while the applied

moment,Mu, adds bending stresses, as shown in Figure 5.5. Suppose a column has a

nominal axial load strength of Pn. If the load is applied at an eccentricity, e, the

column axial load capacity, Pn, will be reduced because it is subjected to a moment

in addition to the load. The moment, as shown on Figure 5.20c, adds compressive

stresses to the already compressed column. Thus, as the eccentricity of the load

increases, the applied moment increases, and the axial load capacity of the column

decreases.

Figure 5.21 shows the deformations and strains of a typical column subjected to

an axial load, Pu, and a bending moment, Mu. When the load is concentric, the

deformations across the section are uniform (i.e., the section shortens uniformly).

Because strain (ε) is defined as the ratio of the change in length to the original

length, the distribution of strain across such a section is uniform, as shown in

Figure 5.21a. Assume that the same column section now is subjected to only a

moment,Mu, which causes one side of the section to be in tension and the other side

in compression. The result is a linear distribution of deformation (Δ0) or strain (ε),
as shown in Figure 5.21b.

e e
PuPu

Pu

Mu Pue

PuPua b c

Figure 5.20 Eccentrically loaded column
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When a column is subjected to the combined action of an axial load, Pu, and a

moment, Mu, the compressive deformations and strains due to Pu and those due to

Mu add up, while the compressive deformations and strains due to Pu and the tensile
deformations and strains due to Mu reduce each other. Depending on how large Mu

is in comparison to Pu, a part of the section may be in tension (large Mu), or the

entire section may be in compression (smallMu). In Figure 5.21c, ε1 is the shape of
the strain distribution for a large Mu/Pu ratio, and ε2 is the strain distribution for a

smallMu /Pu ratio. Therefore, a column with a given amount of reinforcing may fail

due either to excessive compression, where the effects of the load and the moment

are added up, or to excessive tension, where tension from a large moment over-

comes the compression from the axial force.

The ultimate useful strain in the concrete is assumed to be 0.003. Any reinforced

concrete column with a given amount of reinforcing has a combination of Pu andMu

that causes the compressive strain in the concrete to reach 0.003 while tensile strain

in the steel at the opposite side of the section reaches the yield strain. This state is

called a balanced failure condition, which is somewhat similar to that defined for

reinforced concrete beams (see Chapter 2).

Example 5.6 Determine the nominal axial load strength, Pn, and the nominal

moment, Mn, for the short tied column shown in Figure 5.22a for the following

cases: (1) axial load (i.e., e¼ 0.0); (2) e¼ 5 in.; (3) balanced condition; (4) no load

but moment (i.e., e¼1); and (5) axial tensile load. Assume fc
0 ¼ 4;000 psi,

Pu Pu

1

Strain ε
ε ε1

ε2

Mu Mu

2

a b c

Figure 5.21 Deformations and strains from axial load and moment
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fy¼ 60,000 psi, and bending about the x–x axis. Do not consider reduction in Pn due
to accidental eccentricity.

Solution

1. Assuming the load is concentric, the nominal axial load capacity of the column is

the sum of the compressive strengths of the concrete and the steel:

Pn ¼ Po ¼ 0:85 fc
0 Ag � Ast

� �þ fy Ast

Ag ¼ 16ð Þ 24ð Þ ¼ 384 in:2

4#10 ! Table A2:9 ! 5:08 in:2

Pn ¼ 0:85 4ð Þ 384� 5:08ð Þ þ 60 5:08ð Þ
Pn ¼ 1,593 kip

Thus, for case 1, Pn¼ 1,593 kip, and Mn¼ 0.

2. Figure 5.22b shows case 2, which is e¼ 5 in. about the x–x axis. In order to

determine the value of Pn we must determine the stress in the steel and the

distribution of stress in the concrete at the time of failure. The stress and strain

in the steel are proportional up to the yield point. Because e¼ 5 in. is small

compared to the column depth (i.e., h¼ 24 in., and e=h ¼ 5=24 ¼ 0:21), assume

that the tensile steel has not reached yield (εt< εy) when the concrete reaches the
compressive strain of 0.003. Also, because the yield strain for grade 60 steel is

εy¼ 0.00207 and the compression steel is close to the compression edge of the

column, we can assume that the strain in the compression steel is more than the

yield εs0 > εy
� �

. Therefore,

εs0 > εy�!fs
0 ¼ fy

εt < εy�!fs < fy

16 in.

4 #10
3 in.

3 in.

y

y

xx 24 in.

Figure 5.22a Column of Example 5.6

5.8 Behavior of Short Columns Under Eccentric Loads 319



Figure 5.23 shows the assumed distribution of strain and stress at failure for

this section. The strains in the tension and the compression steel εt and εs0ð Þ
depend on the location of the neutral axis (c). From similarity of the triangles of

Figure 5.23b, determine the relationship between εt and c:

εt
0:003

¼ d � c

c

εt ¼ 0:003
d � c

c

� �

P n y

x

y

x 

5 in.

Figure 5.22b Isometric view of column

d

c

0.003

3 in.

3 in.

18 in.

Pn

As

x x

P n

T

0.85fc

C2
C1

y

y

Column section

Location of the
axial load

As

5 in.

14 in.

16 in.

a  0.85c

a cb

Stress distribution and forcesStrain distribution

εt

εs

Figure 5.23 Assumed strain and stress distribution for e¼ 5 in. for Example 5.6
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The strain in the tensile steel is:

fs ¼ Es εt ¼ 29,000 0:003ð Þ d � c

c

� �

fs ¼ 87
d � c

c

� �

Use the volumes under the stresses shown in Figure 5.23c to calculate the

compression and tensile forces acting on the section:

C1 ¼ 0:85 fc
0 ab ¼ 0:85 4ð Þ 0:85cð Þ 16ð Þ ¼ 46:24c kip

C2 ¼ As
0 fy � 0:85 fc

0
� �

C2 ¼ 2:54 60� 0:85 4ð Þ½ 	 ¼ 143:8 kip

The tensile force, T, is:

T ¼ fs As

Substituting fs:

T ¼ 87
d � c

c

� �
As

T ¼ 87
21� c

c

� �
2:54ð Þ ¼ 221

21� c

c

� �
kip

Equilibrium requires that the sum of forces be equal to zero.

Pn � C1 � C2 þ T ¼ 0

or

Pn ¼ C1 þ C2 � T

Pn ¼ 46:24cþ 143:8� 221
21� c

c

� �
kip

In addition, the section needs to satisfy the second equilibrium equation

(i.e., the sum of moments must equal zero). Taking the moments about the

location of tensile steel (As) for simplicity:

Pn 14ð Þ � C1 d � a

2

� �
� C2 18ð Þ ¼ 0

or

Pn 14ð Þ ¼ C1 d � a

2

� �
þ C2 18ð Þ

Pn ¼ 1

14
46:24cð Þ 21� 0:85c

2

� �
þ 143:8ð Þ 18ð Þ

	 

Pn ¼ �1:40c2 þ 69:36cþ 184:89 kip
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Equating the two expressions for Pn:

46:24cþ 143:8� 221
21� c

c

� �
¼ �1:40c2 þ 69:36cþ 184:89

After some simplifications, the following third order equation results:

1:40c3 � 23:12c2 þ 179:91c� 4,641 ¼ 0

Solving for c by trial and error:

c ¼ 18:93 in:

Substituting c into either equation for Pn:

Pn ¼ 995 kip

Having determined c and Pn, we now check the correctness of our assump-

tions. First, calculate the strain in the compression steel εs0ð Þ. From similarity of

the triangles of Figure 5.23b:

εs0

0:003
¼ c� 3

c

εs0 ¼ 0:003
c� 3

c

� �

εs0 ¼ 0:003
18:93� 3

18:93

� �

εs0 ¼ 0:00252 > εy ¼ 0:00207

Strain in the compression steel is more than the yield strain; therefore, the

stress is equal to the yield stress fs
0 ¼ fy

� �
. Thus, the assumption that the

compression reinforcement had yielded is correct. Now we need to determine

the level of strain in the tensile steel:

εt ¼ 0:003
d � c

c

� �

εt ¼ 0:003
21� 18:93

18:93

� �
εt ¼ 0:00033 < εy ¼ 0:00207

Hence, the second assumption (i.e., the tensile steel has not yielded) was also

correct.
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Calculate the nominal moment:

Mn ¼ Pne ¼ 995
5

12

� �
Mn ¼ 415 ft-kip

Thus for case 2, Pn¼ 995 kip and Mn¼ 415 ft-kip

3. Case 3 is the balanced condition. The balanced failure condition occurs when the

extreme concrete compression strain is 0.003 and the steel tensile strain is equal

to the yield strain, εy. In this case, the strain distribution across the section is

defined, so there is no need to make any assumptions. Figure 5.24 shows the

strain and stress at balanced failure condition.

Using similarity of the triangles of Figure 5.24b, locate the neutral axis:

0:003

εy
¼ cb

d � cb

0:003 d � cbð Þ ¼ εycb

cb ¼ 0:003d

0:003þ εy

cb ¼ 0:003 21ð Þ
0:003þ 0:00207

cb ¼ 12:43 in:

Also from similarity of the triangles, calculate the strain (and stress) in the

compression steel εs0 and fs
0ð Þ:

C2
C1

0.85fc

16 in.

0.003

Pn Pb
Pn

Location of the
applied load (to be found)

X

ebcb
ab 0.85cb

0.00207

3 in.

3 in.

fy
T

As

As

noitubirtsidssertSniartSnmuloC
     and forces

d 
 2

1 
in

.

18 in.

a b c

εs

εy

Figure 5.24 Strain, stress, and force distributions at balanced condition
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εs0

0:003
¼ cb � 3

cb

εs0 ¼ 0:003 cb � 3ð Þ
cb

εs0 ¼ 0:003 12:43� 3ð Þ
12:43

εs0 ¼ 0:00228

Because εs0 ¼ 0:00228 > εy ¼ 0:00207, fs
0 ¼ fy ¼ 60 ksi: The sum of the forces

acting on the section is Pn or Pb (see Figure 5.24c):

C1 ¼ 0:85 fc
0 ab ¼ 0:85 4:0ð Þ 0:85� 12:43ð Þ 16ð Þ ¼ 574:6 kip

C2 ¼ As
0 fy � 0:85 fc

0
� �

¼ 2:54 60� 0:85 4ð Þ½ 	 ¼ 143:8 kip

T ¼ As fy ¼ 2:54 60ð Þ ¼ 152:4 kip

Pn ¼ Pb ¼ C1 þ C2 � T ¼ 574:6þ 143:8� 152:4

Pn ¼ 566 kip

From the sum of moments about the tensile steel, determine the balanced

eccentricity, or eb:

Pn eb þ 9ð Þ ¼ C1 d � 0:85cb
2

� �
þ C2 18ð Þ

566 eb þ 9ð Þ ¼ 574:6 21� 0:85� 12:43

2

� �
þ 143:8 18ð Þ

eb þ 9 ¼ 20:53

eb ¼ 11:53 in:

and the nominal moment at the balanced condition, Mn¼Mb, is:

Mn ¼ Pne ¼ 566
11:53

12

� �
¼ 544 ft-kip

Thus, for case 3, Pn¼ 566 kip and Mn¼ 544 ft-kip. Note that as the moment

increases, the axial load decreases.

4. In case 4 the column is subjected only to moment. This is obviously only a

theoretical case, as columns always have an axial load. Because the eccentricity

is the ratio of moment to applied load, this condition represents a very large

(infinite) eccentricity. Essentially, columns subjected to pure moments behave

like doubly- reinforced beams. Assuming steel in tension yields (fs¼ fy) before
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concrete crushes in compression, the stress in the compression steel has to be less

than the yield stress fc
0 < fy

� �
to make the sum of the compression forces equal

to the tensile force. This is because the areas of the tension steel and the

compression steel are equal As ¼ As
0 ¼ 2:54 in:2ð Þ, and if both of them yield,

the force in the concrete would have to be zero, which definitely cannot be true.

Figure 5.25 shows the strain and stress distributions of the section for this

condition. Because we do not know the exact level of strain in the tension steel,

we cannot determine the location of the neutral axis, c, by using similarity of the

triangles of Figure 5.25b. Therefore, determine c through the use of equilibrium

equations. First calculate the stress in the compression steel as a function

of c. From similarity of the triangles in Figure 5.25b:

εs0

0:003
¼ c� 3

c

εs0 ¼ 0:003 c� 3ð Þ
c

Because εs0 < εy �! fs
0 ¼ Esεs0

fs
0 ¼ 29,000� 0:003 c� 3ð Þ

c

fs
0 ¼ 87

c� 3ð Þ
c

The forces acting on the section are:

16 in.

3 in.

3 in.

Mn

As

Column section

0.85fc

a 0.85c

T

Stress distribution and forces

0.003

c

Strain distribution

As

s
C2
C1

21 in.
18 in.

a b c

εt  > εy

ε

Figure 5.25 Strain, stress, and force distribution of column subjected only to moment
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C1 ¼ 0:85 fc
0 ab

C1 ¼ 0:85 4ð Þ 0:85cð Þ 16ð Þ ¼ 46:24c kip

C2 ¼ As
0 fs0 � 0:85 fc

0½ 	

C2 ¼ 2:54 fs
0 � 0:85 4ð Þ½ 	 ¼ 2:54 87

c� 3ð Þ
c

� 3:4

	 


C2 ¼ 221
c� 3ð Þ
c

� 8:64 kip

T ¼ As fy ¼ 2:54 60ð Þ ¼ 152:4 kip

Equilibrium of the forces acting on the section (Figure 5.25c) requires that:

C1 þ C2 ¼ T

46:24cþ 221 c� 3ð Þ
c

� 8:64 ¼ 152:4

Simplifying the above equation, we get:

46:24c2 þ 60c� 663 ¼ 0

which is a second order equation. Solving for c:

c ¼
�60þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60ð Þ2 þ 4 46:24ð Þ 663ð Þ

q
2 46:24ð Þ

c ¼ 3:2 in:

The stress in the compression steel ( fs
0) is:

fs
0 ¼ 87

c� 3ð Þ
c

¼ 87 3:2� 3ð Þ
3:2

fs
0 ¼ 5:44 ksi

and the magnitude of the forces acting on the section is:

C1 ¼ 46:24c ¼ 46:24 3:2ð Þ ¼ 148:0 kip

C2 ¼ 221 c� 3ð Þ
c

� 8:64 ¼ 221 3:2� 3ð Þ
3:2

� 8:64 ¼ 5:2 kip

T ¼ As f y ¼ 2:54 60ð Þ ¼ 152:4 kip

C1 þ C2 ¼ 148:0þ 5:2 ¼ 153:2 kip

The small difference between C1 +C2 and T is due to round-off errors and is

negligible. To calculate the nominal moment capacity, Mn, we determine the

moment of these forces about the tensile steel:
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Mn ¼ C1 d � 0:85c

2

� �
þ C2 d � 3ð Þ

Mn ¼ 148 21� 0:85� 3:2

2

� �
þ 5:2 21� 3ð Þ

Mn ¼ 2907þ 93 ¼ 3000 in:-kip=12 ¼ 250 ft-kip

Thus, for case 4, Pn¼ 0 and Mn¼ 250 ft-kip.

5. Normally, concrete columns are not subjected to pure tension. To obtain a

complete picture of the effects of loads and moments, however, we consider

the case of a tensile member. Concrete cracks in tension and does not provide

any strength. Therefore, the column’s tensile strength is provided only by the

steel (4 #10 bars):

Pn ¼ �As fy ¼ �5:08 60ð Þ ¼ �305 kip

Thus, for case 5, Pn¼ –305 kip and Mn¼ 0. The negative sign means that the

column is in tension.

The following table shows the calculated values of Pn,Mn, and corresponding e.

Mn (ft kip) Pn (kip) e (in.)

0 1,593 0

415 995 5

544 566 11.53

250 0 1
0 �305 0

Figure 5.26 shows the plot of these values to better visualize the results

obtained. The horizontal axis in the graph is Mn¼Pne and the vertical axis is Pn.
The graph shows the combinations of moment, Mn, and load, Pn, at which the

column may fail. This graph is called a column interaction diagram. The

interaction diagram in Figure 5.26 is a unique property of a specific column

with given dimensions, materials, and amount of reinforcing. When the load is

applied with no eccentricity or moment, the column has a nominal axial load

capacity of Pn¼ 1,593 kip. As the eccentricity, e, increases (or the moment on

the column increases), the axial load capacity of the column decreases until it

reaches the balanced failure condition, which is when the failure of concrete in

compression and the yielding of steel in tension occur simultaneously. Values of

Pn and Mn above the balanced condition cause the concrete to crush in compres-

sion (εc¼ 0.003) before the steel yields in tension. Therefore, the failure of the

column section in this region is compression controlled. If the eccentricity

increases from the balanced condition (eb), the failure of the section occurs at

decreasing values of Pn and Mn. This may seem odd; however, when the

eccentricity increases from a balanced condition (e> eb), the steel in tension

yields before concrete in compression crushes (i.e., the element, in fact, may act

as a flexural or bending member). In this region the failure of the section is
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tension controlled. Because the column fails in tension in this region, an increas-

ing compression force, Pn, keeps the section from failing and results in an

increase in its moment capacity, Mn, as well.

The interaction diagram also shows that, if we draw a line connecting a point

on the diagram to the origin (Pn¼Mn¼ 0), any point on this line represents a P
andM combination that has the same eccentricity (e), because the ratios of P and

M are constant.

Here we repeat Example 5.6 to gain a better understanding of the interaction

diagram and its relationship to the distribution of strain across the section. This

time, however, we examine Pn andMn values for different levels of strain in the

tensile steel (εt).

Example 5.7 Determine Mn and Pn from the interaction diagram of Example 5.6

for the following different levels of strain in the tensile steel: (1) εt¼ 0.0;

(2) εt¼ 0.25εy; (3) εt¼ 0.50εy; (4) εt¼ 0.75εy; (5) εt¼ εy; (6) εt¼ 0.0035;

(7) εt¼ 0.0040; and (8) εt¼ 0.0050.

Solution For fy¼ 60,000 psi, the yield strain, εy, is:

εy ¼
fy
Es

¼ 60,000

29,000,000
¼ 0:00207

The stress in the steel depends on its strain level:

if εt < εy ! fs ¼ Es εt
if εt � εy ! fs ¼ fy

ð5:18Þ

Now, we consider the distribution of strain and stress on the column section, as

shown in Figure 5.27.

Pn(kip)

Balanced condition

Tension-controlled

Compression-controlled

2,000

1,500

1,000

500

100 300 400 500 600

(0, 305)

(250, 0)

(0, 1,593)

M
e  5 in.

Mn Pne (ft-kip)

e eb
11.53 in.

P

(415, 995)

(544, 566)

500

200

Figure 5.26 Column interaction diagram of Example 5.6
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In order to determine Pn and Mn for different values of εt, we must calculate the

stress levels of the steel in tension (fs) and in compression ( fs
0 ). The tensile stress

of steel can be determined from the strains (εt) given in the problem statement.

To calculate ( fs
0 ), however, we must determine the location of the neutral axis

(c) for each strain case.

From similarity of the triangles of Figure 5.27b:

c

0:003
¼ d � c

εt

c ¼ 0:003d

0:003þ εt
¼ 0:003 21ð Þ

0:003þ εt
¼ 0:063

0:003þ εt

ð5:19Þ

The strain in the compression steel εs0ð Þ is:
c

0:003
¼ c� 3

εs0

εs0 ¼ 0:003 c� 3ð Þ
c

ð5:20Þ

if εs0 < εy ! fs
0 ¼ Es εs0

if εs0 � εy ! fs
0 ¼ fy

The forces acting on the section shown in Figure 5.27c are:

C1 ¼ 0:85 fc
0ab ¼ 0:85 4ð Þ 0:85cð Þ 16ð Þ ¼ 46:24c kip

C2 ¼ fs
0As

0 � 0:85fc
0As

0 ¼ fs
0 2:54ð Þ � 0:85 4ð Þ 2:54ð Þ

¼ 2:54 fs
0 � 8:64 kip

T ¼ As fs ¼ 2:54 fs kip

C2
C1

0.85fcb 16 in. 0.003

PnPn

c

e

y

a 0.85c

fs
T

   Column section Strain distribution Stress distribution

x

As

As

3 in.

3 in.

e

9 in.

x

d 
 2

1 
in

.

and forces

a b c

εt

εs

Figure 5.27 Strain, stress, and force distribution of column of Example 5.7
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Equilibrium requires that:

Pn ¼ C1 þ C2 � T
Pn ¼ 46:24cþ 2:54 fs

0 � 8:64� 2:54 fs kip
ð5:21Þ

Taking moments about the location of the tensile force:

Pn eþ 9ð Þ ¼ C1 d � a

2

� �
þ C2 d � 3ð Þ

Pn eþ 9ð Þ ¼ 46:24c 21� 0:85c

2

� �
þ 2:54 fs

0 � 8:64ð Þ 21� 3ð Þ

e ¼ 46:24c 21� 0:425cð Þ þ 18 2:54 fs
0 � 8:64ð Þ

46:24cþ 2:54 fs
0 � 8:64� 2:54 fs

� 9

ð5:22Þ

Mn ¼ Pn
e

12
ð5:23Þ

For each strain case we can use Equations (5.18), (5.19), and (5.20) to determine

the location of the neutral axis (c) and the stress in the tensile and the compression

steels (fs and fs
0). Having c, fs, and fs

0, we can calculate Pn, e, and Mn from

Equations (5.21) to (5.23). The table below shows the results for each case:

Case εt ε0
s c (in.) Mn (ft-kip) Pn (kip) e (in.)

1 0.00 0.0026 21.0 357 1,115 3.84

2 0.25(0.00207) 0.0025 17.91 439 934 5.64

3 0.5(0.00207) 0.0024 15.62 488 790 7.41

4 0.75(0.00207) 0.0023 13.84 520 670 9.32

5 1.0(0.00207) 0.0023 12.43 544 566 11.53

6 0.0035 0.0021 9.69 517 440 14.1

7 0.0040 0.0020 9.0 502 402 14.96

8 0.0050 0.00186 7.875 473 340 16.7

Figure 5.28 shows the interaction diagram generated from the results of Exam-

ples 5.6 and 5.7. This diagram is the same as the one shown in Figure 5.26. The

levels of the tensile steel strain (εt) and stress (fs) along the curve are also shown.

This interaction diagram shows the maximum nominal capacity of the column. Any

combination of Pu and Mu that lies inside the curve (e.g., point A) is safe for the

column; however, any combination of Pu and Mu that lies outside the interaction

diagram (e.g., point B) will cause the column to fail.

5.9 ACI Column Interaction Diagrams

In Examples 5.6 and 5.7, the rectangular column had 4 #10 bars. But if we increase

the area of reinforcements (e.g., to 8 or 12 #10 bars), the shape of the interaction

diagram would remain approximately the same but would have larger values of Pn
and Mn, as shown in Figure 5.29.
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Figure 5.28 Column interaction diagram of Example 5.7
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4 #10

Figure 5.29 Column interaction diagrams for different areas of steel reinforcements
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Column interaction diagrams exist for rectangular and round columns with

different reinforcement arrangements, concrete compression strength, and steel

tensile strength. These curves are similar to the one shown in Figure 5.29. To

make these curves more versatile, however, the Pn values are substituted by

Kn ¼ Pn
fc
0Ag

, which is a nondimensional parameter as long as the values are sub-

stituted with consistent units (e.g., kip and inches). Also,Rn ¼ Mn

fc
0Ag h

is used for the

horizontal axis instead of Mn, which is a nondimensional value. Each set of curves

is made for a specific arrangement of reinforcement, compressive strength of

concrete ( fc
0), yield strength of steel (fy), steel ratio (ρg), and parameter γ, which

represents the spread of reinforcements in the column:

γ ¼ h0

h
ð5:24Þ

where h0 and h are the distance between the center to center of the extreme steel in

the column, and the total depth of the column, respectively, as shown in Figure 5.30.

The dimensions h0 and h are measured perpendicular to the bending axis of the

column.

Figure 5.31 shows the interaction diagram for a rectangular column with steel

reinforcement uniformly distributed around the column. It is from the ACI Design

Handbook, SP-17(11). In Figure 5.31, fc
0 ¼ 4 ksi; fy¼ 60 ksi, and γ¼ 0.6.

The interaction diagrams are for ρg¼ 0.01–0.08. Figure 5.32 is a similar interaction

diagram for a circular column with fc
0 ¼ 4 ksi, fy¼ 60 ksi, and γ¼ 0.8. The

diagrams show the levels of stress in the tension steel (fs) as a fraction of the steel

yield strength (fy). In addition, they indicate tensile strains of εt¼ 0.0035 and

0.0050. Another value that is given is Kmax, which is the maximum useable nominal

axial load capacity for a tied column:

h

h

h

h

Bending axis Bending axis

Figure 5.30 Definition of parameter γ γ ¼ h0=hð Þ
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Kmax ¼ 0:80 0:85 fc
0 Ag � Ast

� �þ Ast fy

h i
ð5:25Þ

In essence Kmax represents a cut-off level for Kn (and consequently for Pn). The
value of Kmax in the diagrams is defined for tied columns, as just mentioned. For a

spiral column, the value from the diagrams has to be multiplied by
0:85

0:80
¼ 1:0625

(i.e., the ratio of the limiting coefficients that account for accidental moments).

These computer-generated interaction diagrams assume the reinforcement to be a

thin rectangular tube for rectangular cross sections that have longitudinal reinforce-

ments distributed along all four faces, and a thin circular tube for patterns of

longitudinal steel bars arranged in a circle.
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Figure 5.31 ACI column interaction diagram [SP-17(11)]
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5.10 Design Axial Load Strength (ϕPn),
and Moment Capacity (ϕMn)

The latest ACI column interaction diagrams [ACI Design Handbook, SP-17(11)]

take no consideration of the strength reduction factor, ϕ, which is a significant

change from previous versions. This change is intended mainly to make the dia-

grams as universal as possible.

As in the case of beams, the design resisting moment of columns (MR) and their

design axial load strength (PR) are:

MR ¼ ϕMn

PR ¼ ϕPn
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Figure 5.32 ACI column interaction diagram [SP-17(11)]
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where ϕ is the column strength reduction factor, which depends on the level of

strain in the tension steel. Figure 5.33 shows the column strength reduction factor as

a function of net tensile steel strain (εt) for tied and spiral columns. Most building

columns are compression controlled, that is, the concrete reaches the ultimate

useable compressive strain of 0.003 before the strain in the tensile steel reaches

the yield strain (εt). The ϕ factor is constant for compression-controlled sections

(0.75 for spiral columns and 0.65 for tied columns). If the moment on the column is

relatively large compared to the axial load, the column section may be in the

transition zone. Then the ϕ factor varies between 0.75 for spiral columns, or 0.65

for tied columns, and 0.90 as εt varies between εty and 0.005. If εt is more than

0.005, the section is tension controlled, and ϕ is constant and equal to 0.9. Such a

section acts like a flexure member (beam) rather than a compression member

(column).

If the column section is compression controlled, we can easily calculate the

design resisting axial load, PR, and the design resisting moment,MR; however, when

the column is in the transition zone, we must calculate ϕ from εt as given below

from ACI 318-14, Table 21.2.2

ϕ ¼ 0:75þ 0:15
εt � εty
� �
0:005� εty
� � spiral columnð Þ ð5:26Þ

0.9

0.75

0.65

0.005

Transition
Compression

controlled

Tied columns

Spiral columns

Tension
controlled

ety
et

Figure 5.33 Variation of strength reduction factor (ϕ) with the net tensile strain in steel (εt)
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ϕ ¼ 0:65þ 0:25
εt � εty
� �
0:005� εty
� � tied columnð Þ ð5:27Þ

These values have significance in only a small area of the interaction diagrams (i.e.,

the zone between
fs
fy
¼ 1:0 and εt¼ 0.005).

Graphs that relate ϕ and Kn have been developed for each interaction diagram to

simplify the computation of ϕ. Figures 5.34 and 5.35 are examples of such graphs

and are to be used in conjunction with the interaction diagrams of Figures 5.31 and

5.32, respectively. Appendix A contains additional interaction diagrams and their

corresponding Kn versus ϕ graphs.

5.11 Analysis of Short Columns with Large Eccentricity
Using Interaction Diagrams

The analysis of columns with large eccentricities can be approached in many

different ways. A possible approach is to ask the question, “Is a particular column

safe or not for a given set of Pu and Mu?” Another approach is to determine the

largest factored axial load that the column may take with a given moment. Yet

another approach is to ask the question, “What is the largest eccentricity (e) that a

0.0
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0.4

0.65 0.70

0.07

0.06

0.03

0.02

58.057.0 0.80 0.90
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K
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P
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0.05

g  0.01

Figure 5.34 Kn vs. ϕ diagram for the interaction diagram of Figure 5.31
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given factored load may safely have?” Regardless of the approach, one can always

take advantage of the interaction diagrams.

The value of ϕ is constant if the section is compression controlled. For columns

in the transition zone, however, ϕ must be adjusted accordingly. Therefore, the

procedures for the analysis of columns in compression—controlled and non–com-

pression-controlled zones are somewhat different.

5.11.1 Analysis of Columns with Compression-Controlled
Behavior

The following are steps for the analysis of compression-controlled members which

are summarized in Figure 5.36:

Step 1. Calculate and check the column steel ratio, ρg:

0:01 � ρg ¼
Ast

Ag
� 0:08

The strength reduction factor, ϕ, is equal to 0.65 for tied, and 0.75 for

spiral columns.

Step 2. Calculate γ ¼ h0

h
(see Figure 5.30) and the nondimensional factors Kn or Rn:

Kn ¼ Pu

ϕ fc
0Ag

Rn ¼ Mu

ϕ fc
0Agh

K
n

P
n

f c
A

g

0.75
0

0.2

0.6

0.4
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Figure 5.35 Kn vs. ϕ diagram for the interaction diagram of Figure 5.32
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If we know both Pu andMu, then we may take these calculated Kn and Rn

values as the “demand” on the section. We now enter into the appropriate

interaction diagram (based on fc
0, fy, and γ) and locate the point defined by

the calculated Kn and Rn. If this point falls within the curve defined by ρg
(calculated in step 1), the Pu and Mu combination is safe for this column.

Another approach is to calculate only Kn (or Rn) and, from the appropri-

ate interaction diagram, obtain the corresponding Rn (or Kn) using the

calculated ρg.

Analysis of Columns
(short with large eccentricity)

(compression - controlled section)

Calculate and check the steel ratio:
0.01 ≤ ρg ≤ 0.08

φ = 0.65 (tied column)
φ = 0.75 (spiral column)

h ′ Pu MuCalculate =γ

γ
h

, Kn = φ A
(or Rn = φf ′ A h

)
f ′c  

f ′c  

g c  g

Select the interaction diagram based on f ′c , fy , and  , and find Rn (or Kn)
for the computed ρg (Appendix A).

Is the column in the 
compression-

controlled zone of 
the interaction 

diagram?

No Use the flowchart for a 
non–compression-controlled

section (Figure 5.37).

Yes

Calculate
Mn Rn Agh , MR = φMn

Pn = Knfc′Ag,  PR = φPn

The section is ok.
Check the ties/spirals.

Yes

4.

PR ≥ Pu
or

MR ≥ Mu?

No
The section is N.G.

1.

2.

3.

5.

=

Figure 5.36 Flowchart for the analysis of columns with compression-controlled section
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We need to consider two important points here:

1. If the point defined by the calculated Kn or Rn on the interaction

diagram falls between Kmax and
fs
fy
¼ 1:0 (balanced condition), the

column section is compression controlled, and the assumed ϕ is correct.

Therefore, proceed to step 3.

2. If the point defined by the calculated Kn or Rn falls below
fs
fy
¼ 1:0, the

column section is either in the transitional or the tension-controlled zone.

This means that the ϕ value used in step 1 is not correct and must be

adjusted. We need to proceed with the steps for the analysis of non-

compression-controlled columns, as discussed in step 2a and summa-

rized in Figure 5.37.

Step 3. Calculate the axial load (or moment) capacities:

Pn ¼ Kn fc
0Ag, PR ¼ ϕPn

Mn ¼ Rn fc
0Agh, MR ¼ ϕMn

ϕ¼ 0.65 for the tied columns and 0.75 for the spiral columns.

Step 4. Check the column capacity. For the column to be adequate, its axial load

capacity, PR, has to be greater than the applied load, Pu or the column

moment capacity, MR, has to be larger than the applied moment, Mu:

PR � Pu or MR � Mu

Step 5. Check the ties or spirals. If the section is ok, we can check the ties or spirals

as we did for the columns with small eccentricity (step 5 of Figure 5.16).

5.11.2 Analysis of Non-compression-Controlled Columns

The following are steps for the analysis of non-compression-controlled columns,

which are summarized in Figure 5.37.

Step 1. Same as that for compression-controlled columns.

Step 2a. Estimate the ϕ value. If the column is not compression controlled, the

assumption made for the ϕ factor is not correct. A larger ϕ value, which

will increase the PR and MR capacities, can be used in the non-

compression-controlled region of the interaction diagrams. The ϕ factor,

however, varies with the tensile steel strain (εt), as shown in Figure 5.33.

Because the value of εt at this stage is unknown, we estimate a new ϕ
value and recalculate Kn or Rn if only one of them is given.
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Analysis of Columns
(short with large eccentricity)

(non–compression-controlled section)

Select the interaction diagram based on
fc , fy , and , and find Rn (or Kn) for the

computed g (Appendix A).

Calculate Pn KnfcAg , PR Pn  or
Mn Rnfc Agh , MR Mn

The section is ok.
Check the ties/spirals.

The section is N.G.

 Estimate the  value from the
appropriate Kn versus  diagram.

 Recalculate the  value 
using the Kn versus  diagrams.

Calculate Kn or Rn
Pu

fcAg

Mu

fcAgh

Is the new 
value the

same as the
previous one?

PR  Pu
or

MR  Mu?

Yes

Yes

No

No

4.

2a.

2b.

3.

5.

Figure 5.37 Flowchart for the analysis of columns with non–compression-controlled section
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Kn ¼ Pu

ϕ fc0Ag

Rn ¼ Mu

ϕ fc0Agh

Use fc
0, fy, and γ to select the appropriate interaction diagram. Having

Kn or Rn and, ρg we can either locate the corresponding point on the

diagram, when both Kn and Rn are known, or obtain the corresponding

Rn (or Kn), when only one of them is known.

Step 2b. Recalculate the ϕ value. At this point, recalculate the ϕ value using the Kn

value obtained in step 2a. We can determine the corrected ϕ factor by

using Kn versus ϕ diagrams such as those in Figures 5.34 and 5.35. If the

new ϕ factor is close to the previous estimate, proceed to step 3. Otherwise,

move back to step 2a and use the new ϕ factor to revise Kn or Rn, then

repeat the process.

Step 3. Calculate the column’s resisting load and moment:

Pn ¼ Kn fc
0Ag PR ¼ ϕPn

Mn ¼ Rn fc
0Agh MR ¼ ϕMn

Step 4. Check the adequacy of the column. The following relationships must be

satisfied for the column to be adequate:

PR � Pu or MR � Mu

Step 5. Check the ties or spirals. If the column section is adequate, we can check

the ties or spirals (step 5 of Figure 5.16).

Example 5.8 Determine the maximum axial load that can be applied on the short

tied column section shown below (this is the column used in Example 5.1). The

applied dead and roof live load moments are MD¼ML¼ 35 ft-kip. Use fc
0 ¼ 4,000

psi and fy¼ 60,000 psi.

8 #8

#3 @ 14 in.

11
2 in. cover (typical)

14 in.

14 in.
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Solution

Step 1. Check the column steel ratio, ρg:

ρg ¼
Ast

Ag
¼ 6:32

196
¼ 0:032

0:01 < ρg ¼ 0:032 < 0:08 ∴ok

h ¼ 14 in: ! TableA5:1 ! Maximumof 12#8bars ∴ok

This is a tied column; therefore, ϕ¼ 0.65.

Step 2. Select the interaction diagram to be used.

h0 ¼ 14� 2 1:5ð Þ � 2 3=8
� �� 2 1=2

� � ¼ 9:25 in:

γ ¼ h0=h ¼ 9:25=14 ¼ 0:66

Mu ¼ 1:2MD þ 1:6ML ¼ 1:2� 35þ 1:6� 35 ¼ 98 ft-kip

Rn ¼ Mu

ϕ fc0Agh
¼ 98� 12

0:65 4ð Þ 196ð Þ14 ¼ 0:165

fc
0 ¼ 4 ksi, fy¼ 60 ksi, and γ¼ 0.66; therefore, we use the interaction dia-

grams of Figures A5.1a and A5.2a and interpolate:

Fig:A5:1a γ ¼ 0:60ð Þ ! ρg ¼ 0:032, Rn ¼ 0:165 ! Kn ¼ 0:64
Fig:A5:2a γ ¼ 0:70ð Þ ! ρg ¼ 0:032, Rn ¼ 0:165 ! Kn ¼ 0:74

Interpolating between the above Kn values for γ¼ 0.66:

Kn ¼ 0:64þ 0:74� 0:64ð Þ 0:66� 0:60ð Þ
0:1

¼ 0:70

The point ρg¼ 0.032 and Rn¼ 0.165 on both the interaction diagrams is in

the compression-controlled zone; therefore, proceed with step 3.

Step 3 and 4 The nominal axial load capacity, Pn, is:

Pn ¼ Kn fc
0Ag

Pn ¼ 0:70 4ð Þ 196ð Þ ¼ 549kip

PR ¼ ϕPn ¼ 0:65 549ð Þ ¼ 357kip

If we compare PR¼ 357 kip with the result of Example 5.1 for the same

column but with small eccentricity, PR¼ 533 kip, the effect of added

moment on the reduction of the column axial load capacity is evident.

Step 5. The procedure of checking the ties is the same as that shown in

Example 5.1.
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Example 5.9 Check the adequacy of the short spiral column shown below (the

same as the one used in Example 5.2) if it is subjected to MD¼ 36 ft-kip and

MLr ¼ 43ft-kip. Use PD¼ 200 kip, PLr ¼ 225kip, fc
0 ¼ 4000psi, and fy¼ 60,000 psi.

16 in. diameter

6 #9

3
8 in. diameter @ 2 in.

Solution

Step 1. Check the column steel ratio, ρg:

ρg ¼
Ast

Ag
¼ 6:0

201:1
¼ 0:03

0:01 < ρg ¼ 0:03 < 0:08 ∴ok

If we assume that the column is compression controlled, ϕ¼ 0.75.

Steps 2, 3 and 4. To show the different ways of solving this problem, steps 2, 3, and

4 steps are combined. However, one can choose one of these methods to

solve the problem. Because we have both the axial loads and the moments,

we proceed as follows:

h0 ¼ 16� 2 1:5ð Þ � 2 3=8ð Þ � 2 1:128=2ð Þ ¼ 11:12 in:

γ ¼ h0=h ¼ 11:12=16 ¼ 0:70

Mu ¼ 1:2MD þ 1:6MLr ¼ 1:2� 36þ 1:6� 43 ¼ 112ft-kip

Pu ¼ 1:2PD þ 1:6PLr ¼ 1:2� 200þ 1:6� 225 ¼ 600kip

Rn ¼ Mu

ϕ fc0Agh
¼ 112� 12

0:75 4ð Þ 201:1ð Þ16 ¼ 0:14

Kn ¼ Pu

ϕ fc0Ag
¼ 600

0:75� 4� 201:1
¼ 0:99

If we enter these values into the interaction diagram shown in

Figure A5.10a, the point falls in the compression-controlled region. The

point representing Kn¼ 0.99 and Rn¼ 0.14 requires a ρg value of about

0.05. The provided value is only 0.03. Thus, the column is not adequate.

Alternatively, to calculate the maximum factored load that may be used

in conjunction with the given moments, proceed as follows.
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For Rn¼ 0.14 and ρg¼ 0.03, the corresponding Kn using Figure A5.10a is

Kn ¼ 0:66

Thus

Pn ¼ Kn fc
0Ag ¼ 0:66� 4� 201:1 ¼ 531kip

and

PR ¼ ϕPn ¼ 0:75� 531 ¼ 398kip

Therefore, another easy way of solving the problem is just to compare Pu
with PR:

PR ¼ 398kip < Pu ¼ 600kip ∴N:G:

In Example 5.2, the axial load capacity of this column, PR, was 652 kip,

which was satisfactory. Comparison of the axial load capacities again

shows the significant decrease due to the applied moment.

Alternatively, the following question could be asked: “How large an

eccentricity may the given loads safely have?” Then we proceed as

follows.

For Kn= 0.99 and ρg= 0.03, the corresponding Rn from the interaction diagram is

Rn ¼ 0:08

Thus

Mn ¼ Pne ¼ Rn fc
0Agh ¼ 0:08� 4� 201:1� 16

¼ 1,030kip-in ¼ 85:8ft-kip

and

MR ¼ ϕMn ¼ 0:75� 85:8 ¼ 64:4ft-kip

Pu = 600 kip (see above calculation), so

e ¼ MR

Pu
¼ 64:4� 12

600
¼ 1:29 in:

Example 5.10 Determine whether the tied column shown below is adequate. The

applied factored axial load and bending moment are Pu¼ 70 kip, andMu¼ 60 ft-kip,

respectively. Use fc
0 ¼ 4ksi; and fy¼ 60 ksi. Also, check the adequacy of the ties.

The typical clear cover is 1.5 in.
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8 #6

12 in.

12 in.

#4 @ 12 in.

Solution

Step 1. Check the steel ratio, ρg:

8#6bars ! TableA2�9 ! Ast ¼ 3:52 in2

ρg ¼
Ast

Ag
¼ 3:52

12� 12
¼ 0:024

0:01 < 0:024 < 0:08 ∴ok

We assume that the column is compression controlled; therefore, ϕ¼ 0.65.

Step 2: h0 ¼ 12� 2 1:5ð Þ � 2
1

2

� �
� 2

0:75

2

� �
¼ 7:25 in:

γ ¼ 7:25

12
¼ 0:60

Kn ¼ Pu

ϕ fc
0Ag

Kn ¼ 70

0:65 4ð Þ 12� 12ð Þ ¼ 0:19

Figure A5.1a is the interaction diagram for fc
0 ¼ 4ksi; fy¼ 60 ksi, and γ¼ 0.60 with

uniformly distributed reinforcements for a rectangular column. The point for ρg¼ 0.024

and Kn¼ 0.19 falls in the transition zone (i.e., the region between
fs
fy
¼ 1:0 and

εt¼ 0.005). Therefore, continue with the analysis for columns with non-compression-

controlled sections using the flowchart of Figure 5.37.

Step 2a. Use Figure A5.1b with ρg¼ 0.024 and Kn¼ 0.19 to obtain the strength

reduction factor, ϕ:

ϕ ¼ 0:735
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Therefore, the new value of Kn is:

Kn ¼ Pu
ϕ fc

0Ag
¼ 70

0:735 4:0ð Þ 12� 12ð Þ ¼ 0:165

Using ρg¼ 0.024 and Kn¼ 0.165, from Figure A5.1a, we find that the

section is in the transition zone and Rn¼ 0.155.

Step 2b. We use the Kn versus ϕ graph of Figure A5.1b to obtain the new ϕ value

with the new values of Kn and ρg. The new strength reduction factor, ϕ is

0.76. Because this new ϕ factor is different from the one obtained in step

2a, repeat the process:

Kn ¼ Pu
ϕ fc0Ag

¼ 70

0:76 4:0ð Þ 12� 12ð Þ ¼ 0:160

Using ρg¼ 0.024 and Kn¼ 0.160, from Figure A5.1a, we find that the

section is in the transition zone, Rn¼ 0.152. From Figure A5.1b, ϕ¼ 0.77.

Repeat the process as this new ϕ factor is different from the previous

value:

Kn ¼ Pu
ϕ fc0Ag

¼ 70

0:77 4:0ð Þ 12� 12ð Þ ¼ 0:158

From Figure A5.1a, we can conclude that the section is in the transition

zone and obtain Rn¼ 0.152. Use Figure A5.1b to obtain ϕ¼ 0.77. Because

the new ϕ value is about the same as the one obtained in the previous

iteration, we proceed with step 3.

Step 3.
Mn ¼ Rn fc

0Agh

Mn ¼ 0:152 4ð Þ 12� 12ð Þ 12ð Þ
12

Mn ¼ 87:6ft-kip

MR ¼ ϕMn ¼ 0:77 87:6ð Þ ¼ 67:5ft-kip

Step 4.
MR ¼ 67:5ft-kip > Mu ¼ 60ft-kip ∴ ok

Therefore, the section is adequate.

Step 5. Check the adequacy of the ties:

s
max

¼ min 16db, 48dt, bminf g
s
max

¼ min 16 6=8ð Þ, 48 1=2ð Þ, 12 in:f g
s
max

¼ min 12 in:, 24 in:, 12 in:f g

Therefore, #4 @ 12 in. is ok.
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Step 6. Check the tie arrangement using Figure 5.12:

Clear space ¼ 12� 2 1:5ð Þ � 2 0:5ð Þ � 3 0:75ð Þ
2

¼ 2:9 in:

2:9 in: < 6 in: ∴One set of ties is required:

Therefore, the tie arrangement is ok.

5.12 Design of Short Columns with Large Eccentricity

The design of columns with large eccentricity, similar to the analysis, depends on

the column behavior under the load and moment. If the column is compression

controlled, the ϕ factor is constant, and the design process is straightforward. If the

column is not compression controlled, however, the ϕ factor varies with the tensile

strain in the steel (εt). Thus, using the ϕ value as if the column were compression

controlled would lead to a conservative design. An iterative approach is necessary

to calculate the correct ϕ value.

5.12.1 Design of Columns with Compression-Controlled
Behavior

The following are steps for the design of compression-controlled columns, which

are also summarized in the flowchart of Figure 5.38:

Step 1. Determine the factored loads and moments acting on the column. The loads

on the column come from the beams and slabs connected to it. The

moments acting on the column are due to either gravity loads or lateral

loads such as wind or earthquake loads. If gravity loads are considered (PLr
is the roof live load, and MLr is the roof live load moment):

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr if PL � 1:83PLrð Þ
Pu ¼ 1:2PD þ 1:6PLr þ 1:0PL if PL < 1:83PLrð Þ
Mu ¼ 1:2MD þ 1:6ML þ 0:5MLr if ML � 1:83MLrð Þ
Mu ¼ 1:2MD þ 1:6MLr þ 1:0ML if ML < 1:83MLrð Þ

Step 2. Estimate the column size. In most cases, the column size is preselected

based on architectural considerations or ease of construction. If it is

necessary to estimate the column size, however, we must make reasonable

assumptions because both the area of the column (Ag) and the area of steel

(Ast) are unknown. Different simplifying assumptions may be used to
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obtain a preliminary size. The most common assumptions are that the

column’s capacity is the same as that of an axially loaded column and

that the area of steel, Ast, is neglected. The latter is made in an attempt to

account for the effects of the moments. The preliminary design equations

are given below:

Design of Columns
(short with large eccentricity)

(compression-controlled section)

1. Determine Pu and Mu

2. Estimate the column size:

Tied column: A =
Pu (φ = 0.65)g 0.8φ(0.85f ′c )

Spiral column: A =
Pu

(φ = 0.75)g 0.85φ(0.85f ′c )

3. Assuming h′ = h − 5 in., calculate:
h′

γ =
h

, Kn =
Pu

φf ′cAg
, and Rn =

Mu

φf ′cAgh
, and

find ρg from the interaction diagrams.

4.

Revise the column 
size or bar size/ 
arrangement.

Is the column in the
compression-

controlled zone of 
the interaction 

diagram?

No Use the flowchart for 
non–compression-controlled

sections (Figure 5.39).

Yes

5. 
Calculate the area of steel,

Ast = ρgAg , and select the bars.

No Can the reinforcing 
fit into the column?

Yes

6.
Design the ties/spirals.

Figure 5.38 Flowchart for the design of compression-controlled columns
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PR ¼ 0:80ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i
tiedcolumnð Þ

PR ¼ 0:85ϕ 0:85 fc
0 Ag � Ast

� �þ fy Ast

h i
spiral columnð Þ

Assuming Ast¼ 0, these equations become:

Thus:

PR ¼ 0:8ϕ 0:85 fc
0Ag

� �
tiedcolumnð Þ

PR ¼ 0:85ϕ 0:85 fc
0Ag

� �
spiral columnð Þ

When designing columns, PR¼Pu. Therefore, if this substitution is made,

we can calculate the column area, Ag, as follows:

Ag ¼ Pu
0:8ϕ 0:85 fc

0ð Þ tiedcolumnð Þ

Ag ¼ Pu
0:85ϕ 0:85 fc

0ð Þ spiral columnð Þ

After calculating the gross area of the column, Ag, we can select the

column size. Round the column size to the nearest inch.

Step 3 and 4 Calculate γ, Kn, and Rn. In order to utilize interaction diagrams it is

necessary to calculate γ ¼ h0

h
: We assume that the centerline of the longi-

tudinal reinforcing is 2.5 in. from the face of the column.

Thus

h0 ¼ h � 2 2:5ð Þ ¼ h� 5 in:

Using fc
0, fy, and γ, we select the appropriate interaction diagram, and then

compute Kn and Rn:

Kn ¼ Pu
ϕ fc0Ag

Rn ¼ Mu

ϕ fc0Agh

Entering the interaction diagram with the known values of Kn and Rn, we

determine whether the column is compression controlled. If the column is

not compression controlled or if Rn is out of the range of the interaction

diagram, we proceed to the flowchart for the design of non–compression-

controlled sections (Figure 5.39). Otherwise, use Kn and Rn to obtain ρg and
move to step 5.

Step 5. Calculate the required area of steel, Ast:

Ast ¼ ρgAg
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Select bars using Tables A2.9 and A5.1. If the selected bars can fit into

the column based on Table A5.1, we proceed to step 6. Otherwise, increase

the column size, which will increase the space between the bars, and

repeat the process starting back in step 3.

Step 6. Design the ties or spirals. This step is the same as that for columns with

small eccentricity (as shown in Figure 5.17).

5.12.2 Design of Non-compression-Controlled Columns

The following are steps for the design of non–compression-controlled columns,

which are also summarized in the flowchart of Figure 5.39.

Steps 1–3 are the same as those for compression-controlled columns.

Step 4a. Assume a ϕ between 0.75 and 0.90 (say ϕ¼ 0.80), because the column is

not compression controlled.

Step 4b. Check the column size. If the column is in the non-compression-controlled

region or Rn is completely outside the range of the interaction diagram

(due to very large moment), the ϕ factor used in step 2 of the design of

compression-controlled columns is overly conservative. If Rn is out of the

range of the interaction diagram, we need to increase the column size, as

the moment on the column is too large for the column dimensions. If this is

the case, we proceed to step 4c. Otherwise, the column dimensions are ok

and we go directly to step 4e.

Step 4c. If the column size is not enough for the applied moment, we need to resize

it. In order to do so, assume an Rn value in the transition zone for a steel

ratio of ρg about 0.02. Recall that an estimated ρg¼ 0.03 was used for the

design of columns with small eccentricity. We try to work with a smaller

steel ratio for columns in the non-compression-controlled zone, however,

as they behave more like flexural members.

Step 4d. Resize the column. The resisting moment of the column, MR, is:

MR ¼ ϕRn fc
0Agh

To resize the column, makeMR¼Mu and solve for Agh as shown below:

Mu ¼ ϕRn fc
0Agh

Agh ¼ Mu

ϕ fc
0Rn

We select the dimensions for a square column. For a rectangular

column select one side of the cross section, either the width (b) or depth

(h), and solve for the other dimension. Note that selecting a larger h value

(elongating the section in the direction of bending) is more beneficial.

Round the column sizes to the nearest inch.
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Step 4e. Determine γ, Kn, and Rn. Once you know the new size of the column,

determine γ ¼ h0

h
(As in step 3, assume h0 ¼ h – 2(2.5)¼ h – 5 in.). Also,

calculate Kn and Rn as

Kn ¼ Pu
ϕ fc0Ag

Rn ¼ Mu

ϕ fc
0Agh

Design of Columns
(short with large eccentricity)

(non–compression-controlled section)

Is the point on
the interaction diagram

within the range of
curves?

No

No

Yes

Yes

 Assume a  value between
0.75 and 0.90 (start with  0.80)

h
h

 Calculate , and:

Pu

fcAg
Kn

Mu

fcAgh
Rn

Is  the
same as the

previous value?

Calculate the area of steel,
Ast g Ag , and select the bars.

 Select Rn in the
transition zone for g 0.02.

Mu

fcRn
Agh

Recalculate the
column size (h):

Design the ties/
spirals.

4b.

5.

 Use the interaction diagrams to calculate g .
Also, find  from the Kn versus  diagrams.

4a.

4c.

4e.
4d.

4f.

6.

Figure 5.39 Flowchart for the design of non-compression-controlled columns
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Step 4f. Obtain ρg from the appropriate interaction diagram, and update the

ϕ value. To do so, use γ, fc0, and fy, and the assumed ϕ value to select

the appropriate interaction diagram. Then use the values of Rn and Kn

(determined in the previous step) to obtain ρg from the interaction

diagram. Also, determine ϕ from the Kn versus ϕ diagram.

Step 5. Determine whether convergence has been achieved. If the new ϕ factor is

not approximately the same as the one obtained in the previous cycle,

repeat the process with this new ϕ value starting in step 4e. Repeat the

procedure cycle until the ϕ value converges. After achieving convergence,

compute the required area of steel by using the steel ratio, ρg, determined

in the last cycle:

Ast ¼ ρgAg

Select the reinforcing bars using Table A2.9 and check the layout using

Table A5.1.

Step 6. Design the ties or spirals. This step is similar to that of the design of

compression-controlled columns.

Example 5.11 Design a short tied square column to carry PD¼ 300 kip,

PL¼ 175 kip, PLr¼ 80 kip, MD¼ 150 ft-kip, ML¼ 90 ft-kip, and MLr¼ 32 ft-kip.

Assume fc
0 ¼ 4,000 psi; fy¼ 60,000 psi, and that the main reinforcements are

distributed uniformly around the column edges.

Solution

Step 1. Calculate the factored load, Pu, and the factored moment, Mu:

With reference to Equation 2.3d, since

1.83 PLr¼ 1.83(80)¼ 146.4 k<PL¼ 175 k

and

1:83MLr ¼ 1:83 32ð Þ ¼ 58:6 ft-kip < ML ¼ 90 ft-kip

therefore,

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr

Pu ¼ 1:2 300ð Þ þ 1:6 175ð Þ þ 0:5 80ð Þ ¼ 680 kip

Mu ¼ 1:2MD þ 1:6ML þ 0:5MLr

Mu ¼ 1:2 150ð Þ þ 1:6 90ð Þ þ 0:5 32ð Þ ¼ 340ft-kip
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Step 2. Estimate the column size:

Ag ¼ Pu
0:8ϕ 0:85 fc

0ð Þ
Ag ¼ 680

0:8 0:65ð Þ 0:85ð Þ 4:0ð Þ ¼ 385 in2

h ¼ ffiffiffiffiffi
Ag

p ¼ ffiffiffiffiffiffiffiffi
385

p ¼ 19:6 in:

∴ Try a 20 in:� 20 in: column

Step 3.
h0 ¼ h� 2 2:5ð Þ ¼ 20� 2 2:5ð Þ ¼ 15 in:

γ ¼ h0

h
¼ 15

20
¼ 0:75

Calculate Kn and Rn:

Kn ¼ Pu
ϕ fc0Ag

¼ 680

0:65 4ð Þ 20� 20ð Þ ¼ 0:65

Rn ¼ Mu

ϕ fc0Agh
¼ 340 12ð Þ

0:65 4ð Þ 20� 20ð Þ 20ð Þ ¼ 0:20

Because fc
0 ¼ 4ksi, fy¼ 60 ksi, and γ¼ 0.75, interpolate between

Figures A5.2a and A5.3a. Enter these diagrams with the values of Kn and
Rn to obtain the corresponding steel ratio, ρg:

From Fig:A5:2a γ ¼ 0:70 ! ρg ¼ 0:04
From Fig:A5:3a γ ¼ 0:80 ! ρg ¼ 0:034

Interpolation between the values for γ¼ 0.75 gives us:

ρg ¼
0:034þ 0:04

2
¼ 0:037

Step 4. We now check our assumption for column behavior. Because the column is

in the compression-controlled region of the interaction diagram, our

assumption for the ϕ factor is correct. Go to step 5.

Step 5. The required area of steel, Ast, is:

Ast ¼ ρgAg ¼ 0:037 20� 20ð Þ ¼ 14:8 in:2

Using Tables A2.9 and A5.1!∴ Use 12 #10 bars (Ast¼ 15.24 in2)

Step 6. Design of the ties: Using #3 ties, the maximum spacing of the ties is:

smax ¼ min 16db, 48dt, bminf g
smax ¼ min 16 1:27ð Þ, 48 3=8ð Þ, 20f g
smax ¼ min 20:3 in:, 18 in:, 20 in:f g ¼ 18 in: ∴ #3@18in: ties:
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Based on Figure 5.12, this column requires three sets of ties, as shown in

the figure below.

12 #10

20 in.

20 in.

#3 @ 18 in.

Example 5.12 Solve Example 5.11 for a round spiral column. fyt¼ 60,000 psi.

Solution

Step 1. From Example 5.11, Pu¼ 680 kip, and Mu¼ 340 ft-kip.

Step 2. Estimating the column size:

Ag ¼ Pu
0:85ϕ 0:85 fc

0ð Þ
Ag ¼ 680

0:85 0:75ð Þ 0:85ð Þ 4:0ð Þ ¼ 314 in:2

h ¼ 2

ffiffiffiffiffi
Ag

π

r
¼ 2

ffiffiffiffiffiffiffiffiffi
314

3:14

r
¼ 20:0 in:

∴ Assume h ¼ 20 in: ! Ag ¼ π 20ð Þ2
4

¼ 314 in:2

Steps 3 and 4
h0 ¼ h� 2 2:5ð Þ ¼ 20� 2 2:5ð Þ ¼ 15in:

γ ¼ h0

h
¼ 15

20
¼ 0:75

Kn ¼ Pu
ϕ fc

0Ag
¼ 680

0:75 4ð Þ 314ð Þ ¼ 0:72

Rn ¼ Mu

ϕ fc
0Agh

¼ 340 12ð Þ
0:75 4ð Þ 314ð Þ 20ð Þ ¼ 0:22

Because γ¼ 0.75, we interpolate between the interaction diagrams for

γ¼ 0.70 and γ¼ 0.80. From Figures A5.10a and A5.11a ! ρg ffi 0:062

(compression-controlled zone). Although ρg is within the allowable range

of 0.01–0.08, in practice a steel ratio of more than 0.04 will cause congestion

of reinforcements and is not acceptable. To make this point clear, continue to

step 5.
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Step 5.
Ast ¼ ρgAg ¼ 0:062 314ð Þ ¼ 19:5 in:2

We cannot fit this much steel reinforcement into a 20 in. diameter column,

based on Tables A2.9 and A5.1 (unless we use #18 bars, which are special-

ordered). Therefore, we should increase the column dimension by 2 in. to

h¼ 22 in. and repeat steps 3 and 4:

Step 3 and 4
h0 ¼ 22� 2 2:5ð Þ ¼ 17 in:

γ ¼ h0

h
¼ 17

22
¼ 0:77

Ag ¼ π 22ð Þ2
4

¼ 380 in:2

Kn ¼ Pu
ϕ fc0Ag

¼ 680

0:75 4ð Þ 380ð Þ ¼ 0:60

Rn ¼ Mu

ϕ fc0Agh
¼ 340 12ð Þ

0:75 4ð Þ 380ð Þ 22ð Þ ¼ 0:163

Using the interaction diagrams:

Fig: A5:10a γ ¼ 0:70 ! ρg ¼ 0:037 compression controlledð Þ
Fig: A5:11a γ ¼ 0:80 ! ρg ¼ 0:032 compression controlledð Þ

Interpolating between the above values:

ρg ¼ 0:032þ 0:037� 0:032ð Þ 0:8� 0:77ð Þ
0:1

¼ 0:034

Step 5.
Ast ¼ ρgAg ¼ 0:034 380ð Þ ¼ 12:9 in:2

∴Use13 #9bars Ast ¼ 13:0 in:2
� �

Step 6. Design the spirals. Assume 3/8 in. diameter spirals:

hc ¼ 22� 2 1:5ð Þ ¼ 19 in:

Ach ¼ π 19ð Þ2
4

¼ 284 in2

ρs,min ¼ 0:45
Ag

Ach
� 1

� �
fc
0

fyt

ρs,min ¼ 0:45
380

284
� 1

� �
4:0

60
¼ 0:0101
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ρs ¼
4Asp

hcs
¼ 4 0:11ð Þ

19 sð Þ
ρs,min ¼ ρs

0:0101 ¼ 4 0:11ð Þ
19 sð Þ

s ¼ 2:29 in: ! s ¼ 21=4in:

sclear ¼ 21=4 in:� 3=8 in: ¼ 17=8 < 3 in: ∴ok

Therefore, the spiral pitch (s) is:

s ¼ 21=4in:

The following is a sketch of the final design:

22 in.

13 #9

3
8 in. diameter @ 21

4 in.

Example 5.13 Design a circular spiral column to resist Pu¼ 300 kip, and

Mu¼ 400 ft-kip. Use fc
0 ¼ 4ksi and fy¼ 60 ksi. Use a maximum steel ratio of

0.02. The design of the spirals is not required.

Solution

Step 1. Pu¼ 300 kip, and Mu¼ 400 ft-kip.

Step 2. Estimate the column size (h):

Ag ¼ Pu
0:85ϕ 0:85 fc

0ð Þ ¼ 300

0:85 0:75ð Þ 0:85� 4ð Þ ¼ 138:4 in:2

h ¼ 2

ffiffiffiffiffi
Ag

π

r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
138:4

3:14

r
¼ 13:3 in:

∴ Try h ¼ 14 in:

Ag ¼ π 14ð Þ2
4

¼ 154 in:2
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Step 3.
h0 ¼ h� 2 2:5ð Þ ¼ 14� 2 2:5ð Þ ¼ 9 in:

γ ¼ h0

h
¼ 9

14
¼ 0:64

Kn ¼ Pu
ϕ fc0Ag

¼ 300

0:75 4ð Þ 154ð Þ ¼ 0:65

Rn ¼ Mu

ϕ fc0Agh
¼ 400 12ð Þ

0:75 4ð Þ 154ð Þ 14ð Þ ¼ 0:74 > 0:30 ∴Out of range:

Because Rn is out of the range of the interaction diagram, use the flowchart

for non-compression-controlled columns (Figure 5.39).

Step 4a. Assume ϕ¼ 0.80.

Step 4b. As noted in step 3, the value of Rn is not within the diagram’s range;

therefore, proceed to step 4c.

Step 4c. In order to resize the column, we must have a reasonable value of Rn.

Using the interaction diagram of Figure A5.10a ( fc
0 ¼ 4ksi, fy¼ 60 ksi,

and γ¼ 0.70) for a steel ratio, ρg ffi 0:02, we obtain the maximum value of

Rn. This value is about 0.14. We use this value to select a reasonable size

for the column.

Step 4d.

Agh ¼ Mu

ϕ fc0Rn

Agh ¼ 400 12ð Þ
0:80 4ð Þ 0:14ð Þ ¼ 10, 714 in3

πh2

4

� �
h ¼ 10, 714

πh3

4
¼ 10, 714 ! h3 ¼ 13, 641 in3

h ¼ 23:9 in: ∴Tryh ¼ 24 in

Step 4e.
h0 ¼ 24 � 2 2:5ð Þ ¼ 19 in:

γ¼ h0

h
¼ 19

24
¼ 0:79 ∴γ � 0:80

Calculate the nondimensional parameters Kn and Rn:

Ag ¼ π 24ð Þ2
4

¼ 452 in:2

Kn ¼ Pu

ϕ fc0Ag
¼ 300

0:80 4ð Þ 452ð Þ ¼ 0:207

Rn ¼ Mu

ϕ fc0Agh
¼ 400 12ð Þ

0:80 4ð Þ 452ð Þ 24ð Þ ¼ 0:138
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Step 4f. Since fc
0 ¼ 4 ksi, fy¼ 60 ksi, and γ¼ 0.80, and the column is a round

section; therefore use the interaction diagram of Figure A5.11a. Using Kn

and Rn, we obtain a steel ratio, ρg¼ 0.019. In addition, using the Kn versus

ϕ diagram of Figure A5.11b and Kn¼ 0.207, we obtain a value of

ϕ¼ 0.825.

Step 5. Because the new ϕ factor (0.825) is higher than that of the previous cycle

(0.80), repeat step 4e with the new ϕ.
Step 4e.

Kn ¼ Pu
ϕ fc0Ag

¼ 300

0:825 4ð Þ 452ð Þ ¼ 0:20

Rn ¼ Mu

ϕ fc0Agh
¼ 400 12ð Þ

0:825 4ð Þ 452ð Þ 24ð Þ ¼ 0:134

Step 4f. From Figure A5.11a, ρg ¼ 0:017. From Figure A5.11b, ϕ ¼ 0:84.

Step 5. Because the new value of ϕ is close to that of the previous step (0.84

vs. 0.825), accept this value and calculate the area of steel (Ast):

Ast ¼ ρg Ag ¼ 0:019 452ð Þ ¼ 8:59 in2

Using Tables A2.9 and A5.1, select 7 #10 bars (As¼ 8.89 in.2). The

following shows a sketch of the final design.

24 in.

7 #10

Note: The spiral was not designed.

5.13 Slender Columns

5.13.1 Column Buckling and Slenderness Ratio

Columns are divided into two classes based on their slenderness: short columns and

slender columns. Short columns crush under large axial force, whereas columns

with great slenderness may buckle before they fail in crushing.

Figure 5.40 shows a slender column subjected to an increasing axial compres-

sion force, P. As P increases the column may buckle (i.e., suddenly show large

lateral movement, see Figure 5.40). The stress at which the column starts buckling

is called the Euler buckling stress (fE):

358 5 Columns

http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


fE ¼ π2E
k‘u
r

� �2
ð5:28Þ

where

E¼modulus of elasticity of the concrete

k¼ effective length factor for the column

‘u¼ the unsupported length of the column, which is the clear distance between the

floor slabs, beams, or othermembers that provide lateral support for the column

r¼ radius of gyration of column section, equal to

ffiffiffiffiffi
Ig
Ag

s
in which Ig is the

moment of inertia of gross concrete section neglecting reinforcement and

Ag is the gross area of the column. The ACI Code (Section 6.2.5.1) suggests

a rounded value of r of 0.3h for rectangular columns, and 0.25h for circular

columns, where h is the dimension of the column in the direction perpen-

dicular to the axis of bending.

The term
k‘u
r

is called the slenderness ratio. From the expression of the Euler

buckling stress we can see that as the slenderness ratio increases, the stress at which

the column buckles decreases. In other words, the column buckles at a lower stress

when it is more slender. The numerator of the slenderness ratio (k‘u) is called the

effective length, which depends on the unsupported column length (‘u), the type of
end supports (i.e., pinned, partially fixed, or fully fixed), and whether or not the

P

Reinforced concrete column �u

Figure 5.40 Buckling of a reinforced concrete slender column.

(Note: Reinforced concrete columns cannot usually be assumed to be pin-ended due to the

continuity of these members. Here we show a pin-supported column as a theoretical example.)
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column is allowed to move laterally (i.e., unbraced or braced). The effective length

is the length of that portion of the column that lies between two points of inflection

of the buckled shape.

Column ends are connected to a foundation (at the base of the building), or to

slabs, beams and girders, or to both. Thus, there is no such thing as a true pin or a

fully fixed support for columns. The amount of the column’s fixity depends on the

relative stiffness of the building elements at the ends of the column. For example, if

the size of the beams and girders at the ends of column is small compared to the

Reinforced concrete column k uu

Beam

Beam Point of inflection

Point of inflection

k uu
Column

a

b

Figure 5.41 Relationship between relative member sizes and end conditions of columns
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column size, the end supports can be assumed to be pinned because the beams and

girders at the ends will provide little restraint to the free rotation of the column ends

when buckling. This condition is depicted in Figure 5.41a. But if the size of beams

and girders is large compared to the column, the end supports may be treated as

fixed because the beams and girders will prevent the column ends from rotating, as

shown in Figure 5.41b. When the column’s ends are “pinned,” the entire column

buckles; as a result, the column’s effective length, k‘u, is almost the same as the

column length, ‘u, in other words k¼ 1.0. When the column ends are “fixed,” its

buckled shape has two inflection points; thus, k‘u is smaller than ‘u. In the

theoretical case of perfect fixity, k‘u¼ 0.5‘u (i.e., k¼ 0.5).

Another major factor influencing the effective length of a column is the type of

structural system. If a column is part of the lateral load carrying system, it is subject

to sidesway, which means it can have significant lateral motion and is called an

unbraced column. When other elements such as shear walls, however, are used as

the lateral load carrying system, the column will not have significant lateral motion

and is called a braced column. The ends of an unbraced column have significant

relative horizontal motion or sidesway. This relative movement is small when the

column is braced. A braced column is referred to as one without sidesway, and an

unbraced column as one with sidesway.
Sidesway affects the column’s effective lengths. Figure 5.42 shows two columns

with fixed-end supports. The column in Figure 5.42a is without sidesway and

k u
2

uk uu

Point of inflection

Point of inflection

Point of inflection

Point of inflection
k u

a b

Figure 5.42 Effective lengths for (a) column without sidesway, and (b) column with sidesway
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theoretically its effective length is k‘u¼ 0.5‘u. If the same column is subjected to

sidesway (unbraced), the effective column length, which is the theoretical length

between two points of inflection, is k‘u¼ ‘u, as shown in Figure 5.42b.

5.13.2 P–Δ Effects

There is no such thing as a perfectly straight and vertical column. Applied moments

at the ends also bend the columns into a curvilinear shape. When a slender column

bends into a curve while subjected to an axial load, P, added moments, M, are

generated on the column. These moments have a magnitude of P multiplied by the

lateral deformation, Δ. This is called the P–Δ effect.
Figures 5.43 and 5.44 show P–Δ effects on columns. The P–Δ effects on

columns with sidesway are more severe than those on columns without

sidesway.

The ACI Code requires a magnification of moments on slender columns due to

P–Δ effects. ACI Code (Section 6.2.5) allows P–Δ effects to be ignored for

columns without sidesway if the column’s slenderness ratio
k‘u
r

� �
satisfies the

following relationship (ACI Equation (6.2.5b)):

k‘u
r

� 34þ 12
M1

M2

ð5:29Þ

where M1 is the smaller end moment.
M1

M2

is positive if M1 and M2 are acting in the

same direction (column is bent into a double curve; see Figure 5.43b), and is negative

if M1 and M2 act in opposite directions (column is bent into a single curve;

see Figure 5.43a). The right side of Equation (5.29) is limited to a maximum value

of 40.

The ACI Code (Section 6.2.5) permits the effects of slenderness to be ignored for

columns with sidesway when
k‘u
r

is less than 22. Figure 5.44 shows the P–Δ effects

on columns with sidesway.

Because of the complexity of the design of slender columns (as well as for

visual reasons), designers prefer to work with column dimensions that are not

slender. In general, we can ignore the slenderness effect of braced frames (columns

without sidesway) if
‘u
h
is equal to 10 or less on lower floors, and 12 or less on upper
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floors. For unbraced columns
‘u
h
must be smaller than 6 to have negligible slenderness

effects.

Designing slender reinforced concrete columns is a complex procedure.

Computer software is available to help the structural designer analyze and design

slender columns. The detailed discussion of this subject is beyond the scope of

this text.

Column bent into a single curve by the end moments

M2

M1

M2
Moment diagram

M1

P 

P

P

M1

P

M2

P
M2

M1

Moment diagram

Column bent into a double curve by the end moments

P 

a

b

Figure 5.43 P–Δ effect on columns without sidesway superimposed over the end moments
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Problems

In the following problems assume concrete is normal weight unless noted
otherwise.

5.1. Calculate the axial load capacity, PR, of the following columns with small

eccentricity. Use fc
0 ¼ 3,000psi and fy¼ fyt¼ 60,000 psi. Determine whether

the ties/spirals are adequate based onACI requirements. The clear cover is 1.5 in.

M2

Sidesway

M2

M1

M1

P

P
P 

Moment diagram

Column with sidesway bent into a single curve by the end moments

M2 M2

M1

P

P
M1P 

Sidesway

Moment diagram

Column with sidesway bent into a double curve by the end moments

a

b

Figure 5.44 P–Δ effect on columns with sidesway superimposed over the end moments
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#3 @ 12 in.4 #10

12 in.

#3 @ 16 in.8 #8

16 in.

#4 @ 18 in. (three ties per set)12 #10

24 in.

3
8 in. diameter @ 2 in.

8 #8
6 #7

16 in. 14 in.

24 in.16 in.12 in.

3
8 in. diameter @ 21

2 in.

a b

d e

c

5.2. Rework Problem 5.1 for fc
0 ¼ 4,000 psi and fc

0 ¼ 5,000 psi. What is the

percentage of change in the axial load capacity for each case? Do not check

the ties/spirals.

5.3. Repeat Problem 5.1 for fy¼ 40,000 psi and fy¼ 75,000 psi. What is the

percentage of change in the axial load capacity for each case? Do not check

the ties/spirals.

5.4. The square reinforced concrete tied column shown below is subjected to a dead

load of 200 kip and a roof live load of 220 kip. Determine whether the column

is adequate. The clear cover is 1.5 in. The load’s eccentricity is negligible. Use

fc
0 ¼ 4,000 psi and fy¼ 60,000 psi. Do not check the ties.

8 #8

#3 @ 14 in.

16 in.

16 in.
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5.5. Rework Problem 5.4 for the following circular spiral column. Do not check

spirals.

8 #8

3
8 in. diameter @ 2 in.

16 in.

Compare the PR determined in this problem with that of the square column of

Problem 5.4.

5.6. Determine the required reinforcements for a 12 in.� 12 in. tied reinforced

concrete column subjected to a dead load of 20 kip and a roof live load of

30 kip. Assume that the loads have small eccentricity. Use fc
0 ¼ 5,000psi

fy¼ 60,000 psi, and 2 in. clear cover.

5.7. Redesign the column of Problem 5.6 for a dead load of 125 kip, a floor live

load of 175 kip, and a roof live load of 80 kip.

5.8. Design a square tied reinforced concrete column subjected to a dead load of

250 kip, a floor live load of 240 kip, and a roof live load of 150 kip. The

moments due to the loads are negligible. Use fc
0 ¼ 4,000psi; fy¼ 60,000 psi,

and 1.5 in. clear cover.

5.9. Redesign the column of Problem 5.8 as a circular spiral reinforced concrete

section. Assume fyt¼ 60,000 psi.

5.10. A 12 in.� 12 in. column reinforced with 4 #9 bars is subjected to axial roof

dead and live loads with small eccentricity. If the ratio PD/PLr¼ 1.5, deter-

mine the maximum compressive axial service loads that the column can

carry. Use fc
0 ¼ 4,000psi and fy¼ 60,000 psi. Use #3 ties, and 1.5 in. clear

cover.

5.11. The following figures show the typical framing plan, elevation, and beam

section of a three-story reinforced concrete building. The floor live load is

50 psf and the roof live load is 15 psf. Assume 5 psf for mechanical/electrical

systems and 20 psf for partitions. Determine the required reinforcements for a

typical interior tied column between the ground and second levels. Use

fc
0 ¼ 4,000psi, fy¼ 60,000 psi, and 1.5 in. for cover. Do not reduce live

loads. Assume small eccentricity for the loads. The unit weight of the

concrete is 150 pcf. Neglect the self-weight of the column.

5.12. Rework Problem 5.4. Assume the column is subjected to a dead load moment,

MD¼ 20 ft-kip, and a roof live load moment, MLr¼ 30 ft-kip.

5.13. Determine the maximum factored moment, MR, that a 24 in.� 24 in. column

with 12 #10 bars distributed uniformly around the column can carry when
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subjected to a factored axial load, Pu¼ 750 kip. Use fc
0 ¼ 4,000psi,

fy¼ 60,000 psi, #3 ties, and 1 1=2 in. for cover.

A

A10'-0"
(typical)

16 in.  16 in.
column (typical)

A A

30'-0" 30'-0"

Typical framing plan

6 in.

26 in.

16 in.

Section A-A

Elevation

Roof level

3rd level

2nd level

Ground level

12'-0"

12'-0"

15'-0"
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5.14. Rework Problem 5.10. Assume that the column is subjected to a factored

moment, Mu¼ 50 ft-kip.

5.15. Rework Problem 5.11. Assume that the column is subjected to a factored

moment, Mu¼ 110 ft-kip. Place the longitudinal reinforcing uniformly

around the four faces.

5.16. Determine PR values for the columns shown below subjected to the factored

moments indicated. Use fc
0 ¼ 4,000psi, fy¼ 60,000 psi, and 2.0 in. cover.

Do not check ties or spirals.

20 in.

8 #8
#4 Ties

y

y

xx

Mux = 200 ft-kip

18 in.

6 #10 #4 Ties

y

y

xx

Mux = 140 ft-kip

Mu = 200 ft-kip

20 in.

8 #8

3
8 in. Diameter spiral

8 #11 #4 Ties

Muy = 180 ft-kip

16 in.

y

y

xx

20 in.

20 in.18 in.

a b

c d

5.17. A square tied column is subjected to a factored load, Pu¼ 250 kip, and a

factored moment, Mu¼ 50 ft-kip. Design this column. Use fc
0 ¼ 4,000psi,

fy¼ 60,000 psi, and 1.5 in. cover. Do not design the ties. Place the longitu-

dinal reinforcing uniformly in the four faces.

5.18. A circular spiral column is subjected to a factored load, Pu¼ 400 kip, and a

factored moment, Mu¼ 150 ft-kip. Design this column. Use fc
0 ¼ 4,000psi,

fy¼ 60,000 psi, and 1.5 in. for cover. Do not design the spirals.
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Self-Experiments

These self-experiments focus on the behavior of columns subjected to axial load

and moment. Include all the details of the tests in your report along with images

showing the different steps.

Experiment 1

In this experiment, we look at the beam-column action. Glue together two pieces of

Styrofoam to make a beam-column assembly. Glue the base of the column to a rigid

surface. Apply a concentrated load to the beam and move the load along the beam,

as shown in Figure SE 5.1. How does the load affect the column? How does the

location of the load affect the behavior of the beam and column? Discuss any other

observations.

Experiment 2

In this experiment, you will cast the square tied column shown in Figure SE 5.2.

Two sets of wires are needed, thicker wires for the main reinforcement and thinner

wires for the ties. The column dimensions and reinforcement sizes are optional.

Discuss the different stages of construction. Estimate how much load the column

can carry. Discuss any other observations.

Experiment 3
Repeat Experiment 1 by casting the column and beam using reinforced concrete.

Make sure that the beam reinforcements are bent into the column to provide a

moment connection. How does the reinforced concrete beam-column behave dif-

ferently from that of Experiment 1? Discuss any other observations.

Moving load

Figure SE. 5.1 Beam-column assembly model
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A A

A-A

Figure SE. 5.2 Tied column model
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Chapter 6

Floor Systems

6.1 Introduction

The appropriate selection of a floor system heavily influences the overall cost of a

building. A designer has to take many factors into account when making such a

selection; and, unfortunately, the structural scheme cheapest to construct may not

be the best bargain in terms of overall construction cost of the building.

The first element that forms the floor surface is the slab. Beams or columns, in

mathematical abstraction can be described by a single line. These are called linear
elements, because one of their three dimensions, the length, is much greater than the

other two (i.e., the dimensions of the cross-section). The load-path of linear

elements is easy to describe: They carry their loads along their length to the

supports.

A single line, however, cannot describe slabs or plates. As discussed in Chapter 2,

slabs have two dimensions that are significantly larger than the third one, the

thickness. They are usually described mathematically as thin plates. The “exact”

bending theory of thin plates, based on the theory of elasticity, requires the solution of

a partial differential equation of the fourth order. This is completely impossible for

any practicing engineer or architect. Furthermore, so-called “exact solutions” fail to

deal with everyday realities, such as reinforced concrete that does not follow strict

elastic behavior, or load distributions that are not nice and uniform, and so on.

Fortunately, we can understand how a slab behaves by carefully considering how

it deforms under loads. Slabs bend in two directions, so a single line cannot describe

the bent shape. A way of describing a bent surface is therefore necessary for

understanding slab behavior. The load-path (i.e., the way a slab transfers any

load to the supports) depends on the way the slab bends between those supports,

which in turn depends on the way the designer chooses to support the slab.
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The types of supports for slabs are divided into three groups.

1. Point supports. These consist of columns, posts, suspension points, and so

on. Slabs supported by supports of this type are referred to as flat slabs or flat
plates.

2. Line supports. Examples of line supports are beams, girders, and walls. Slabs

supported by supports of this type are referred to as one- or two-way slabs.
3. Continuous media (Slabs on grade supported by soil).

Admittedly the classifications of the first two types of support are somewhat

arbitrary. Often a designer may employ linear support elements (beams and walls)

in conjunction with point support elements, which makes the referencing more

difficult.

The overall cost of a monolithic concrete floor system depends on several

factors. First and foremost among these is the cost of shoring and forming. A strong

shoring system must be constructed. It should safely support the weight of the

freshly poured concrete and the associated construction loads (i.e., the people and

the equipment necessary for placing and finishing the wet concrete). The forms that

will serve as the mold must also be built.

The costs in a reinforced concrete floor system usually break down as follows:

Formwork and shoringð Þ 50� 60 %
Concrete, including placing and finishing 25� 30 %
Reinforcement, including placement 15 � 20 %

These figures are based on current material and labor costs in the United States and

may not necessarily be the same elsewhere in the world. They clearly show,

however, that the cost of labor in the United States usually is greater than the raw

cost of materials. Thus, the selection of the right floor system for a building is not an

easy task.

6.2 Flat Slabs and Plates

Figure 6.1 shows a typical flat plate floor system. Flat plate is a slab of uniform

thickness resting on column supports. It is the most economical system to form, as it

requires only a wood deck on adequate shoring. It also provides for the least

structural depth and thus for minimal floor-to-floor height, which is a very impor-

tant cost consideration in the overall economy of a multistory building. Figure B6.1

in Appendix B shows a high-rise building with flat plate floor system under

construction.

Table 6.1, which is Table 8.3.1.1 of the ACI Code, provides guidelines for the

selection of minimum thickness of slabs without interior beams or flat plates as a

function of the clear span. The guidelines enable the designer to select a slab thick

enough to prevent excessive short- and long-term deflections in the system. The
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authors believe, on the basis of decades of experience in designing and observing

similar structures, that the ACI-recommended minimum thicknesses are somewhat

small and probably will result in excessive deflections, especially in exterior or

corner panels. Thus, we recommend selecting slabs about 7–10 % thicker than what

the Code requires. In Table 6.1, ‘n is the clear span from the face of one column to

the face of the next. Use the longer clear span when selecting a slab thickness for

rectangular bays.

Flat plates are the most economical for square (or nearly so) bays, and for spans

of about 26 ft or less. Beyond that span length the slab becomes too thick, with

corresponding increase of self-weight. Flat slabs (i.e., plates strengthened around

the columns by additional depth provided by drop panels, as shown in Figure 6.2,

and with column capitals, as shown in Figure 6.3) are an economical choice for bays

up to about 35 ft.

Figure 6.4 shows the schematic deformation diagram of a flat plate under load.

The largest deflections are in the center of the bay, and the most highly stressed

zones occur around the supports.

Figure 6.1 Flat plate floor system

Table 6.1 Minimum slab thicknesses recommended by the ACI Code Table 8.3.1.1 (without

interior beams)

Yield
strength,
fy (psi)

Without drop panels With drop panels

Exterior panels
Interior
panels Exterior panels

Interior
panels

Without
edge beams

With edge
beams

Without
edge beams

With edge
beams

40,000 ‘n
33

‘n
36

‘n
36

‘n
36

‘n
40

‘n
40

60,000 ‘n
30

‘n
33

‘n
33

‘n
33

‘n
36

‘n
36

75,000 ‘n
28

‘n
31

‘n
31

‘n
31

‘n
34

‘n
34
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Figure 6.2 Flat slab with drop panels

Figure 6.3 Flat slab with drop panels and column capitals

Figure 6.4 Schematic deflection of an interior bay under load
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6.3 Shears in Flat Slabs and Plates

Because loads must travel toward the columns, the available zone through which

shear forces must travel becomes smaller and smaller; thus, the shear stress

increases, reaching a maximum at or near the interface of the column and the

slab, as shown in Figure 6.5. The large shears also indicate a sharp change in the

moments that occur around the columns. Shears cause diagonal tensions in concrete

structures that are subject to flexure, and because concrete is quite weak in resisting

tension, failure can result. The failure surface may be envisioned as a truncated

pyramid similar to the one shown in Figure 6.6. This phenomenon is known as

punching shear: The column “punches” through the slab, or, more precisely, the

slab fails and falls down around the column.

Figure 6.5 Gravity load shear transfer from slab to column

Diagonal tension

Figure 6.6 Diagonal tensions around the columns
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This type of failure (i.e., punching) can be quite catastrophic. Many spectacular

failures in the history of construction have happened due to punching shear.

The intensity of the shear stress and the resulting diagonal tension depends on the

cross-sectional area through which the shear forces must travel toward the column.

This cross-sectional area, or shear surface area, depends on two parameters:

the thickness of the slab around the column, and the cross-sectional size of the

column. So the selection of these dimensions plays a very important role in

the preliminary design of the system. The column size is also influenced by the

loads and moments that the column must resist at the floor level under consider-

ation. In this discussion, however, the column size is considered only from the point

of view of the punching shear in the slab.

Figure 6.7 shows a plan view of a typical interior column. The ACI Code

approach is based on a simple analytical model. It assumes that the critical shear

surface lies at a d/2 distance from the face of the column, where d is the effective

depth of the slab. The shear surface area then is the length of the critical periphery

(or perimeter of the critical section) multiplied by d.

The ACI Code gives the maximum factored shear to be transferred by stresses on

the concrete from the slab to the column as the smallest of Equations (6.1), (6.2),

and (6.3) (ACI Code Table 22.6.5.2).

ϕVc ¼ ϕ 2þ 4

β

� �
λ
ffiffiffiffi
fc
0p
bod ð6:1Þ

where β is the ratio of the long side to the short side of the column’s cross section,

and bo is the shear periphery (perimeter of the critical section for shear). λ is the

lightweight concrete factor (λ¼ 0.75 for ‘all-lightweight’, λ¼ 0.85 for ‘sand-light-

weight’, and λ¼ 1.0 for ‘normal weight’ concrete). As in Chapter 4, ϕ¼ 0.75 for

shear. Equation (6.1) is the governing formula when the column’s cross section is

an elongated rectangle, with the ratio of longer side to shorter side greater than 2.

ϕVc ¼ ϕ
αsd
bo

þ 2

� �
λ
ffiffiffiffi
fc
0p
bod ð6:2Þ

c1
d/2

d/2

c2

Critical shear
periphery

Column section

Figure 6.7 Definition of the critical shear periphery
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where αs is 40 for interior columns, 30 for edge columns, and 20 for corner

columns.

ϕVc ¼ ϕ 4λ
ffiffiffiffi
fc
0p
bod

� �
ð6:3Þ

Figures 6.8 and 6.9 show the shear periphery for a corner column and for an edge

column, respectively.

Experience has shown that vertical chases, ducts, pipes, and so on are somehow

“attracted” to columns. Although structures can tolerate openings near columns, open-

ings reduce the available shear periphery. Figure 6.10 shows some examples of openings

near a column and the resulting reduction in the effectiveness of the shear transfer.

c1
d/2

d/2

c2

Critical shear
periphery

Figure 6.8 Definition of the shear periphery at a corner column, bo ¼ c1 þ c2 þ 2
d

2

c1
d/2

d/2

c2

Critical shear
periphery

Figure 6.9 Definition of the shear periphery at an edge column, bo ¼ c1 þ 2c2 þ 4
d

2

Critical shear
periphery

Ineffective
Ineffective

Assume free
edge

Ineffective

Figure 6.10 Lost effective periphery due to openings near columns
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Example 6.1 For a floor structure with typical 24 ft by 26 ft bay sizes, the

superimposed dead loads are 20 psf and the superimposed live loads are 100 psf.

As a preliminary design, select an appropriate flat slab thickness

(without drop panels) and a column size as governed by punching shear. Assume

fc
0 ¼ 4,000psi and fy¼ 60,000 psi. The concrete is normal weight with a unit

weight of 150 pcf.

Solution

The slab thickness will be governed by the longer span. Because we do not yet

know the column size, assume 18 in.� 18 in. square. Even if we under- or

overestimate the column size, the error will have little effect on the slab thickness

selection. Thus, the larger net (clear) span is:

26� 12� 18 ¼ 294 in:

From Table 6.1 (for the exterior panel):

hmin ¼ ‘n=30 ¼ 294=30 ¼ 9:8 in:

Select 10 in. as a practical dimension.

Load analysis:

Self weight of 10 in: slab ¼ 150
10

12

� �
¼ 125psf

Superimposed dead loads 20 psf

Live loads 100 psf

The factored load per square foot is:

qu ¼ 1:2 125þ 20ð Þ þ 1:6 100ð Þ ¼ 334psf

The factored load on a typical interior column is:

Pu ¼ quA ¼ 334� 24ft� 26ft ¼ 208,416 lb

This value is larger than the actual shear that must be transmitted through the

critical shear periphery because the loads within the periphery do not contribute to

it. We will use this approximate value, however, for the factored shear as well as to

estimate the size of the required column.

Thus:

Vu ¼ 208,416 lb

d¼ 10�0.75�0.75¼ 8.5 in. (average d assuming #6 bars in both directions with

3/4 in. cover)
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From Equation (6.3) (normal weight concrete, λ¼ 1.0):

ϕVc ¼ 0:75� 4� 1:0� ffiffiffiffiffiffiffiffiffiffiffi
4,000

p � bo � 8:5 ¼ 1,613bo � 208,416 lb

Hence:

bo � 129 in:

Because bo¼ column periphery + 8� d/2¼ column periphery + 34 in., the column

periphery for a typical interior column must be equal to or greater than

129–34¼ 95 in.

Thus, several possibilities exist. We can use 24 in.� 24 in. square column,

20 in.� 28 in. rectangular column, or 18 in.� 30 in. rectangular column, and so

on, as long as the aspect ratio of the longer side to the shorter side remains less than

2. Thus, if the column size is 14 in.� 34 in., the column periphery will satisfy the

minimum 95 in. requirement; but the aspect ratio β¼ 34/14¼ 2.43 is greater than

2, which would require using Equation (6.1) as the governing equation.

ϕVc ¼ 0:75� 2þ 4

2:43

� �
� 1:0� ffiffiffiffiffiffiffiffiffiffiffi

4,000
p � 2� 14þ 2� 34þ 4� 8:5ð Þ � 8:5

¼ 191,109 lb

which is less than the required Vu¼ 208,416 lb.

Moment transfer between the slab and the columns increases shear stresses

around the columns. How this moment transfer occurs precisely is still a subject

of discussion and research. The ACI Code (Sections 8.4.2.3.2 and 8.4.4.2.2) rather

arbitrarily assumes that 60 % of the moment transfer for square interior columns

occurs via flexure at the column’s face, and 40 % is assigned to a shear distribution

model over the critical periphery (For other column locations or shapes, refer to the

ACI Code Section 8.4.2.3.2 and Table 8.4.2.3.4). Figure 6.11 shows the assumed

Assumed distribution of shears 
providing for moment transfer

Critical sections

B

B

Mu

Vu1

Vu 2

Vu 2

Vu 2

Vu 2

Vu 1

vuM

Figure 6.11 Model of moment transfer from slab to column via shears
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model. These shears then must be combined with those from the gravity loads that

were discussed above.

Example 6.2 Assume that it is necessary to transfer a factored moment of

Mu¼ 120 kip-ft between a flat slab and an interior column. The moment acts

clockwise, as shown on Figure 6.11.

The column is 20 in.� 20 in. and d¼ 8.5 in. for the slab. Calculate the factored

shear stress due to the moment.

Solution

Per the ACI Code, the shears will transfer 40% of the moment. Thus, the shears will

be responsible for an Mu¼ 0.4� 120¼ 48 kip-ft.

Designating the maximum shear as vuM, then:

B¼ 8:5þ 20 ¼ 28:5 in:

Vu1 ¼ vuMBd ¼ vuM � 28:5� 8:5 ¼ 242:25vuM

Vu2 ¼ 1

2
vuM

Bd

2
¼ 1

2
vuM

28:5� 8:5

2
¼ 60:56vuM

Mu ¼ 2
Vu1 � B

2

� �
þ 4 Vu2 � 2

3
� B

2

� �

48� 12,000¼ 2 242:25vuM � 28:5

2

� �
þ 4 60:56vuM

2

3

� �
28:5

2

� �	 


576,000¼ 9,205vuM ! vuM ¼ 62:6psi

If the shear stresses exceed what the ACI Code allows, we can reinforce the

column/slab interface. The reinforcing may be a shear head manufactured from

crossing steel shapes, or sets of closed stirrups. The last two decades have witnessed

the development of proprietary premanufactured shear reinforcement.

6.4 Flexure in Flat Slabs and Plates

Flexure in flat slabs and plates is a very complex problem. The simple representa-

tion of the deformation shown in Figure 6.4 does not truly describe the deflections,

which have a rather intricate topography. But the magnitude of bending moments in

any direction is related to the slope of the deflection curve, so the largest moments

occur where the curvature of the deflection surface is greatest. Because the surface

curves in all directions, bending moments will occur in all directions at any location

on the slab. Moments in any direction can be represented by their component

moments in a preselected coordinate system, so the ACI Code uses a design method

based on a simple model that is easy to visualize and proven to be safe. (Refer to

Figure 6.12 in the following discussion of this model).
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Each slab bay is divided into strips in both directions, as shown in Figure 6.12.

By studying the deflection pattern shown in Figure 6.4, we easily understand how

flexures occur in the structure. In the zone where two middle strips cross (Zone A),

the slab bends downward in both directions; thus, there will be tensions in the

bottom in both directions (positive moment regions). Where two column strips

cross (Zone B), the slab bends upward in both directions, generating tensions at

the top in both directions (negative moment regions). Where a middle strip crosses

a column strip (Zone C), the slab bends downward in the direction of the column

strip, but bends upward in the direction of the middle strip; thus, there will be

positive moments in the column strip’s direction and negative moments in the

middle strip’s direction.

The ACI Code suggests two methods for the flexural analysis of flat slabs and

plates. The first (and simpler) is called the direct design method; the second is

called the equivalent frame method. These methods are not exclusively for flat slabs

or flat plates. They may also be used when beams exist on the column lines, which

are commonly known as two-way slabs on beams. In this chapter we discuss only

the direct design method. (Discussion of the equivalent frame method is beyond the

scope of this book. The interested reader is referred to Section 8.11.2 of the ACI

Code).

The direct design method may be used only when the plan geometry conforms to

the following set of limitations (ACI Code, Section 8.10.2)

Zone
A

2

Column stripMiddle stripColumn strip

Zone
C

Zone
B

C
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um
n 

st
rip

C
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um
n 

st
rip

M
id

dl
e 

st
rip

Zone
C

Zone
C

Zone
B Zone

C

Zone
B

Zone
B

The width of the column strip within a panel is defined
as 0.25 1 or 0.25 2 (whichever is less) on each

side of the column centerline.

1

Figure 6.12 Definition of column strips and middle strips in flat plates and slabs
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1. There are at least three consecutive spans in each direction.

2. The panels are rectangular and the ratio of the longer span to the shorter span is

not greater than 2.

3. The neighboring span lengths differ by no more than one-third of the

longer span.

4. Columns can be offset by a maximum of 10 % of the span (in direction of offset)

from either axis between centerlines of successive columns.

The flexure analysis of slab then proceeds as follows:

Step 1. Calculate the absolute sum of the average positive and negative moments in

each direction on a panel (ACI Code, Equation 8.10.3.2):

Mo ¼ qu‘2‘
2
n

8

where

qu¼ the factored load on a unit area (psf);

‘n¼ the clear (net) span length in the direction for which moments are

being determined;

‘2¼ the length of span (center to center) transverse to ‘n;

Step 2. Divide Mo into positive and negative moments.

The value of Mo is divided between total factored positive and negative

moments in the span under consideration. Figure 6.13 shows a schematic

moment diagram for a slab and the value ofMo. The values assigned are not

the result of theoretical studies, but rather observations from testing. They

appear to be safe and reasonable values given the highly indeterminate

nature of the problem. (A few percentage points of difference one way or

the other does not change the overall ultimate strength of the system).

Span

Positive factored moment

Negative factored moment
Mo

Net span
n

Figure 6.13 Moments in a flat panel bay
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In an interior span (ACI Code, Section 8.10.4.1), the negative factored

moment is 0.65 Mo, and the positive factored moment is 0.35 Mo. In an

exterior span, the ratios of the total negative moments and the positive

moments are strongly dependent on the presence of beams between col-

umns. Edge beams on the exterior perimeter help support the exterior wall

system and better control deflections around the periphery, where deflec-

tions may be harmful to the wall system. Table 6.2 (from the ACI Code,

Section 8.10.4.2) shows the proportions of Mo to be used in exterior spans
according to the edge support condition.

Step 3. Divide positive and negative moments between column strips and middle

strips.

Now that we have determined the values of the positive and negative

moments across the full width (‘2) of the panel, we divide these moments to

the appropriate column strips and middle strips.

The calculations are slightly more involved when beams are incorpo-

rated into the floor system.

The ACI Code defines a coefficient, αf, which is the ratio of flexural

stiffness of a beam section to the flexural stiffness of a width of slab

bounded laterally by the centerlines of adjacent panels on each side of the

beam. The coefficient αf is calculated using Equation (6.4) (ACI Equation

8.10.2.7b).

αf ¼ EcbIb
EcsIs

ð6:4Þ

where Ecb and Ecs are the modulus of elasticity of the concrete in the beam

and slab respectively (these two values are usually the same in cast-in-place

concrete construction); and Ib and Is are the moment of inertia of the gross

concrete section of the beam and slab, respectively. For flat plates and

slabs, αf¼ 0.0.

Table 6.2 Percent distribution of moments into positive moments and negative moments in an

end bay (ACI Code Table 8.10.4.2)

(1) (2) (3) (4) (5)

Slabs without
beams between
interior supports

Exterior
edge

unrestrained

Slab with beams
between all
supports

Without
edge
beam

With
edge
beam

Exterior
edge fully
restrained

Interior negative

factored moment

0.75 0.70 0.70 0.70 0.65

Positive factored

moment

0.63 0.57 0.52 0.50 0.35

Exterior negative

factored moment

0 0.16 0.26 0.30 0.65

6.4 Flexure in Flat Slabs and Plates 383



Table 6.3 summarizes the percentages of the negative moment that is

assigned to the column strips at an interior support (ACI Code,

Section 8.10.5.1). The remainder of the moment is assigned to the middle

strip. Linear interpolation is permitted between the values shown.

Table 6.4 summarizes the percentages of positive moment assigned to

the column strips (ACI Code, Section 8.10.5.5). The remainder of the

moment is assigned to the middle strip. Linear interpolation is permitted

between the values shown.

Column strips at an exterior support are assigned percentages of the

negative moments according to Table 6.5 (ACI Code, Section 8.10.5.2).

Again, linear interpolation is permitted between the values shown. In

Table 6.5, the main distinction is whether or not an edge beam connects

into the column. A large edge beam with a significant torsional stiffness

attracts negative moments away from the column strip, or in other words, it

provides some fixity for the middle strip as well. In the case of free slab

edge (no edge beam), we assign the total exterior negative moment calcu-

lated in step 2 to the column strip.

In Table 6.5, βt is the ratio of the torsional stiffness of the beam to the

flexural stiffness of a width of slab equal to the span length of the beam.

The term “beam” here refers to a T-section attached to a certain amount of

the slab that helps to increase the beam’s torsional stiffness. See Figure 6.14

for an illustration of the T-section.

The cross-sectional constant of the combined stem and attached slabs

may be evaluated from rectangular parts as given by Equation (6.5) (ACI

Code Equation 8.10.5.2b).

Table 6.3 Percent of interior

negative moments assigned to

column strips (ACI Code

Table 8.10.5.1)

‘2/‘1 0.5 1.0 2.0

(αf1‘2/‘1)¼ 0 75 75 75

(αf1‘2/‘1)� 1.0 90 75 45

Table 6.4 Percent of positive

moments assigned to column

strips (ACI Code

Table 8.10.5.5)

‘2/‘1 0.5 1.0 2.0

(αf1‘2/‘1)¼ 0 60 60 60

(αf1‘2/‘1)� 1.0 90 75 45

Table 6.5 Percent

distribution of negative

moment at an exterior column

into the column strip (ACI

Code Table 8.10.5.2)

‘2/‘1 0.5 1.0 2.0

(αf1‘2/‘1)¼ 0 βt¼ 0 100 100 100

βt� 2.5 75 75 75

(αf1‘2/‘1)� 1.0 βt¼ 0 100 100 100

βt� 2.5 90 75 45
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C ¼
X

1� 0:63
x

y

� �
x3y

3
ð6:5Þ

where x and y are the shorter and longer overall dimensions, respectively,

of the rectangular part of the cross section. The value for βt can then be

calculated using Equation (6.6) (ACI Equation 8.10.5.2a).

βt ¼
EcbC

2EcsIs
ð6:6Þ

In typical cast-in-place concrete construction, Ecb¼Ecs.
Step 4. Determine reinforcement.

From the moments calculated in step 3, determine the reinforcement

required in the column strips and middle strips using the flexural design

methods discussed in Chapter 2.

Example 6.3 Design the reinforcement for a typical interior bay of the flat plate

floor system of Example 6.1. Assume that the columns are 20 in.� 20 in. and that

the slab’s thickness is 10 in. Use fc
0 ¼ 4,000 psi and fy¼ 60,000 psi.

The solution shows detailed calculations for the longer span (26 ft)

direction only.

Solution

Step 1. Calculate Mo.

‘1 ¼ 26:0 ft ‘2 ¼ 24:0 ft qu ¼ 334psf from Example 6:1ð Þ
‘n ¼ 26� 20=12 ¼ 24:33 ft

Mo ¼ 0:334� 24� 24:332

8
¼ 593:3kip-ft

hf 

hb

hf 

hb

bw bw

bw  2hb bw  8hfhb 4hf

Figure 6.14 Slab width increasing the beam’s torsional stiffness
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Step 2. Distribute Mo between the negative and positive moments.

Mneg ¼ 0:65� 593:3 ¼ 385:6kip-ft
Mpos ¼ 0:35� 593:3 ¼ 207:7kip-ft

Step 3. Distribute Mneg and Mpos between the column strip and the middle strip.

Because no beams are incorporated into the system, αf1¼ 0 and αf2¼ 0.

Thus, using the coefficient from Table 6.3, the factored negative moment

assigned to the column strip at an interior support line is:

�Mcolumn strip ¼ 0:75� 385:6 ¼ 289:2 kip-ft

Theremainder 100� 75 ¼ 25%ð Þ is assigned to themiddle strip:

�Mmiddle strip ¼ 0:25� 385:6 ¼ 96:4kip-ft

Using the coefficient from Table 6.4, the factored positive moment

assigned to the column strip is:

þMcolumn strip ¼ 0:60� 207:7 ¼ 124:6kip-ft

The remainder 100� 60 ¼ 40%ð Þ is assigned to themiddle strip:

þMmiddle strip ¼ 0:40� 207:7 ¼ 83:1kip-ft

Step 4. Determine the required reinforcement.

In the 26-ft long span direction, the width of a column strip or a middle

strip is one-half the perpendicular span. Thus, use the following cross-

sectional data to calculate the required reinforcing:

b ¼ 24� 12=2 ¼ 144 in:
d ¼ 10� 0:75� 0:375 ¼ 8:87 in:

�
assuming #6 bars in the outer layer

and 3=
4
in: concretecover

�
Then the calculated column strip negative reinforcing is:

R ¼ 12,000Mu

bd2
¼ 12,000� 289:2

144� 8:872
¼ 306psi !

fromTableA2:6b ! ρ ¼ 0:0060

thenAs ¼ ρbd ¼ 0:0060� 144� 8:87 ¼ 7:66 in:2

FromTableA2:9, select18 #6 bars As ¼ 7:92 in:2ð Þ :

The middle strip negative reinforcing is:
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R ¼ 12,000� 96:4

144� 8:872
¼ 102psi ! fromTableA2:6b ! ρ ¼ 0:0019

then As ¼ 0:0019� 144� 8:87 ¼ 2:43 in:2

FromTableA2:9, select13 #4bars As ¼ 2:60 in:2ð Þ:

The column strip positive reinforcing is:

R ¼ 12,000� 124:6

144� 8:872
¼ 132psi ! fromTableA2:6b ! ρ ¼ 0:0025

thenAs ¼ 0:0025� 144� 8:87 ¼ 3:19 in:2

FromTableA2:9, select16 #4bars As ¼ 3:20 in:2ð Þ:

The middle strip positive reinforcing is:

R ¼ 12,000� 83:1

144� 8:872
¼ 88psi ! fromTableA2:6b ! ρ ¼ 0:0017

thenAs ¼ 0:0017� 144� 8:87 ¼ 2:17 in:2

From Table A2.9, select 11 #4 bars (As¼ 2.20 in2). Figure 6.15 shows the

selected reinforcing in the different strip zones. Final results include the

required reinforcing in the 24-ft span direction as well. The resulting

moments in the short span strips are somewhat less (due to the shorter

span), but the reinforcing required is almost identical to that of the long

span strip. This reinforcement will be placed in a second layer, with the

working depth d estimated as only 8.12 in. The student is encouraged to

verify these reinforcing requirements. The placement order (i.e., which

layer of reinforcement must be laid first and which layer onto the second

layer) must be clearly noted by the designer on the structural plans.

Example 6.4 Calculate the column and middle strip moments for an end bay of the

floor system in Example 6.3 with the addition of a 12 in. wide by 20 in. deep edge

beam. Figure 6.16 shows the slab divided into column and middle strips. As in

Example 6.3 only the 26 ft span direction calculations are shown.

Solution

Step 1. Calculate Mo : ‘1 ¼ 26:0 ft, ‘2 ¼ 24:0 ft, qu ¼ 334 psf,

‘n ¼ 26� 20=12 ¼ 24:33 ft

Mo ¼ 0:334� 24� 24:332

8
¼ 593:3 kip-ft

Step 2. In this problem, the values listed in the fourth column of Table 6.2—slabs

without beams between interior supports, but with edge beam—will apply.

6.4 Flexure in Flat Slabs and Plates 387

http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


Thus:

The total factored negative moment at the first interior support is:

0:70� 593:3 ¼ 415:3kip-ft

The total factored positive moment in the first span is:

0:50� 593:3 ¼ 296:7kip-ft

The total factored negative moment at the exterior support is:

0:30� 593:3 ¼ 178:0kip-ft

Step 3. Distribute the moments to the column strips and the middle strips.

(a) Negative moments at the first interior support:

Because αf1¼ 0 (no beams in the span direction), from Table 6.3:

16
 #

4 
B

ot
to

m

11
 #

4 
B

ot
to

m

16
 #

4 
B

ot
to

m

16 #4 Bottom

11 #4 Bottom

16 #4 Bottom

12 ft.

12 ft.

12 ft.

12 ft. 14 ft. 12 ft.

26 ft.

24 ft.
13

 #
4 

T
op

13
 #

6 
T

op

13
 #

6 
T

op
13

 #
6 

T
op

13
 #

4 
T

op

13
 #

6 
T

op

18 #6 Top

13 #4 Top

18 #6 Top 18 #6 Top

13 #4 Top

18 #6 Top

Figure 6.15 The calculated reinforcing from Example 6.3
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�Mcol: strip ¼ 0:75� 415:3 ¼ 311:5kip-ft
�Mmid: strip ¼ 0:25� 415:3 ¼ 103:8kip-ft

(b) Positive moments in the first span, from Table 6.4:

þMcol: strip ¼ 0:60� 296:7 ¼ 178:0kip-ft
þMmid: strip ¼ 0:40� 296:7 ¼ 118:7kip-ft

(c) Negative moments at the exterior support:

In order to use Table 6.5, calculate the value of βt.
Figure 6.17 shows the definition of the edge beam per Figure 6.14.

Calculating the required parameters:

26'-0"

6'-0" 6'-0" 6'-0"14'-0"

12 in.  20 in.
edge beam

24'-0"

12'-0"

12'-0"

12'-0"

Figure 6.16 Column strips and middle strips in the exterior bay
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yt ¼
20� 12� 10þ 10� 10� 5

20� 12þ 10� 10
¼ 8:53 in, A ¼ 20� 12þ 10� 10 ¼ 340 in:2

Ib ¼ 203 � 12

3
þ 103 � 10

3
� 340� 8:532 ¼ 10,595 in:4

Is ¼ 24� 12ð Þ � 103

12
¼ 24,000 in:4

C ¼ 1� 0:63� 12

20

� �
123 � 20

3
þ 1� 0:63� 10

10

� �
103 � 10

3
¼ 8,399 in:4

βt ¼
8,399

2� 24,000
¼ 0:175

By interpolating between the values listed in Table 6.5, we obtain

the percentage needed to calculate the negative moment at the exterior

support:

�Mcol: strip ¼ 0:982� 178:0 ¼ 174:8 kip-ft

The remainder, which is assigned to the middle strip, is:

�Mmid: strip ¼ 178:0� 174:8 ¼ 3:2kip-ft

This value is very small due to the relatively small torsional stiff-

ness of the edge beam.

6.5 Flat Slabs and the Use of Drop Panels

Flat plates are usually the most economical choice when spans are about 26 ft or

less. Beyond this length the slab thickness required to control deflections becomes

too large, thus making the slab too heavy. Moments and shears are highest in the

areas around the columns. Hence, it makes eminent sense to increase the depth of

the plate in these critical areas, as shown in Figures 6.2 and 6.3. Although the use

of drop panels may be attractive from the standpoint of structural behavior, the

12 in. 10 in.

20 in.

10 in.

Figure 6.17 The edge beam in Example 6.4
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associated forming costs are considerable. On the other hand, drop panels allow

thinner slabs to be used in most of the areas. This results in weight and concrete

savings that offset some of the excess forming costs. Figure B6.2 in Appendix B

shows the forming of a drop panel for a flat slab floor system.

According to the ACI Code (Section 8.2.4), drop panels must extend at least

one-sixth of the span length in each direction from the column center line, and their

thickness must be at least 25 % of the slab thickness beyond them.

Example 6.5 Calculate the appropriate size of a flat slab system for the floor in

Example 6.3. The columns are 20 in.� 20 in. Figure 6.18 shows the plan layout

indicating the outlines of the drop panels.

Solution

The minimum plan dimension of the drop panel is

26� 1

6

	 

2ð Þ ¼ 80�800 by 24� 1

6

	 

2ð Þ ¼ 80�000

From Table 6.1 the recommended minimum slab thickness is:

hmin ¼ ‘n
36

¼ 26� 12� 20ð Þ
36

¼ 8:11 in: select h ¼ 8:5 in:

The minimum drop panel thickness below the slab is:

26'-0"

8'-8"

8'-0"

24'-0"

Figure 6.18 Plan of flat slab
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0:25 in:� 8:5 in: ¼ 2:13 in: Use2:5 in:

Thus, the total thickness within the drop panel will be 8.5 + 2.5¼ 11 in.

The total volume of concrete within one typical bay is:

24� 26� 8:5

12
þ 8:67� 8� 2:5

12
¼ 456:5ft3

or an equivalent uniform thickness of 8.78 in., as opposed to the 10 in. thickness

used in the flat plate structure. This represents a 12.2% saving in concrete use and,

correspondingly, in the self-weight of the structural slab. After the superimposed

dead and live loads are added, however, the savings in the average factored loads

diminish to about 5.4%. The reduced working depth in the zones outside the drop

panels results in increased reinforcing as well, further diminishing the economical

advantages gained from the use of less concrete.

6.6 Waffle Slab Structures

Figure 6.19 shows a typical waffle slab or two-way joist floor structure. Waffle slab

floor structures are thick flat plate structures, with the concrete removed from zones

where it is not required by strength considerations. Waffle slab provides economical

structures for spans up to 60 ft, in square bays, loaded with light and moderate

loads. The voids are formed by steel (or fiberglass) “domes” that are reusable, thus

very economical. These forms are available in standard sizes, as shown in

Figure 6.20, although wider or odd-shaped domes are also used to satisfy some

design objectives. The sides of the domes are tapered (usually 1 in 12) to permit

easy removal after the concrete has cured. The two-way joists, when carefully

finished after the removal of the forms, provide a pleasing appearance as well.

Figure B6.3 in Appendix B shows an exposed waffle slab floor system.

Figure 6.19 Underside view of a waffle slab
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The lips on the domes, when laid out side by side, form 5 in.-wide joists for the

19 in.-wide voids and 6 in.-wide joists for the 30 in.-wide voids. But the designer

does not have to work with 24 in. or 36 in. planning modules. Because the domes

are always laid out on a flat plywood deck, the spacing between the domes can be

easily adjusted to make the joists wider than standard at the base. This accommo-

dates virtually any column spacing while maintaining a uniform appearance.

Leaving out the domes around the columns forms a shear head that provides

increased shear strength as well as concrete in the bottom for the high negative

moments. The slab over the domes is typically 3–4.5 in. thick, unless large

concentrated loads, increased fire rating requirements, or embedded electrical

boxes and conduits warrant the use of a thicker slab. The 3 in. minimum is quite

adequate for roofs. The slab is reinforced with a light welded wire reinforcement to

prevent shrinkage and temperature cracks. Figure B6.4 in Appendix B shows the

domes and reinforcements during the construction of a waffle slab floor system.

For overall depth selection, the span/depth ratios given in Table 6.1 under the

heading “Without Drop Panels” will result in a very serviceable structure. The solid

concrete area around the column ideally should approach the size required for drop

panels; in other words, it should extend about one-sixth of the span length measured

from the column centerline.

Example 6.6 Select an appropriate waffle slab floor structure for 36 ft� 36 ft bays.

Columns are 20 in.� 20 in. fy¼ 60,000 psi

Solution

Select a 4.5 in.-thick slab, anticipating electrical conduits or junction boxes in the

slab Also, use the same depth structure in the end bays without edge beams.

From Table 6.1:

h � ‘n
30

¼ 36� 12� 20

30
¼ 13:73 in:

Select 10 in.-deep pans and a 4.5 in. slab for a total structural depth of 14.5 in.

Figure 6.21 shows the resulting layout.

Standard depth:
6 in., 8 in., 10 in., 12 in.

for 19 in.-wide voids
8 in., 10 in., 12 in., 14 in., 16 in., 20 in.

for 30 in.-wide voids 

24 in. or 36 in.

19 in. or 30 in.

Depth of void

Figure 6.20 Standard forming pans (domes) for waffle slabs
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Each 30 in.� 30 in.� 10 in. dome displaces 4.92 ft3 of concrete (CRSI Design
Handbook, p. 11-1). A typical bay contains 128 domes. Thus, the total volume of

concrete in the bay is:

Volume ¼ 36� 36� 14:5

12
� 128� 4:92 ¼ 936:2ft3

The average concrete thickness is only:

tavg ¼ 936:2

36� 36
12ð Þ ¼ 8:67 in:

The analysis of the system is very similar to that of flat plates. When finding the

reinforcement take into account that, with the exception of the filled areas around

the columns, the slab is no longer solid, but rather a set of joists. Thus:

(a) In positive moment areas, divide the strip moment by the number of joists and

design the joists for that fraction. Figure 6.22 shows that joists in these areas

C
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n 
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n 
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st
rip

Column strip Middle strip Column strip

Figure 6.21 Plan view of a waffle slab showing the defined column and middle strips
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are like T-beams, and the slab on top provides a wide compression flange. The

joists will have two layers of reinforcement, one for each joist direction; thus,

the working depth will be slightly less in one direction.

(b) In negative moment regions (where middle strips bend upwards over column

strips), the bottom width of the stem is in compression and the slab on the top

is in tension. Thus, distributed reinforcing is used over the width of the flange,

as shown in Figure 6.23.

(c) Shear and bending must be determined in the joists around the solid section

surrounding the column. On rare occasions, shear reinforcing is necessary in

the joists along a short distance.

6.7 One-Way Joists

Figure 6.24 shows a typical one-way joist system. One-way joists spanning between

beams are essentially closely spaced beam elements. The clear space between them

must not exceed 30 in. in order to qualify for the joist designation used by the ACI

Code. The forms are made of various materials, such as steel, fiberglass, fiber board,

and corrugated cardboard, and are made with or without the edge lip, as shown in

Figure 6.25. Forms without the edge lip, however, tend to bulge sideways during

construction under the lateral pressure of the freshly placed concrete, and the

b  36 in.

d2d1

Figure 6.22 Reinforcing in positive moment zones

b = 6 in.

d = 13.5 in. 

Figure 6.23 Reinforcing in negative moment zones
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resulting joist widths are uneven. Forms with square or tapered ends are also

available, as shown in Figure 6.26. The tapered ends provide increased shear

capacity as well as increased moment capacity at the negative moment regions.

Figure B6.5 in Appendix B shows a one-way joist floor system under construction.

One-way joist systems are often used when the bays are elongated (i.e., the

column spacing in one direction exceeds the spacing in the other direction by about

40 % or more). At such span ratios the advantage of two-way behavior is greatly

reduced, and it is more economical to use one-way systems in which beams span

between columns, and joists span between the beams. It is also more economical to

orient the beams in the shorter spans and the joists in the longer span. For ease of

forming, the selected depth of the beams is often equal to that of the joists. In order

to provide for the necessary shear and moment capacity, the beams are made

considerably wider than the faces of the columns into which they frame. These

wide and shallow beams are not as efficient as deeper beams, but the savings

achieved by the reduced forming cost more than make up for that. Beams deeper

than the joists, such as those shown in Figure 6.27, occupy additional ceiling space

and require additional forming cost. Figure B6.6 in Appendix B shows an exposed

one-way joist floor system.

The slab over the voids is typically 3 in. thick, unless large concentrated loads or

increased fire rating requirements warrant the use of a thicker slab. The slab is

Figure 6.24 One-way joists and beams

Standard depth:
8 in., 10 in., 12 in., 14 in., 16 in., 20 in.

20 in. or 30 in.

1-in.-12 slope Depth of void

Lip

Figure 6.25 Standard one-way joist pans
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reinforced with a light welded wire reinforcement to prevent shrinkage and

temperature cracks. The overall depth of the joist (including the slab’s thickness)

should be selected in accordance with Tables 7.3.1.1 and 9.3.1.1 of the ACI Code,

which is shown in Table 6.6. (This table was discussed in Chapter 2, but it is

repeated here for the readers’ convenience). The ratios listed therein give satisfac-

tory performance for most structural elements. The designer should be aware,

however, that these are minimum depth values, and should be used for members

not supporting or attached to partitions or other construction likely to be damaged

by large deflections. Thus, special attention should be paid when attaching walls to

the underside of concrete structural elements to ensure that such elements do not

Square-end joists Tapered-end joists

2 in.

3'-0"

Figure 6.26 Square- and tapered-end pan layouts

Wide beam: joists and beam are 
of equal depth, simple forming

Beam is deeper than joists, more 
complicated forming

Figure 6.27 Beam sections with joists

Table 6.6 Recommended minimum span/depth ratios [ACI Code, Tables 7.3.1.1 and 9.3.1.1].

(minimum thickness of non-prestressed beams or one-way slabs unless deflections are computed.)

Member
Simply

supported
One end

continuous
Both ends
continuous Cantilever

Solid one-way
slabs

Span/20 Span/24 Span/28 Span/10

Beams or joists Span/16 Span/18.5 Span/21 Span/8
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bear on the walls when deflecting. Furthermore, the deflection of the supporting

beams should not exceed span/600 to ensure crack-free masonry walls.

If the depth must be minimized beyond the values listed in Table 6.6, the

designer may use Grade 40 ( fy¼ 40,000 psi) reinforcement. This will result in

about 50 % more required reinforcement, but will reduce the strain in the

reinforcing steel in service load condition. Reduced strain in the reinforcement

provides reduced deflection. Because using a different grade of reinforcement for a

few selected members on a project is not recommended, it is permissible to use

Grade 60 steel equal in cross-sectional area to the calculated amount of Grade

40 steel that would be necessary. Values shown in Table 6.6 should be used directly

for members with normal-weight concrete and Grade 60 reinforcement. For other

conditions the values should be modified as follows:

(a) For structural lightweight concrete that has a unit weight in the range of

90–115 pcf, the values shall be multiplied by max(1.65–0.005wc, 1.09),

where wc is the unit weight in pcf.

(b) For fy other than 60,000 psi, the values shall be multiplied by (0.4 +

fy/100,000).

6.8 Beams and One-Way Slabs

Figure 6.28 shows a typical beam and one-way slab system. A beam and one-way

slab system is an economical choice when the bays are elongated and the

superimposed loads are large. The system is especially economical when the

structure is subject to large line loads such as heavy partitions. Large openings

through the slab can be easily accommodated virtually anywhere in the floor. Beam

and one-way slab systems have a larger structural depth than do the other floor

systems, and their forming cost is usually higher. These disadvantages are

Figure 6.28 One-way slabs on beams and girders
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somewhat balanced by savings in concrete and reinforcement usage. This type of

system also provides a clear and unambiguous transfer of moments between beams

and columns. This is a real advantage in high-wind or seismic zones, where the

structural frame resists lateral loads on the building.

Table 6.6 provides information useful for determining the thickness of the slab

and the depths of the beams and girders. These values, however, are recommended

minimum depth values. The following must be considered in selecting the appro-

priate width for girders (and beams):

(a) The width should be enough to lay out the reinforcing in one row in the

positive moment regions;

(b) The width must provide sufficient cross-sectional area so that ϕVc�Vu /3 at

least, but preferably ϕVc�Vu /2;
(c) The width of the girder (or beam) framing into a column should be the same as

that of the column face for ease of forming.

6.9 Two-Way Slabs on Beams

Figure 6.29 shows a typical two-way slab system. When the aspect ratio (the ratio of

the longer span to the shorter span) of a slab that is supported on all four sides is less

than about 1.50, the slab exhibits a significant two-way behavior. As discussed in

detail in Chapter 2, this means that the slab will carry the loads in both directions. In

plan, the load distribution from the slab to the beams may be approximated, as shown

on Figure 6.30. The shorter beam supports much less load than the longer span does.

So if the aspect ratio is significantly larger than 1.0, the use of stronger beams in the

long direction than in the short direction is recommended. As the aspect ratio

approaches 1.0, the load division between the beams is more evenly distributed.

Figure 6.29 Two-way slabs on beams
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The ACI Code provides recommendations (Section 8.3.1.2) for the minimum

thickness of slabs supported on all four sides. These ACI Code formulae are

somewhat cumbersome. In the experience of the authors, h� ‘n/35 to ‘n/40 is a

reasonable value for preliminary design (‘n is the longer clear span of the slab from
face of beam to face of beam). The preliminary selection of beams is governed by

considerations similar to those for one-way slabs and beams.

6.10 Two-Way Joists with Slab Band Beams

Figure 6.31 shows a typical two-way joist, or waffle slab, with slab-band beams

system. This floor system is an interesting variation of the two-way slabs on beams.

Wide beams form a two-way grid of beams (often referred to as slab bands)
between the columns. The depth of the beams is equal to the depth of the two-

way joist system. This arrangement provides a somewhat easier layout of reinforce-

ment in the negative moment regions around the columns. This system may also

have a seismic performance better than that of ordinary waffle slabs.

Area loading
short beam

Area loading
long beam

Figure 6.30 Load distribution in two-way slabs
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Problems

In the following problems assume concrete is normal weight unless noted
otherwise.

6.1. A flat plate reinforced concrete floor system with 16 in.� 16 in. columns is

planned on a 25 ft� 25 ft grid. Use fc
0 ¼ 4 ksi and fy¼ 60 ksi.

(a) Determine the minimum recommended slab thickness for exterior panels

if edge beams are used on the exterior perimeter of the floor.

(b) Determine the minimum recommended slab thickness if no edge beams

are planned.

6.2. Repeat Problem 6.1 for fy¼ 40 ksi reinforcement.

6.3. Repeat Problem 6.1 using drop panels. Determine the minimum required size

and thickness of a typical drop panel over an interior column.

6.4. An 8 in.-thick flat plate reinforced concrete floor system with 18 in.� 18 in.

columns is planned on a 22 ft� 22 ft grid. The superimposed dead load is

15 psf and the live load is 50 psf. Based on the shear strength of the system

around a typical interior column, verify the adequacy of the design. Assume no

moment transfer between the slab and the column. Use fc
0 ¼ 4 ksi, fy¼ 60 ksi,

and d¼ 6.5 in.

6.5. Use the data in Problem 6.4 to calculate the shear in a slab due to the transfer of

a factored moment, Mu¼ 80 ft-kip, from the slab to an interior column.

6.6. A flat plate floor system of a reinforced concrete building is shown below. Use

fc
0 ¼ 5,000 psi, fy¼ 60,000 psi, and concrete cover¼ 3/4 in. The superimposed

dead load is 20 psf and the live load is 80 psf. Use the ACI direct design

method to calculate the moments in the slab.

Figure 6.31 Waffle slabs (or two-way joists) on beams
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(a) Determine an appropriate slab thickness for an interior panel. Round the

thickness to the nearest 1/2 in.

25'-0"

Plan of Problem 6-6

25'-0"

25'-0"

24 in.  24 in.
Column
(typical)

25'-0"

(b) Check the shear around a typical interior column. Assume #6 bars in both

direction and use the average d when calculating the shear strength.

Assume no moment transfer between the column and the slab.

(c) Calculate the required outer layer reinforcing for (1) positive moment in a

column strip, (2) positive moment in a middle strip, (3) negative moment

in a column strip, and (4) negative moment in a middle strip.

Self-Experiments

Experiment 1

Make small-scale reinforced concrete models of a one-way joist, a waffle slab, and

a flat plate floor system. Place wires for their reinforcements. Record the procedure

and your observations. Which system required the least effort in building the forms

and placing the reinforcement?

Experiment 2

Identify three different concrete floor systems from local buildings. Record the

range of the spans and the bay shapes (square, rectangular, etc.). In addition, record

their occupancy types. Write a report that summarizes your findings and includes

photos.
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Chapter 7

Foundations and Earth Supporting Walls

7.1 Introduction

Any building structure requires a foundation system in order to transfer the loads to

the supporting soil. The strength of concrete typically is 400–800 kip per square feet

(ksf). Soils typically however, can safely withstand only pressures of 3–10 ksf. As a

result the foundation system has to spread the load over a large surface area to

reduce the pressure when it transfers loads from columns and walls to the

supporting soil.

Foundations were constructed of stone and masonry before concrete was used as

a building material. Application of concrete has improved the foundation system

significantly. Today, virtually all foundations are made of plain or reinforced

concrete.

Because the design of foundations requires an understanding of the soil-structure

interaction, we must study the different types of soil and their behavior under

loading. Therefore, the following sections present an overview of the different

types of soil, their classifications, the exploration methods, and the laboratory

tests for finding the allowable bearing capacity of soil.

Subsequently, this chapter deals with the different types of foundation systems,

with a focus on the design and analysis of wall and column footings. The last part of

this chapter discusses the different types of earth supporting walls, with an empha-

sis on basement walls and cantilever retaining walls.

7.2 Types of Soil

In general, all subsurface materials fall into one of two groups: rock or soil. But in

reality soils are made up mostly from rock eroded by air and water and settled over

many millennia. Soils are divided into two main categories: coarse-grained soils
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and fine-grained soils. Coarse-grained soils consist mainly of gravel and sand. The

particle sizes are large enough to be seen with the naked eye. Coarse-grained soils

are also called noncohesive soils, as their grains do not stick to each other when

oven-dried. Fine-grained soils are classified as clay or silt. A magnifying glass is

needed in order to see their particles. Fine-grained soils are also called cohesive
soils because their particles stick to each other. Cohesive soils expand when

subjected to moisture and shrink when dried.

In addition to these major categories of soil, soils are classified as organic or

inorganic soils. Organic soil consists of decayed vegetable or animal remains. The

top soil used to grow plants and vegetations is an organic soil. Inorganic soil, in

contrast, is almost completely free of organic materials. Organic soil is not suitable

for supporting building structures or even to be used as backfill against basement or

retaining walls. If it is encountered in a construction site, it must be replaced with

appropriate compacted engineered fill.

7.3 Soil Classification

A soil classification called the Unified Soil Classification System (USCS) has been
devised to specify the soil mix and its condition. It is based on the work of Professor

Arthur Casagrande at Harvard University. Each designation in this classification

consists of two letters. The first letter represents the type of soil: G (gravel), S

(sand), M (silt), C (clay), O (organic), and P (peat). The second letter shows the soil

condition, for example, W (well-graded) or P (poorly graded). In this classification,

soils are divided into 15 types, as shown in Table 7.1. A well-graded soil consists of
both large and small grains, with the small particles filling the voids between the

large ones (sand and gravel). Well graded and compacted sand and gravel are very

good substrata. The “poorly graded soil” refers to a soil that does not have the right

proportioning of sand and gravel and, as a result, has large voids between adjacent

grains.

7.4 Test Borings and the Standard Penetration Test (SPT)

In order to design foundation systems, we need information about the underlying

soil. The most widely used method of exploration drills holes (borings) into the

ground at the intended site of the building. The soil is sampled at different depths of

borings and standard tests are conducted to obtain information about the soil’s

properties.

Test borings are distributed so as to obtain insight about the soil under the whole

footprint of the building. The spacing and depth of the borings depend mainly on

the type of structure to be built and the uniformity of the soil deposit. For low-rise

buildings, the spacing of the borings is about 75–100 ft. Their depths are about
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20–30 ft below the foundation level, with one deep boring to search for hidden

weak deposits. For high-rise buildings the spacing of borings is closer, around

40–50 ft, and the depth often descends to the underlying bedrock.

Boring is performed by an auger drill. A hollow pipe, called the casing, is advanced
to prevent the soil from collapsing into the borehole. As the bore hole is advanced, the

soil is tested in situ at certain locations. This testing is usually performed wherever

the driller experiences a different stratum, or at 5-ft intervals within the same stratum.

The test used most often is the Standard Penetration Test (SPT).
The SPT uses a device called a split-barrel sampler. Figure 7.1 shows a schematic

drawing of a split-barrel sampler. It is a hollow cylinder 2 in. in diameter, made up of

two fitting half cylinders, which are held together by two threaded end-pieces. It is

placed at the bottom of the bore hole and driven through the soil by a 140-lb hammer

that has a free fall of 30 in. The number of blows needed to move the sampler three

times 6 in. into the soil is recorded. The numbers of the blows from the second and

third 6-in. advancements are added up. This sum gives the so-called N value. The

blows from the first 6-in. advancement do not reveal the true characteristics of the soil

in situ, because the auger tends to leave disturbed soil at the bottom of the hole.

In addition, when the sampler is withdrawn at the end of the test, the device is

taken apart and the soil sample contained in the cylinder (part B on Figure 7.1) is

placed into a sealed and labeled jar. The sample is then taken to the laboratory for

further testing.

The blow count, N, is related to the soil condition. Table 7.2 shows a general

classification relating soil condition and the blow count. After careful laboratory

analysis of the samples, the geotechnical engineer prepares a boring log of each

boring performed at the site. Figure 7.2 shows a sample boring log.

Table 7.1 Unified soil classification system

Main division Symbol Description

Coarse-
grained soils

Gravels GW Well-graded gravels, gravel-sand mixtures

GP Poorly graded gravels or gravel-sand mixtures

GM Silty gravels, gravel-sand-silt mixtures

GC Clayey gravels, gravel-sand-clay mixtures

Sands SW Well-graded sands, gravelly sands

SP Poorly graded sands or gravelly sands

SM Silty sands, silt-sand mixtures

SC Clayey sands, sand-clay mixtures

Fine-grained
soils

Silts and
clays

ML Inorganic silts and very fine sands, silty or clayey fine

sands or clayey silts

CL Inorganic clays, gravelly clays, sandy clays, silty

clays

OL Organic silts and organic silty clays

MH Inorganic silts, fine sandy or silty soils

CH Inorganic clays

OH Organic clays, organic silts

PT Peat and other highly organic soils
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7.5 Soil Failure Under Footings

Soil, like any other material, has a certain load bearing capacity. If the pressure

from the footing exceeds this limit, the soil will fail. This would cause the footing

to sink into the soil, which may have disastrous consequences on a supported

building.

Figure 7.3 shows a simple theoretical failure mechanism for soils under pressure.

A wedge is formed directly under the footing (Zone I). This wedge is pushed down

by the footing, which in turn pushes Zone II outward. Zone II rotates about a pivot

at the top and pushes Zone III sideways and up. The bottom parts of Zones II and III

E

G

C D

Tube

Open shoe Head Rollpin

Ball Vent
(2 at 3 8 in.
diameter)

F

A  1.0 to 2.0 in. (25 to 50 mm)
B  18.0 to 30.0 in. (0.457 to 0.762 m)
C  1.375  0.005 in. (34.93  0.13 mm)
D  1.50  0.05  0.00 in. (38.1  1.3  0.0 mm)
E  0.10  0.02 in. (2.54  0.25 mm)
F  2.00  0.05  0.00 in. (50.8  1.3  0.0 mm)
G  16.0  to 23.0
  The 1     in. (38 mm) inside diameter split barrel may be used with a 16-gage wall thickness split
liner.The penetrating end of the drive shoe may be slightly rounded. Metal or plastic retainers
may be used to retain soil samples.

1
2 

A

B

Figure 7.1 Schematic drawing of a split-barrel sampler for the Standard Penetration Test

(copyright ASTM International. Reprinted with permission)

Table 7.2 Relationship

between soil condition and

blow count, N (Data from

Terzaghi and Peck, Soil
Mechanics in Engineering
Practice, 2nd ed., 1968)

Sand Clay

Condition N Condition N

Very loose 0–4 Very soft <2

Loose 4–10 Soft 2–4

Medium 10–30 Medium 4–8

Dense 30–50 Stiff 8–15

Very dense >50 Very stiff 15–30

Hard >30
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form a shear plane along which the wedges move. This plane provides shear

resistance against the movement. The weight of Zone III also provides resistance

against the rotation of Zone II. Thus, placing loads on Zone III (surcharge) or

moving the footing deeper into the ground will inhibit the movement of the wedges.

As a result, the soil will have more bearing capacity.
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TONS/FT.2

PLASTIC
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Fine to coarse sand, trace silt and fine gravel - gray -
medium dense - saturated (SW)

Seams of clay in Sample 6.
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Figure 7.2 A sample boring log
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7.6 Pressure Distribution Under Footing and Soil
Settlement

The pressure at the bottom of the footing propagates through the soil mass. The

pressure is most intense directly under the footing, and decreases at increasing

horizontal and vertical distances from the footing. This is known as the pressure
bulb effect as shown in Figure 7.4a for a circular footing. Figure 7.4b shows how the

pressure bulb extends in all directions like a balloon. The pressure bulb for a square

footing has a shape somewhat similar to the one shown in Figure 7.4. In the case of

a continuous strip footing, the pressure distribution extends along the footing with

proportions that are cylindrical rather than spherical.

Soils compress into a smaller volume when subjected to pressure. This leads to

settlement, or a downward movement of the footings. The amount of settling

depends on several factors such as the pressure level under the footing, the size

of the footing, and the properties of the soil. The volume of soil affected by the

footing is basically the limit of the pressure bulb shown in Figure 7.4. Therefore,

settlement also depends on the shape and size of the footing. Settlement can never

be completely eliminated unless the footing is directly supported by bedrock. So we

design footings to limit the detrimental effects of settlement on the structure.

Soils are composed of three major constituents: solid particles, a system of voids

between these particles, and air (gas) or water that fills the voids. When the soil is

loose, it has a large void content.

Settlement or consolidation in soils is associated with the squeezing of the

moisture or air out of the voids. This permits the solid particles to move closer to

each other, resulting in a denser structure.

In granular soils the movement of water (or smaller particles) is easy. Thus,

settlement of these soils will take place quickly as the structure is built on top of

them and loads are added onto the footings. About 90% of the expected settling will

have taken place by the time the building is completed.

In cohesive soils (clays), the movement of moisture is slow, thus the consolida-

tion (settlement) of the soil is also slow. Settlement may take place long after the

completion and occupancy of the building.

II II

IIIIII

Footing

Load

I

Figure 7.3 Bearing capacity failure of soil
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Figure 7.4 (a) Isometric view of pressure bulb under column footing; (b) graph of pressure bulb

under column footing
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In general, there are two types of settlement of building foundations:

1. Uniform settlement: This happens when all parts of the entire building settle

approximately the same amount. Uniform settlement may damage underground

utilities, but usually does not cause any significant structural damage to the

building. The Monadnock Building in Chicago, for example, underwent almost

2 ft of settlement without any damage.

2. Differential settlement: In this case, different footings will experience different

amounts of settlement. Differential settlement can cause serious structural distortion

and damage, so it is important to design structures and foundations that minimize

the effects of differential settlement. It is common practice to try to limit differential

settlement to 1/300 of the horizontal distance between adjacent footings.

7.7 Allowable Bearing Soil Pressure

Because differential settlement can cause severe distortion and structural problems,

various methods are used to reduce its effect. One common method is to design the

footings so that each applies approximately the same pressure on the soil under the

most usual loads. These loads consist of dead loads and an average percentage of

the live load depending on the occupancy type.

There is a limit to the pressure that soils can safely support. This limit is called

allowable soil bearing pressure or simply soil bearing capacity, and is based on

two criteria: (1) the soil does not fail, and (2) the settlement is not excessive.

Building codes recommend soil bearing capacities for specific conditions. These

recommended values are generally approximate. Table 7.3 shows approximate soil

bearing capacities for each soil type. The proper method of establishing the

allowable soil bearing pressure is a soil investigation program conducted by a

qualified geotechnical engineer. Usually the structural engineer selects and designs

the foundation system based on a soil report from a geotechnical engineer.

Table 7.3 Allowable soil

bearing capacities
Soil type Bearing capacity (ksf)

Medium clay 3

Stiff clay 4

Very stiff clay 6

Hard clay 8–10

Medium sand 2–6

Dense sand 6–8

Very dense sand 8–10

Sand and gravel mix 8–12

Soft rock 16

Medium, sound rock 30

Hard rock 40–80

Massive, solid bedrock 200–400
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For smaller projects, however, the structural engineer may use the presumptive

bearing capacities recommended by the local building codes such as those shown in

Table 7.3 when foundations are supported by soil whose properties are known.

7.8 Types of Foundations

Foundations fall into two main categories: shallow foundations and deep founda-
tions. Each of these foundation systems consists of different subsystems, as shown

in Figure 7.5. Many factors need to be considered in the selection of a foundation

system. These include soil strength, soil type, the location of the water table,

variation of the soil with depth, and so on. In general, foundations are constructed

of plain or reinforced concrete. The typical strength of concrete used in footings is

fc
0 ¼ 3,000 psi. In rare cases, concrete with higher strength may be used to reduce

the footing depth and weight.

7.8.1 Shallow Foundations

Shallow foundations are usually located no more than 6 ft below the lowest finished

floor. These are the most economical and most common type of foundation. A

shallow foundation system generally is used when (1) the soil close to the surface of

the ground has sufficient strength, and (2) underlying weaker strata do not result in

undue settlement.

Figure 7.5 divides shallow foundations into five major types: wall footings,

isolated column spread footings, combined footings, strap footings, and mat or

raft foundations.

Foundation Systems

Shallow foundation

Combined 
footing

Strap
footing

Mat
foundation

Pier foundation
(caissons)

Pile
foundation

Isolated 
spread 
footing

Wall 
footing

Deep foundation

Figure 7.5 Types of foundations
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Depending on the condition and the type of the supporting soil, shallow foundations

are cast either into a neat excavation in the soil or intowood forms. It ismost economical

to cast the concrete into earth forms. But this is only possible with a cohesive soil,

such as clay, which remains stable during the concrete placement. If the soil is granular,

the concrete is cast using wood side forms. The forms are removed after the concrete

gains strength, and the area around the footing is backfilled and compacted.

Wall Footings Wall footings support walls made of wood, masonry, or concrete.

They are made of plain or reinforced concrete and are continuous under the entire

length of the wall. Similar to slabs, structural analysis and design are performed on

a 1-ft-long strip of the footing (assuming the wall is evenly loaded). The supported

wall is usually placed at the center of the footing to avoid any eccentricity and

rotation of the footing. Figure 7.6a shows a typical wall footing.

a b

c
d

Figure 7.6 Different types of shallow foundations: (a) wall footing, (b) isolated spread footing,

(c) combined footing (rectangular), (d) combined footing (trapezoidal), (e) strap footing, and (f) mat

foundation

412 7 Foundations and Earth Supporting Walls



Isolated Spread Footing An isolated or individual spread footing supports a single
column. Figure 7.6b shows a typical isolated spread footing. Spread footings are

usually square shaped, but we can design them in a rectangular shape, if needed.

This may be necessary if the footing is close to a neighboring footing or a

property line.

e

f

Figure 7.6 (continued)
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Isolated spread footings can be made of plain concrete if they are subjected only

to gravity loads and are not located in earthquake-prone areas. Plain concrete

footings are usually used only with light loads.

Combined Footings One footing may be used to support two columns when the

columns are close to each other and the isolated spread footings for one column

would overlap the other. Such a footing is called a combined footing. Figure 7.6c

shows a rectangular combined footing. If the column loads are significantly differ-

ent, we may use a trapezoidal footing such as the one shown in Figure 7.6d. The

larger width of the footing will be closer to the column supporting the heavier load.

When designing a combined footing, it is important to size the footing so that it

exerts an approximately uniform pressure on the soil. To achieve this, the footing is

proportioned so that its centroid is at or near the resultant of the column loads.

Strap Footings A strap or cantilever footing is a special type of combined footing

that uses a “strap” or beam to connect the two footings together. The application of

this footing is similar to that of the combined footing. Strap footings may also be

useful when underground utility lines prevent the use of rectangular combined

footings. Figure 7.6e shows a typical strap footing. The strap acts as a cantilever

beam that partially resists themoment from the eccentrically loaded exterior footing.

This ensures that the soil pressure is uniform underneath the entire strap footing.

Mat Foundation A mat or raft foundation consists of a large and thick continuous

reinforced concrete slab that supports the entire building. This system is used when

the soil bearing capacity is low or column loads are heavy, resulting in more than

50% of the building plan area being required for individual footings. An advantage

of a mat foundation is that it drastically reduces differential settlement between

columns. Mat foundations are usually made of heavily reinforced concrete slabs at

least 24 in. thick. Figure 7.6f shows a typical mat foundation.

7.8.2 Deep Foundations

The use of shallow foundations may not be economical or even possible if the soil

bearing capacity close to the surface is too low. Deep foundations are used in these

situations to transfer the loads to a strong layer, which may be located at a

significant depth below the ground surface. The load is transferred through skin

friction and end bearing as shown in Figure 7.7.

There are two main types of deep foundations: piles and piers (also called

caissons), as shown in Figure 7.5.

Pile Foundations Piles usually have small cross-section sizes, ranging from 6 to

24 in., and capacities of up to 500 kip. They are made of treated timber, steel, or

concrete in different shapes. Piles typically are driven into the ground using pile

driving hammers. This process causes noise and vibration, which may disturb

sensitive adjacent structures, such as hospitals.
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When a pile is driven into the soil, it displaces the soil that is in direct contact

with it. The soil around the pile becomes significantly compacted and lateral

pressure on the pile increases. This results in friction forces between the soil and

the pile.

Timber piles have been used since ancient times. The piles used today are about

25–35 ft long although it is possible to splice them for longer length. Timber piles

act mainly as friction piles because their end bearing is not significant. These piles

have load capacities in the range of 30–50 kip.

Steel and precast concrete piles are normally used to carry large loads. For long,

slender piles the end bearing on soil is insignificant compared to the resistance from

the skin friction. But if the piles are driven to the underlying bedrock, they act as

end-bearing piles because the end-bearing resistance contributes a large percentage
of the total resistance.

Piles are commonly used in groups with a pile cap connecting the tops of the

piles and providing a surface area for placing building columns. Figure 7.8a shows a

pile group supporting a column. The piles in a group should be separated far enough

that the load carrying action of each pile does not affect that of an adjacent one.

Typically, at least three piles are used in a group, but two piles are often acceptable

in certain conditions. Figure 7.8b shows typical layouts of piles in groups with their

associated pile caps.

It is common to use battered piles if the piles are to be subjected to large lateral

loads due to wind or earthquake loads. These piles resist the effects of lateral

loads through axial tension and compression forces. Figure 7.8c shows a pile

group with battered piles.

Auger-cast piles may be used to alleviate the noise and harmful vibrations

associated with pile driving. A long hollow stem screw is drilled into the ground.

The auger is withdrawn at the desired depth while, simultaneously, concrete is

pumped into the bottom through the hollow stem. The withdrawing auger removes

the soil and replaces it with a concrete column. The pile can be reinforced by

End bearing

Hard soil/bedrock

Skin friction

Figure 7.7 Load transfer in deep foundations
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Figure 7.8 Pile foundation: (a) pile group, (b) typical pile layouts, and (c) battered piles
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lowering a wide flange steel section into the fresh concrete immediately after

withdrawal of the auger.

Pier Foundations Piers are typically made by using a large-diameter auger to drill a

round hole in the ground and placing concrete into the hole. The drilling process for

piers is much less noisy than pile driving. The shaft diameter is usually at least

36 in. This provides enough room to lower a person to inspect and test the soil

before placing the concrete. A protective steel cylinder (called a casing) is used to

prevent the collapse of the sides during drilling.

A drilled pier is sometimes called a caisson, which is French for “box.” A special

device is often used at the bottom of the pier to enlarge the base, creating a belled

caisson instead of a straight-shaft caisson. The main purpose of a bell is to increase

the bearing area of the caisson. Figure 7.9 shows a typical belled caisson with its

components. Bells can be made only in cohesive soils such as clay. It is common

practice when designing a caisson to ignore the skin friction between the shaft and

soil and use only the end bearing capacity.

Caissons support many tall buildings in Chicago. Each column of the John

Hancock Center is supported by a 140-ft-long caisson, which transfers the load to

the bedrock. The Willis Tower (old Sears Tower) sits on 114 caissons that are 6 ft in

diameter and over 100 ft long to reach the bedrock.

Column

Reinforcements

Shaft

Bell

Figure 7.9 Pier foundation (caisson)
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7.8.3 Considerations for the Placement of Foundations

Several issues must be considered when selecting a footing type. These issues,

however, mainly affect the placement of shallow foundations.

Adjacent Property Lines Buildings often have columns or walls close to or right on

a property line. Typically building codes and legal considerations do not allow any

part of a footing to extend beyond the property line. A good way to avoid this

problem is by setting the building’s supporting elements away from the property

line and letting the supported structure cantilever to the legal limit. But if the design

demands supports at or near a property line, the structural designer may need to use

an elongated rectangular footing, a combined footing, or a strap footing.

Depth for Frost Penetration The moisture in the soil underneath a footing may

freeze during the cold season if the bottom of an exterior footing is located too close

to the ground surface. Water expands when it freezes, and the magnitude of the

expansion is about 10%. The expansion takes place toward the least resistance,

which is usually upward. This phenomenon is called frost heaving. This can push

the footing upward, which in turn can distort and crack the footing and damage the

supported building structure.

This problem is simple to prevent. Exterior footings have to be placed below the

frost line, as shown in Figure 7.10a. The frost line is the distance measured from the

finished exterior grade to the bottom of the expected maximum depth of frost
penetration.

Historic data are available on the depth of the frost line in different locations. For

example, 42 in. is a safe depth in most parts of the Midwest. In the northern part of

the Great Lakes and in many northern states, exterior footings must be placed at

least 60–72 in. below the exterior grade. The geotechnical engineer usually pro-

vides the necessary information relating to the local frost line. The map in

Figure 7.10b shows the variation of the frost line depth for different areas of the

United States, based on the values recommended in city building codes. (This map

should be used only for general information because it is not necessarily accurate

for specific localities.)

In heated buildings, this requirement is mandatory only for exterior footings, as

frost does not travel horizontally to affect the interior footings. An exception to this

is when the foundations are constructed in the winter, or are left unprotected from

freezing during cold spells. In those cases even the interior footings should be

placed below the frost line and protected by backfilling or insulating blankets.

Different Elevations of Adjacent Footings If the elevations of two adjacent

footings are different, as shown in Figure 7.11, the pressure on the soil from the

upper footing may increase the pressure under the lower footing. Therefore, a limit

called the proximity line is placed on the slope of the line joining the footings when
placing adjacent footings at different elevations.

This slope should preferably be limited to 1:2 if the soil is mainly granular (sand,

gravel). If the footings are on good clays, however, the slope may be increased to
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Exterior grade

Frost line

a

0'

1'

2'

3'

4'

5'

6'

7'

b

Figure 7.10 Frost line (minimum required depth to prevent frost penetration): (a) frost line

definition, and (b) maximum anticipated depth of freezing from the city building codes

Footing

Slope

Proximity line

Footing

Figure 7.11 Adjacent footings at different elevations
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close to 1:1. The designer should consult the geotechnical engineer regarding the

safe elevation difference between neighboring footings.

Presence of Expansive Soil Expansive soil is a type of clay that undergoes significant
volumetric changes with moisture variations. For example, a vast area of the southern

United States is covered by a clay deposit known as the Yazoo clay, which is an

expansive soil. Foundations placed directly on expansive soil may experience large

upward pressures that could cause serious distortion and structural damage through-

out the building. The moisture variation affects only the top few feet of an expansive

soil; thus, footings are usually placed at an elevation below which the periodic

moisture variation is insignificant. Short drilled piers are also commonly used.

Presence of Organic Layers Construction on soils that have significant organic

content or underlying layers of organic soils (e.g., peat, marl, etc.) can cause serious

problems. Organic matter is highly compressible and in a state of long-term

decomposition.

Two different strategies for dealing with organic soil are available to the designer.

One is completely removing the soil to the full extent of the organic layers and

replacing it with a so-called “engineered backfill.” The second is to use a deep

foundation, usually piles. It is also advisable to design the lowest level, which is

normally just a slab on grade, as a structural floor. Otherwise, the slab may settle

unevenly, cracking and distorting attached nonstructural elements, such as partitions.

7.9 Distribution of Soil Pressure Under Footings

Footings apply pressure on their supporting soil. This pressure has to be limited to a

certain allowable level (soil bearing capacity). There is also a reaction from the soil

acting on the footing when it presses the soil.

The true theoretical distribution of the reaction pressure from the soil on the

footing depends on the type of supporting soil. Figure 7.12 shows typical pressure

a b c

Figure 7.12 Soil pressure distributions: (a) sandy soil, (b) clayey soil, and (c) design assumption
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distributions for different types of soil. The pressures are larger under the center of

footing and smaller along the edges if the soil is sandy. This is because the sand

along the edges does not have good lateral support and can easily move laterally

(see Figure 7.12a). The shape of the theoretical distribution of pressures in clays is

shown in Figure 7.12b. In practice, an average uniform soil pressure distribution,

like the one shown in Figure 7.12c, is assumed. This is much simpler and the results

have been proven to provide adequate and safe designs.

7.10 Design of Wall Footings

Because wall footings are long continuous members, designers use a 1-ft-long strip

of wall (b0 ¼ 12 in. and its footing to represent the whole length for design purposes.

Figure 7.13 illustrates this concept. Wall footings are made of plain concrete or

reinforced concrete. Plain concrete footings are commonly used to support light

loads such as residential construction.

7.10.1 Plain Concrete Wall Footings

To design a plain concrete wall footing we need only to determine the depth and

width of the footing such that (1) the soil pressure beneath the footing is less

than the allowable value (bearing capacity), and (2) the bending and shear strength

of the concrete footing is adequate. Generally, the footing width is calculated to

satisfy the first requirement, while the depth is computed to satisfy the second

requirement.

Plain Concrete Wall Footing DesignWemust perform the following steps in order

to design a plain concrete wall footing. They are summarized in the flowchart of

Figure 7.17.

1'-0"
b

Figure 7.13 Wall footings design strip
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Step 1. Determine the footing width (b).
Geotechnical reports usually provide the designer with a net allowable

soil pressure. Net pressure excludes the weight of the footing and the

surrounding soil. So the weight of the footing and the weight of the backfill

directly above the footing are ignored in the design.

The footing thickness (h) and width (b) are both unknown, so we

estimate h and then check the pressure levels to determine how good the

estimate was. First we calculate the footing width (b) such that the soil

pressure (qs) is less than the allowable net bearing capacity of soil (qa), as
shown in Figure 7.14.

wT ¼ wD þ wL þ wLr

qs ¼
wT

b
� qa

b � wT

qa ð7:1Þ

In this equation wD, wL, wLr and wT are the unfactored dead, floor live,

roof live, and total loads, respectively. The footing width (b) is usually

rounded up to the nearest even inch.

Step 2. Estimate the footing thickness (h).
The rule of thumb for the thickness (h) of the plain concrete wall

footing is:

wD, wL, wLr (wT = wD+wL+wLr) 

qs qa

t

b

h

Figure 7.14 Wall footing pressure on supporting soil
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h ¼ b� t

2
ð7:2Þ

where t is the wall thickness (see Figure 7.14). The thickness (h) is usually
rounded up to the nearest inch.

According to the ACI Code (Section 14.3.2.1) the wall footing has to

have a minimum thickness of 8 in. In practice, we use this value and the

thickness of the supported wall, whichever is larger. The footing has to be

at least as wide as the wall thickness. In addition, the geotechnical report

often states a minimum acceptable footing width, usually at least 16 in.

Figure 7.15 summarizes these requirements.

Check the footing dimensions against these minimum values. If they are

smaller than the minimum, use the minimum width and thickness.

Step 3. Calculate and check the moment.

The bending moment is the critical factor in determining the required

thickness (h) for plain concrete wall footings. The critical sections for

moment (where moments are the largest) are based on the type of wall

being supported. According to the ACI Code (Section 14.4.3.2.1) the

critical section for moment for a masonry wall (more flexible than a

concrete wall) is at a distance t/4 to the inside of the wall, as shown in

Figure 7.16a. The critical section for a poured concrete wall is at the face of

the wall, as shown in Figure 7.16b.

The weight of soil above the footing and the weight of the footing do not

cause any bending or shear in the footing. In this respect, a footing is like a

b t

h  max {t , 8 in.}

t

Figure 7.15 Minimum dimensions of wall footings
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mattress lying flat on a bed. It does not bend; but when you stand on it, you

notice how it deforms and bends. Similarly, the only loads that cause

bending and shear in the footing are the dead (wD) and the floor and roof

live (wL and wLr) loads. As mentioned in Chapter Two, Section 2.10,

wu¼ 1.2wD+ 1.6wL+ 0.5wLr (if wL� 1.83wLr) and wu¼ 1.2wD+ 1.6wLr+

1.0wL (if wL< 1.83wLr). Figure 7.16c shows the bending of the footing

subjected to the applied loads. The ultimate tensile stress is calculated using

factored loads. Therefore, the factored pressure acting from soil on the

footing, qu, is:

qu ¼
wu

b
ð7:3Þ

D

t

Critical section for moment

a

Masonry wall

t /4

D

Critical section for moment

b

Concrete wall

c

b

qu

b 1'-0"D

Mu

qu

d

Figure 7.16 Moment in wall footings: (a) critical section for masonry wall footing, (b) critical
section for concrete wall footing, (c) bending of wall footing, and (d) moment at the critical section
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Figure 7.16d shows the moment at the critical section, which can be

found from the equilibrium of the sum of moments:

Mu ¼ quD
D

2

� �
¼ qu

D2

2
ð7:4Þ

The footing is constructed of plain concrete, so there is no clear definition

of the effective depth (d). But ACI Code (Section 14.5.1.7) requires a

reduction of the overall footing thickness by 2 in. to allow for unevenness

of excavation and possible contamination of the concrete adjacent to the soil:

d ¼ h� 2 in: ð7:5Þ
The moment, Mu, acts on a section (12 in.� d). Therefore, the elastic

section modulus, Sm, is:

Sm ¼ b0d2

6
¼ 12d2

6
ð7:6Þ

Design of Plain Concrete 
Wall Footings

Increase thickness (h).

END

Determine footing width:

b
wT
qa

 Estimate footing thickness, h , and compareb t
2

the footing dimensions with the minimum sizes.

 Calculate and check moment:

qu
wu

b

0.60, 
1.0

MR Mn

Mu MR ?

Yes

No

Mn 5λ fc  Sm , λ

1. 

2.

3.

Mu qu d h 2 in.D2

2
,

Figure 7.17 Flowchart for the design of plain concrete wall footings
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(b0 ¼ 12 in. because we use a 12 in. strip of footing.) The nominal

resisting moment of the footing, Mn, is (ACI Code Equation 14.5.2.1a)

therefore:

Mn ¼ 5λ
ffiffiffiffi
fc
0p
Sm ð7:7Þ

The value 5λ
ffiffiffiffi
fc
0p
is the ACI Code-recommended ultimate tensile stress in

bending for plain concrete. λ is the light weight concrete factor: λ¼ 0.75

(all-light weight concrete); λ¼ 0.85 (sand-light weight concrete); and

λ¼ 1.0 (normal weight concrete). Typically, footings are made of normal

weight concrete. Then, for the footing section to be acceptable:

MR ¼ ϕMn ð7:8Þ

MR � Mu ð7:9Þ

The strength reduction factor for flexure, compression, shear, and bearing

of structural plain concrete (ACI Code, Section 21.2.1) is:

ϕ ¼ 0:60

If the footing is not acceptable, we should increase the footing thickness

and repeat the process. The thickness can be increased arbitrarily or by

solving MR¼Mu for t.

Example 7.1 A 12 in. load-bearing CMU (concrete masonry unit) wall supports an

outdoor canopy. The wall will support a dead load of 10 kip/ft (including the weight

of the wall), and a roof live load of 5 kip/ft. Design a plain concrete footing for

this wall. The compressive strength of the concrete is 3,000 psi. The net bearing

capacity of the soil is 3,000 psf. The frost line is 4 ft from the grade. Concrete is

normal weight.

b

4'-0"

12 in.

CMU wall
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Solution

Step 1. Determine the footing width.

wT ¼ wD þ wLr ¼ 10þ 5 ¼ 15 k=ft

Approximate footing width bð Þ ¼ wT

qa
¼ 15:0

3:0
¼ 5 ft

Step 2. Estimate the footing thickness.

h ¼ b� t

2
¼ 60� 12

2
¼ 24 in:

The footing dimensions are larger than the minimum sizes.

Step 3. Calculate and check the moment.

We check the moment by comparing the applied moment, Mu, with the

resisting moment, MR. The ultimate Load, wu, is computed for the dead

load and roof live load (no floor live load):

wu ¼ 1:2wD þ 1:6wLr

wu ¼ 1:2 10ð Þ þ 1:6 5ð Þ ¼ 20 k=ft

Determine the factored pressure from soil acting on the footing (qu):

qu ¼
wu

b

qu ¼
20

5
¼ 4:0 ksf

The critical section for moment, shown in Figure 7.18, is at t/4 from the

face of the CMU wall. Therefore, the distance, D, from the footing edge to

this location is:

D ¼ b� t

2
þ t

4

D ¼ 5� 12ð Þ � 12

2
þ 12

4
¼ 27 in:

Mu ¼ qu
D2

2
¼ 4:0ð Þ

27

12

� �2

2

Mu ¼ 10:13 ft-kip

d ¼ h� 2 in: ¼ 24 in:� 2 in: ¼ 22 in:
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Sm ¼ elastic section modulus ¼ b0d2

6

Sm ¼ 12 22ð Þ2
6

¼ 968 in:3

The nominal resisting moment, Mn, from Equation (7.7) is:

λ ¼ 1:0 normal weight concreteð Þ
Mn ¼ 5λ

ffiffiffiffi
fc
0p
Sm

Mn ¼ 5 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p� � 968ð Þ
12,000

Conversion factor for in:-lb to ft-kip

Mn ¼ 22:1 ft-kip

MR ¼ ϕMn ¼ 0:6 22:1ð Þ
MR ¼ 13:3 ft-kip > Mu ¼ 10:13 ft-kip ∴ok

Therefore, the footing thickness is enough.

Figure 7.19 shows the final design of this footing.

7.10.2 Reinforced Concrete Wall Footings

Reinforced concrete wall footings usually support larger loads than do their plain

concrete counterparts. They are typically reinforced in the short direction.

qu  4.0 ksf

D 27 in.

Critical section for moment

wu

12 in.

hest  24 in.

b 5'-0"

Figure 7.18 Plain concrete wall footing of Example 7.1 (checking moment)
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Reinforced Concrete Wall Footing Design The design of a reinforced concrete

wall footing is different from that of a plain concrete footing because the footing is

reinforced to develop the required moment. Consequently, the footing can be

thinner. As a result the shear also has to be checked in reinforced concrete wall

footings. The following steps, which are summarized in Figure 7.21, are performed

in the design of these footings:

Step 1. Determine the footing width (b).

wT ¼ wD þ wL þ wLr

Footing width bð Þ ¼ wT

qa

Round up b to the nearest even inch, if needed.

Step 2. Estimate the thickness (h).
The footing has no shear reinforcement. Thus, the concrete must be thick

enough to have sufficient shear resistance by itself. A reasonable thickness

is about 40–50% of the overhanging width of the footing. Hence, a

conservative estimate is:

h ¼ 0:5
b� t

2

� �
ð7:10Þ

Round up h to the nearest inch, if needed. Based on ACI

Section 13.3.1.2, the depth of footing above bottom reinforcement has to

be at least 6 in. Considering the cover requirement, the minimum

reinforced concrete wall footing depth is 10 in.

12 in.

2'-0"

2'-0"

5'-0"

Figure 7.19 Final design of wall footing of Example 7.1
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Step 3. Calculate and check shear.

Similar to the plain concrete footing, the factored load (wu) and pressure

from the soil on the reinforced concrete footing (qu) are:

wu ¼ 1:2wD þ 1:6wL þ 0:5wLr if wL � 1:83wLrð Þ
wu ¼ 1:2wD þ 1:6wLr þ 1:0wL if wL < 1:83wLrð Þ

qu ¼
wu

b

The effective depth of the footing, d, is:

d ¼ h� cover� diameter of bar=2 ð7:11Þ

The minimum cover in footings is 3 in. (ACI Code, Section 20.6.1.3.1).

Assuming #6 bars:

d ¼ h� 3 in:� 0:375 ¼ h� 3:38 in:

According to the ACI Code (Sections 13.2.7.2), the critical section for

shear is located at a distance d from the face of the wall. Figure 7.20 shows

the critical section and the shear at the critical section. To calculate Vu we
cut the footing at this location and write the equilibrium of forces

(Figure 7.20b):

Vu ¼ quC ð7:12Þ

where

C ¼ b� t

2
� d ð7:13Þ

Critical section for shear Wall

a

d

C
C

qu

b

Vu

b 1'-0"

Figure 7.20 Shear in wall footings: (a) location of critical section, and (b) shear at the critical

section
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The nominal shear strength of concrete, Vc, (ACI Equation 22.5.5.1) is:

Vc ¼ 2λ
ffiffiffiffi
fc
0p
b0d

b0 ¼ 12 in:
ð7:14Þ

According to the ACI Code (Section 21.2.1), the strength reduction

factor for shear in reinforced concrete (ϕ) is:

ϕ ¼ 0:75

Design of Reinforced
Concrete Wall Footings

Increase thickness (h).

Determine the footing width (b):

b
wT
qa

Calculate and check shear:

qu
wu

b
  ; C d

b t
2

Mu qu
D 2

2

Vu quC , d h 3.38 in.

0.75
Vc fc  b d

Vu Vc ?

Yes

No

h 0.5 b t
2

Make sure the footing dimensions are more than minimum.

Estimate footing thickness (h):

Determine the required reinforcements:

Use Tables A2.5 to A2.7 to find ρ :
As b d 

Select the size and number of bars.
Check the bars development length using
Tables A3.1 and A3.3 or Equation 3.64.

;  b 12 in.;  R 
12,000Mu

b d 2

1.

2.

3.

4.

2λ λ( b 12 in.)1.0, and

Figure 7.21 Flowchart for the design of reinforced concrete wall footings
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Therefore, for the section to be adequate:

ϕVc � Vu ð7:15Þ

Otherwise, the footing thickness has to be increased.

Step 4. Determine the required reinforcements.

Based on the ACI Code (Section 13.2.7.1), the critical section for

moment is at the same location as for the plain concrete footing (i.e., t/4
from the face of masonry walls and at the face of concrete walls), as shown

in Figure 7.16. Calculate the moment at the critical section as follows:

Mu ¼ quD
2

2

Determine the R value:

R ¼ 12,000Mu

b0d2
b0 ¼ 12 in:ð Þ ð7:16Þ

Using Tables A2.5 through A2.7, we obtain the steel ratio ρ and calculate
the required area of steel:

As ¼ ρb0d ð7:17Þ

Check this value against the minimum area of reinforcement, As,min:

As,min ¼ 0:0018b0h ð7:18Þ

Check the bar’s development length by using Table A3.3 and the

applicable modification factors of Table A3.1. The bar length from

the critical section for moment to the edge of the footing has to be more

than ‘d. Otherwise, the bars have to be hooked at their ends. Therefore,

D� 3 in: coverð Þ � ‘d ð7:19Þ

Note that we can use Equation (3.64) and the corresponding modification

factors of Table A3.1 instead of Table A3.3 to obtain the bar development

length. This method usually results in a smaller required development

length.

Normally, 1 #4 or #5 longitudinal bar is used per foot of width as

distributor bars.

Example 7.2 Design the wall footing of Example 7.1 using reinforced concrete.

Assume fy¼ 60,000 psi.
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Solution

Step 1. Determine the required width, b.

wT ¼ wD þ wLr ¼ 10þ 5 ¼ 15 k=ft

b ¼ wT

qa

b ¼ 15

3
¼ 5 ft

Step 2. Estimate the footing thickness, h.

h ¼ 0:5
b� t

2

� �
¼ 0:5

5� 1

2

� �
¼ 1:0 ft

h ¼ 10�000

Step 3. Calculate and check the shear.

Determine the factored pressure on the footing from the soil (qu):

wu ¼ 1:2ð10Þ þ 1:6ð5Þ ¼ 20 k=ft

qu ¼
wu

b

qu ¼
20

5

qu ¼ 4:0 ksf

Calculate the effective depth of the footing. Assume #6 bars with 3 in.

minimum clear cover. Therefore,

d ¼ 12� 3:38 ¼ 8:62 in:

The critical section for shear is located at the distance d from the face of

wall, as shown in Figure 7.22a; from Equation (7.13):

C ¼ b� t

2
� d

C ¼ 5 12ð Þ � 12

2
� 8:62

C ¼ 15:38 in: ¼ 1:28 ft

The shear at the critical section (Vu) is:
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Vu ¼ quC

Vu ¼ 4:0 1:28ð Þ ¼ 5:12 kip

The shear strength of the concrete, ϕVc, is:

ϕVc ¼ ϕ 2λ
ffiffiffiffi
fc
0p
b0d

� �
ϕVc ¼ 0:75

2 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
3,000

p
12ð Þ 8:62ð Þ

1,000

	 

ϕVc ¼ 8:50 kip > 5:12 kip

Therefore, the footing thickness is enough to resist the shear.

wu

Critical section for shear

C 15.38 in.
d  12 3 3

8 8.62 in.

qu  4.0 ksf

1'-0"

b 5'-0"

a

b

qu  4.0 ksf

1'-0"

b 5'-0"

wuD 27 in.

t/4  3 in.

12 in.

Figure 7.22 Reinforced concrete wall footing of Example 10.2: (a) check shear, and (b) check
moment
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Step 4. Determine the required reinforcements.

The critical section for moment is at the distance t/4 from the face of wall,

as shown in Figure 7.22b:

D¼ b� t

2
þ t

4

D¼ 5 12ð Þ � 12

2
þ 12

4

D¼ 27 in: ¼ 2:25 ft

Mu ¼ quD
2

2

Mu ¼ 4:0 2:25ð Þ2
2

¼ 10:13 ft-kip

R¼ 12,000Mu

b0d2

R¼ 12,000 10:13ð Þ
12ð Þ 8:62ð Þ2 ¼ 136 psi

From Table A2.6a! ρ¼ 0.0026

As ¼ ρb0d ¼ 0:0026 12ð Þ 8:62ð Þ ¼ 0:27 in:2=ft

The minimum required reinforcement is the same as the minimum shrink-

age and temperature reinforcement:

As ¼ 0:0018b0h ¼ 0:0018 12ð Þ 12ð Þ
As ¼ 0:26 in:2=ft < 0:27 in:2=ft

From Table A2.10! use #5 @ 13 in. (As¼ 0.29 in.2/ft)

Check the reinforcing bars’ development length. According to

Table A3.2 because clear spacing¼ 13� 0.625 in.¼ 12.375 in.> 2(0.625)

and clear cover¼ 3 in.> 0.625 in., therefore condition A is applicable.

From Table A3.3 for #5 bars, fy¼ 60 ksi, and fc
0 ¼ 3 ksi :

‘d ¼ 28 in:

The ends of the bar must have 3 in. cover. Hence:

D� 3 in: ¼ 27 in:� 3 in: ¼ 24 in: < 28 in: ∴ N:G:

Therefore, the bars do not satisfy the development length requirements

using the simplified expression. We can either bend the bar ends up to

create hooks or use the more accurate Equation (3.64) of Chapter 3 to check

the required bar development length. From Equation (3.64):
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‘d ¼ 3

40

f y

λ
ffiffiffiffi
fc
0p ψtψeψs

cb þ Ktr

db

� �
2
664

3
775db � 12 in:

where

cb þ Ktr

db
� 2:5

From Table A3.1:

Ktr (no transverse reinforcement)¼ 0

cb concrete cover to bar centerð Þ ¼ 3þ 0:625

2
¼ 3:313 in:

cb þ Ktrð Þ
db

¼ 3:313þ 0ð Þ
0:625

¼ 5:3 > 2:5 ∴ Use 2:5:

ψt bottom barsð Þ ¼ 1:0
ψe coating factorð Þ ¼ 1:0
ψs reinforcement size factorð Þ ¼ 0:80
λ (normal weight concrete)¼ 1.0

‘d ¼ 3

40

60,000

1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p 1:0ð Þ 1:0ð Þ 0:8ð Þ
2:5

	 

db

As, required

As, provided

� �

‘d ¼ 26:3db
As, required

As, provided

� �
¼ 26:3 0:625ð Þ 0:27

0:29

� �

¼ 15:3 in: > 12 in: ∴ok

D� 3 in: ¼ 24 in: > 15:3 in: ∴ ok

Therefore, the main reinforcement bar has sufficient development length.

Since the footing is 50–000 wide, we use 5 #4 distributor bars.

Figure 7.23 shows the final design of this footing.

7.11 Reinforced Concrete Square Spread Footing Design

Square spread footings are the most common type of column footing. Regardless of

the material used for the column construction, reinforced concrete (or, rarely, plain

concrete) spread footings are used to support columns. Figure B7.1 of Appendix B

shows a large square spread footing under construction.
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The steps for the design of reinforced concrete square spread footings are

summarized in the flowchart of Figure 7.28 and are as follows:

Step 1. Calculate the required area and select the size of the footing.

As shown in Figure 7.24, the footing is sized such that the pressure on the

soil (qs) is less than the soil bearing capacity (qa). PD, PL, PLr, and PT
are the applied service dead, floor live, roof live and total loads,

respectively.

PT ¼ PD þ PL þ PLr

qs ¼
PT

A
� qa

5 #4
(Distributor
bars)#5 @ 13 in.

3 in. clear cover

1'-0"

1'-0"

4'-0"

5'-0"

Figure 7.23 Final design of wall footing of Example 7.2

qs qa

b b

PD , PL , PLr

h

t

Figure 7.24 Footing pressure on supporting soil
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or

Arequired ¼ PT

qa
! brequired ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Arequired

p ð7:20Þ

where qa is the allowable soil pressure. The value for b is usually rounded

up to the nearest even inch.

Step 2. Estimate the footing thickness.

In a square or rectangular footing, a reasonable estimate of the required

thickness is about one-half of the larger overhanging (O.H.) length of the

footing. Therefore, for a square footing, the estimated required thickness is:

h ¼ 0:5 O:H:ð Þ ¼ 0:5
b� t

2

� �
ð7:21Þ

Round up h to the nearest inch, if needed. The minimum thickness

commonly used for column spread footings is 12 in.

Step 3. Calculate and check the shear.

The factored Load, Pu, is:

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr if PL � 1:83PLrð Þ
or

Pu ¼ 1:2PD þ 1:6PLr þ 1:0PL if PL < 1:83PLrð Þ
PD is the total dead load. PL and PLr are the applied service floor and roof

live loads, respectively.

The factored pressure on the footing from the soil, qu, is:

qu ¼
Pu

b2
ð7:22Þ

Step 3a. Check the two-way (punching) shear.

Typically, the two-way (punching) shear (refer to Chapter 6) is the

controlling factor in determining the required thickness.

The critical sections for the two-way shear action are located at the

distance d/2 from the faces of the concrete column. For a steel column this

distance is measured from the midpoint between the face of column and

the edge of the base plate, as shown in Figure 7.25.

The footing bends in two perpendicular directions, so it requires rein-

forcement in the form of a grid. The average effective depth, d, may be

taken from the top of footing (which is in compression) to the location

between the two layers of bars as follows:

d ¼ h� cover� diameter of bar

The concrete cover for footings is 3 in. Assuming #8 bars, the distance

d can be calculated as:
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d ¼ h� 3 in:� 1 in: ¼ h� 4 in:

Compute the length of the critical section, B. Then cut the footing at the
critical sections to determine the shear by satisfying the equilibrium of

forces in the vertical direction, as shown in Figure 7.26a:

B ¼ length of the critical section one sideð Þ

B ¼ tþ 2
d

2

� �
¼ tþ d

ð7:23Þ

t

Concrete column

Critical section for two-way shear

Critical section for one-way shear

Critical section for moment

a

D

C d

d/2

t

Steel column

Base plate

Critical section for two-way shear

Critical section for one-way shear
Critical section for moment

b

D

C d

d/2

a/2a

Figure 7.25 Critical sections for square spread footings: (a) concrete column, and (b) steel column
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The total factored shear acting on the critical shear surface is:

Vu2 ¼ qu b2 � B2
� � ð7:24Þ

According to the ACI Code (Section 22.6.5.2), the nominal shear

strength of concrete, Vc, for two-way action is the same as that for slabs:

Vc2 ¼ min 2þ 4

β

� �
λ
ffiffiffiffi
fc
0p
bod,

αsd
bo

þ 2

� �
λ
ffiffiffiffi
fc
0p
bod, 4λ

ffiffiffiffi
fc
0p
bod

� �
ð7:25Þ

B

Vu2

a

Vu1

b

C

b
qu

b

b
qu

Mu

c

D

b

qu

B

Figure 7.26 Shear forces and bending moments at the critical sections: (a) two-way shear, (b)
one-way shear, (c) bending moment
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where

β ¼ larger dimension of column

shorter dimension of column
β ¼ 1 for square columnsð Þ

bo ¼ perimeter of critical section bo ¼ 4B for square columnsð Þ
αs ¼ 40 for columns in the center of footing

¼ 30 for columns at an edge of footing

¼ 20 for columns at a corner of footing

λ ¼ 1:0 typically, normal weight concrete is used for footingsð Þ:

The footing is adequate in punching shear if:

ϕVc2 � Vu2 ϕ ¼ 0:75ð Þ ð7:26Þ

Otherwise, the footing thickness, h, has to be increased, and the process
is repeated.

Step 3b. Check one-way or beam shear.

The requirements for one-way (beam action) shear must be satisfied in

addition to those for the two-way shear. As shown in Figure 7.25, the

critical section for one-way shear is at the distance d from the face of the

concrete column. Therefore, cutting the footing at this location and

writing the equilibrium equation of forces (see Figure 7.26b) allows us

to calculate the shear as follows:

Vu1 ¼ qubC ð7:27Þ

where for the case of concrete columns

C ¼ b� t

2
� d ð7:28Þ

The nominal one-way shear strength of concrete is (ACI Code,

Section 22.5.5.1):

Vc1 ¼ 2λ
ffiffiffiffi
fc
0p
bd

λ ¼ 1:0 for footings
ð7:29Þ

For the footing to be adequate in one-way shear:

ϕVc1 � Vu1 ϕ ¼ 0:75ð Þ ð7:30Þ

If the above equation is not satisfied, increase the footing thickness, h,
and repeat the process.
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Step 4. Determine the required reinforcement.

The footing bends in both directions like a dish when subjected to soil

pressure from below. Therefore, we can consider bending of the footing

from one side and find the moment at the critical section. Cutting the

footing at the critical section for moment, as shown in Figure 7.26c, and

setting the sum of moments to zero, we can calculate the moment at the

critical section as follows:

Mu ¼ qub Dð Þ D=2ð Þ ¼ qubD
2

2
ð7:31Þ

The required resistance coefficient, R, is:

R ¼ 12,000Mu

bd2

Using the Tables A2.5 through A2.7, we obtain ρ for R. The required area
of steel (As) then is:

As ¼ ρbd

Use Table A2.9 to select the number and size of bars. The minimum area

of steel is:

As,min ¼ 0:0018bh

Check the bar development length by using Table A3.3 and the applica-

ble modification factors of Table A3.1. The bar length from the critical

section for moment has to be more than ‘d. Otherwise, the bars have to be

hooked at their ends. Thus:

D� 3 in: coverð Þ � ‘d

Note that we can use (3.64) and the corresponding modification factors

of Table A3.1 instead of using Table A3.3 to obtain the bar development

length. This method usually results in a smaller required development

length.

Step 5. Determine the required dowel bars.

The column at its base transfers the load to the footing on an area equal to

the column’s cross-sectional area (Ag). This generates a bearing pressure

that the footing must resist.

The bearing capacity of the concrete at the column footprint, Nbearing, is

given by the ACI Code (Section 22.8.3.2):

N1 ¼ ϕ 0:85fc
0A1ð Þ ð7:32Þ

N2 ¼ min ϕ 0:85fc
0Ag

� � ffiffiffiffiffi
A2

A1

r
, 2ϕ 0:85fc

0A1ð Þ
� �

ð7:33Þ
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Nbearing ¼ min N1,N2f g ð7:34Þ
where

ϕ ¼ 0.65 (ACI Code, Section 21.2.1)

A1 ¼ column bearing area, which for a column directly bearing on

the footing is equal to Ag of the column

A2 ¼ area of the part of the footing that is geometrically similar to,

and concentric with the column bearing area, A1 (see

Figure 7.27a)

N1 ¼ bearing capacity of the column

N2 ¼ bearing capacity of the footing

a

sc

dc

Column

Column longitudinal reinforcement

Dowels

Footing reinforcement

b

b

b

L

A1 t2

A2 b2

t

t

Figure 7.27 Dowel reinforcements: (a) bearing areas A1 and A2, and (b) dowel bars between the

column and footing
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Design of Reinforced Concrete
Square Spread Footing

Increase the thickness (h).

Yes

Yes

No

No

Determine the required size of the footing.
PT
qa

Find the footing area: Arequired

For a square footing brequired . Select b.A required

Estimate the footing thickness:

h  0.5
b t

2

Calculate and check the shear:

qu
Pu

b2

Check two-way shear:
Vu2 q

l l l

l

u(b2 B2) ; d h 4 in.

fcbod , fcbod , fc bod,Vc2  min (2 
4

) (             )sd
bo

2 4

Vc2 Vu2 ?

Vc1 V

λ = 1.0,

u1?

Check one-way shear:
Vu1 qubC

Vc1  2   fcbd
0.75

Determine the required reinforcement:

; R
12,000Mu

bd2

Use Tables A2.5 to A2.7 to find ρ, As = ρbd.
Select the size and number of bars.

Check bars' development length using Tables A3.1 and A3.3 or Equation 3.64.

Determine the
required dowel

bars.

0.75

1.

2.

3.

4.

5.

3b.

qubD2

2
Mu

3a.

λ = 1.0 ,

Figure 7.28 Flowchart for the design of reinforced concrete square spread footings
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Nbearing¼ bearing capacity of the concrete at the base of the footing

fc
0 ¼ the specified strength of concrete in the column, when evalu-

ating N1; and the specified strength of concrete in the footing,

when evaluating N2

Equation (7.33) is used when the supporting surface is wider on all sides than the

loaded area.

Because the compressive strength of concrete in columns is usually larger than it

is in footings, we must compute both N1 and N2 to determine Nbearing. Dowel bars

must resist the difference between the load transferred from the column to the

footing, Pu, and the bearing capacity of concrete, Nbearing. The required area of these

bars, Asd, is calculated as follows:

Pd ¼ Pu � Nbearing ð7:35Þ

Asd ¼ max
Pd
fy
, 0:005Ag

( )
ð7:36Þ

The ACI Code, Section 16.3.4.1 requires a minimum amount of dowel rein-

forcement equal to 0.005Ag (Ag is the gross area of column) to transfer the loads

from the column to the footing. This is in the form of a minimum of four bars

placed at the corners of the column. A minimum development length for the

dowels in compression equal to ‘dc is required. This minimum length has to be

provided from the column bearing area extending into the column and the footing,

as shown in Figure 7.27b. The dowels are commonly hooked and tied to the

footing main reinforcements for ease of construction. The dowels have to be lap

spliced in compression to the column reinforcement based on requirements given

in Chapter 3. The length of the dowel in the column is the larger of the compres-

sion lap splice for the dowel bars (‘sc), as given in Section 3.4.5 of Chapter 3, and

the development length for the compression reinforcements in the column (‘dc).
Use Table A3.6 to obtain the development length for compression bars, ‘dc, and
Table A3.5 to obtain the applicable modification factors.

Example 7.3 Design a square reinforced concrete footing for the 16 in. square

interior concrete column shown below. The dead load is 200 kip, the floor live load

is 80 kip, and the roof live load is 20 kip. The allowable net soil pressure (bearing

capacity) is 3,500 psf. Use fc
0 ¼ 3,000 psi for the footing, fc

0 ¼ 4,000 psi for the

column, and fy¼ 60,000 psi. Assume the column has 4 #7 bars. Concrete is normal

weight.
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16 in.

Solution

Step 1. Determine the required size of the footing.

PT ¼ PD þ PL þ PLr ¼ 200þ 80þ 20 ¼ 300 kip

Arequired ¼ PT

qa
¼ 300

3:5
¼ 85:7 ft2

brequired ¼
ffiffiffiffiffiffiffiffiffi
85:7

p ¼ 9:26 ft

Round b to the nearest even inch and select b ¼ 90�400.
Step 2. Estimate the footing thickness.

The estimated depth of the footing is:

hest ¼ 1

2

9� 12þ 4ð Þ � 16

2

	 

¼ 24 in:

Step 3. Calculate and check the shear.

Since 1:83PLr ¼ 1:83 20ð Þ ¼ 36:6 k < PL ¼ 80 k, the factored load, Pu, is:

Pu ¼ 1:2� 200þ 1:6� 80þ 0:5� 20

Pu ¼ 378 kip

The factored pressure on the footing from the soil is:

qu ¼
Pu

b2

qu ¼
378

9:332

qu ¼ 4:34 ksf

446 7 Foundations and Earth Supporting Walls



Step 3a. Check the two-way shear.

The average effective depth, d, is:

d ¼ h� cover � estimated diameter of bar

d ¼ 24� 3� 1 ¼ 20 in:

The critical section for the two-way shear is at a distance d/2 from

the face of the concrete column. Therefore, one side of the critical

section, B, is:

B ¼ tþ d ¼ 16þ 20 ¼ 36 in: ¼ 30�000

The shear at the critical sections, Vu2, is shown in Figure 7.29, and is

calculated as follows:

Vu2 ¼ qu b2 � B2
� �

Vu2 ¼ 4:34 9:332 � 32
� �

Vu2 ¼ 339 kip

The nominal two-way shear strength of the concrete, Vc2, is:

24 in.

3'-0"

3'-0"

9'-4"

9'-4"
qu 4.34 ksf

Vu2

Figure 7.29 Two-way shear in the spread footing
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Vc2 ¼ min 2þ 4

β

� �
λ
ffiffiffiffi
fc
0p
bod,

αsd
bo

þ 2

� �
λ
ffiffiffiffi
fc
0p
bod, 4λ

ffiffiffiffi
fc
0p
bod

� �

β ¼ 16=16 ¼ 1:0

αs ¼ 40 column in the center of footingð Þ
bo ¼ 4B ¼ 4� 36 ¼ 144 in:

λ ¼ 1:0

Vc2 ¼ min 2þ 4ð Þ 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
144ð Þ 20ð Þ=1,000, 40� 20

144
þ 2

� �
1:0ð Þ

�
ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
144ð Þ 20ð Þ=1,000, 4 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

144ð Þ 20ð Þ=1,000�
Vc2 ¼ min 946 kip, 1,192 kip, 631 kipf g ¼ 631 kip

ϕVc2 ¼ 0:75 631ð Þ ¼ 473 kip > 339 kip ∴ ok

The two-way shear capacity of this footing is acceptable. The estimated

depth could be reduced, as the shear capacity is about 40% more than the

applied shear force. However, we will conservatively continue with the

assumed depth of 24 in.

Step 3b. Check one-way shear.

The critical section for one-way shear is at a distance, d, from the face

of the column:

C ¼ b� t

2
� d

C ¼ 9:33� 12� 16

2
� 20

C ¼ 28 in: ¼ 20�400 ¼ 2:33 ft

If we cut the footing at the critical section, as shown in Figure 7.30, the

shear at this location, Vu1, is:

Vu1

C 2'-4"
(2.33 ft)

qu 4.34 ksf

b 9'-4" 
(9.33 ft)

Figure 7.30 One-way shear in the spread footing
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Vu1 ¼ qubC

Vu1 ¼ 4:34 9:33ð Þ 2:33ð Þ
Vu1 ¼ 94:5 kip

The nominal one-way shear strength of concrete, Vc1, is:

Vc1 ¼ 2λ
ffiffiffiffi
fc
0p
bd

Vc1 ¼ 2 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
9:33� 12ð Þ 20ð Þ=1,000

Vc1 ¼ 245:3 kip

ϕVc1 ¼ 0:75 245:3ð Þ ¼ 184 kip > 94:5 kip ∴ ok

Therefore, the footing has enough capacity against the one-way shear.

Step 4. Determine the required reinforcement.

To calculate the required reinforcement, we first calculate the bending

moment at the critical section for moment (the face of the column):

D ¼ b� t

2
¼ 9:33� 12� 16

2

D ¼ 48 in: ¼ 4:00 ft

The moment at the critical section as shown in Figure 7.31 is:

Mu ¼ qubD
2=2

Mu ¼ 4:34 9:33ð Þ 4:0ð Þ2=2
Mu ¼ 324 ft-kip

R ¼ 12,000Mu

bd2

R ¼ 12,000 324ð Þ
9:33� 12ð Þ 20ð Þ2 ¼ 87:0 psi

Mu

D
4'-0"

qu 4.34 ksf

b
9'-4"

Figure 7.31 Bending moment in the spread footing
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From Table A2.6a fc
0 ¼ 3,000 psi, fy ¼ 60,000 psi

� �
! ρ ¼ 0:0017

(conservatively) and the required area of steel, As, is:

As ¼ ρbd

As ¼ 0:0017 9:33� 12ð Þ 20ð Þ
As ¼ 3:8 in:2

As,min ¼ 0:0018bh

As,min ¼ 0:0018 9:33� 12ð Þ 24ð Þ
As,min ¼ 4:84 in:2 > 3:8 in:2

Therefore, the required area of steel is:

As ¼ 4:84 in:2

Table A2.9!∴Use 9 #7 bars each way (As¼ 5.40 in.2)

Check the bars development length.

From Table A3.2, because cover >0.875 in. and clear space >
2(0.875 in.), condition A is applicable, and from Table A3.3:

‘d ¼ 48 in: #7 barsð Þ

From Table A3.1, ‘d can be reduced by
As, required

As, provided
, therefore :

‘d ¼ 48� 3:8

5:40
¼ 33:8 in:

The bar length measured from the critical section for moment is:

D� 3 in: ¼ 48 in:� 3 in: ¼ 45 in: > 33:8 in: ∴ ok

Step 5. Determine the required dowel bars.

N1 ¼ ϕ 0:85fc
0A1ð Þ; fc

0ð Þcolumn ¼ 4:0 ksi

N1 ¼ 0:65 0:85 4:0ð Þ 16� 16ð Þ½ 	 ¼ 565:8 kip
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N2 ¼ min ϕ 0:85fc
0Ag

� � ffiffiffiffiffi
A2

A1

r
, 2ϕ 0:85fc

0A1ð Þ
� �

; fc
0ð Þfooting ¼ 3:0 ksi

N2 ¼ min 0:65 0:85 3:0ð Þ 16� 16ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
112� 112

16� 16

r" #
,

(

� 2 0:65ð Þ 0:85 3:0ð Þ 16� 16ð Þ½ 	g
N2 ¼ min 2,970, 848:6f g ¼ 848:6 kip

Nbearing ¼ min N1,N2f g ¼ 565:8 kip

Pu ¼ 378 kip < 565:8 kip

∴ Use minimum area for dowels:

Asd ¼ 0:005 Ag ¼ 0:005 16� 16ð Þ ¼ 1:28 in:2

(Table A2.9! use 4 #6 (As¼ 1.76 in.2)

It has to be noted that for practical purposes the dowel bar size is usually

selected to match the column main reinforcements, which for a

16 in.� 16 in. column it is expected to be larger than #6 bars. We have,

however, selected #6 bars here for consistency and clarity in the solution.

The required development length in the footing from Table A3.6 (com-

pression bars) for fc
0 ¼ 3,000 psi is:

‘dc ¼ 17 in: #6 barsð Þ

Adjusting the dowel length using Table A3.5:

‘dowel ¼ ‘dc
As, required

As, provided

� �
¼ 17

1:28

1:76

� �
¼ 13 in:

This is the length of dowel to be extended in the footing. From Table A3.6

the development length for #7 main reinforcements in the column

(fc
0 ¼ 4,000 psi) is ‘dc ¼ 17 in:
The required lap splice length, ‘sc, for #6 dowels in the column is

(Chapter 3 Section 3.4.5):

‘sc ¼ 0:0005 fydb � 12 in:

¼ 0:0005 60,000ð Þ 0:75ð Þ ¼ 22:5 in: ’ 23 in:

We use the larger of 17 and 23 in., which is 23 in. for the dowel extension in

the column.

Figure 7.32 shows the final design of this footing.
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Example 7.4 Design the square reinforced concrete footing shown in Figure 7.33

for the interior column of Example 5.3. The bearing capacity of the soil is 8,000 psf,

fc
0 ¼ 3;000 psi for the footing and fy¼ 60,000 psi. Concrete is normal weight.

Solution From Example 5.3:

Column¼ 16 in:� 16 in:

PD ¼ 387 kip

PL ¼ 90 kip

PLr ¼ 27 kip

fc
0 ¼ 4,000 psi

Final sketch for Problem 7-6 

13 in.

4 #6 Dowels 

16 in.

3 in. clear 
cover 

9 #7 each way 

23 in. 

24 in. 

9’-4” × 9’-4”

Figure 7.32 Final design of the spread footing of Example 7.3

16 in.

Figure 7.33 Spread footing of Example 7.4
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Step 1. Determine the required footing size.

PT ¼ 387þ 90þ 27 ¼ 504 kip

Arequired ¼ 504

8:0
¼ 63:0 ft2

brequired ¼
ffiffiffiffiffiffiffiffiffi
63:0

p ¼ 7:94 ft Round to 80�000:

Step 2. Estimate footing thickness.

hest ¼ 0:5
b� t

2

� �
¼ 0:5

8:0� 12� 16

2

� �
¼ 20 in:

Step 3. Calculate and check shear.

Since 1:83PLr ¼ 1:83 27ð Þ ¼ 49:4 k < P2 ¼ 90 k, therefore;
Pu ¼ 1:2 387ð Þþ 1:6 90ð Þ þ 0:5 27ð Þ ¼ 621:9 kip

qu ¼
Pu

b2
¼ 621:9

8:0ð Þ2
qu ¼ 9:72 ksf

Step 3a. Check two-way shear.

d ¼ 20� 4 ¼ 16 in:

The critical sections, as shown in Figure 7.34, are at distanced d/2 from the

face of the column.

B ¼ tþ d ¼ 16þ 16 ¼ 32 in: ¼ 20�800 ¼ 2:67 ft

bo ¼ 4� 32 ¼ 128 in:

8'-0"

20 in

qu  9.72 ksf

Vu2

8'-0"

2'-8"

2'-8"

Figure 7.34 Two-way shear action

7.11 Reinforced Concrete Square Spread Footing Design 453



From Figure 7.34:

Vu2 ¼ qu b2 � B2
� � ¼ 9:72 8:02 � 2:672

� �
Vu2 ¼ 553 kip

The nominal shear capacity of the concrete for the two-way action is:

Vc2 ¼ min 2þ 4

β

� �
λ
ffiffiffiffi
fc
0p
bod,

αsd
bo

þ 2

� �
λ
ffiffiffiffi
fc
0p
bod, 4λ

ffiffiffiffi
fc
0p
bod

� �

β ¼ 16

16
¼ 1, αs ¼ 40 column at the center of footingð Þ, λ ¼ 1:0

Vc2 ¼ min 2þ 4

1

� �
1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

128ð Þ 16ð Þ=1,000,
�

� 40� 16ð Þ
128

þ 2

� �
1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

128ð Þ 16ð Þ=1,000,

� 4 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
128ð Þ 16ð Þ=1,000�

Vc2 ¼ min 673, 758, 449f g
Vc2 ¼ 449 kip

ϕVc2 ¼ 0:75 449ð Þ ¼ 337 kip < Vu2 ¼ 553 kip ∴ N:G:

Therefore, we need to increase the footing thickness, which is usually

done through a trial-and-error process. The difference between the shear

capacity and the shear demand is quite large, so we try to increase the

footing thickness by 7 in.

∴ Try h ¼ 27 in: ¼ 20�300

Step 3R (Repeat) Calculate and check shear.

Step 3R (a) Check two-way shear.

As shown in Figure 7.35:

qu ¼ 9:72 ksf

d¼ 27� 4 ¼ 23 in:

B¼ tþ d ¼ 16þ 23

¼ 39 in: ¼ 30�300 ¼ 3:25 ft

bo ¼ 4 39ð Þ ¼ 156 in:
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Using Figure 7.35:

Vu2 ¼ qu b2 � B2
� � ¼ 9:72 8:02 � 3:252

� �
Vu2 ¼ 519 kip

Again, calculating the shear capacity of concrete:

Vc2 ¼ min 2þ 4

1

� �
1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

156ð Þ 23ð Þ=1,000,
�

� 40� 23ð Þ
156

þ 2

� �
1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

156ð Þ 23ð Þ=1,000,

� 4 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
156ð Þ 23ð Þ=1,000,�

Vc2 ¼ min 1,179 kip, 1,552 kip, 786 kipf g
Vc2 ¼ 786 kip

ϕVc2 ¼ 0:75 786ð Þ ¼ 590 kip > 519 kip ∴ ok

The new footing is deep enough, and we continue with checking the

one-way shear action.

Step 3b. One-way shear.

The critical section for the one-way shear, as shown in Figure 7.36, is at a

distance d(23 in.) from the face of the column.

C ¼ 8:0� 12� 16

2
� 23 ¼ 17 in: ¼ 1:42 ft

27 in.

qu  9.72 ksf

Vu2

8'-0"

3'-3"

3'-3"

8'-0"

Figure 7.35 Two-way shear action (second trial)
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Figure 7.37 shows the shear acting on the section. Thus:

Vu1 ¼ qubC ¼ 9:72 8:0ð Þ 1:42ð Þ
Vu1 ¼ 110 kip

The one-way shear capacity of the concrete, Vc1 is:

Vc1 ¼ 2λ
ffiffiffiffi
fc
0p
bd

¼ 2 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p
8:0� 12ð Þ 23ð Þ=1,000

Vc1 ¼ 242 kip

ϕVc1 ¼ 0:75 242ð Þ ¼ 182 kip > 110 kip ∴ ok

C  17 in. d  23 in.

16 in.

Critical section for
one-way shear

27 in.

8'-0"

Figure 7.36 Critical section for one-way shear

Vu1

qu  9.72 ksf

C  1.42 ft

b  8'-0"

Figure 7.37 One-way shear force
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Step 4. Determine the required reinforcements.

The critical section for moment, as shown in Figure 7.38, is at the face of

the column:

D ¼ b� t

2

D ¼ 8:0� 12� 16

2
¼ 40 in: ¼ 3:33 ft

Figure 7.39 shows the moment acting on the critical section. Thus:

Mu ¼ qubD
D

2

� �

Mu ¼ 9:72 8:0ð Þ 3:33ð Þ 3:33

2

� �
Mu ¼ 432 ft-kip

R¼ 12,000Mu

bd2

R¼ 12,000� 432

8:0� 12ð Þ 23ð Þ2 ¼ 102 psi

Critical section for moment

D  40 in.

16 in.

8'-0"

Figure 7.38 Critical section for bending moment

Mu

qu  9.72 ksf

D  3.33 ft

b  8'-0"

Figure 7.39 Bending moment at the critical section
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From Table A2.6a fc
0 ¼ 3,000 psi, fy ¼ 60,000 psi

� �
! ρ ¼ 0:0020

As ¼ ρbd ¼ 0:0020 8:0� 12ð Þ 23ð Þ
As ¼ 4:42 in:2

As, min ¼ 0:0018bh

As, min ¼ 0:0018 8:0� 12ð Þ 27ð Þ ¼ 4:67 in:2 > 4:42 in:2

From Table A3.2 ∴ Use 8 #7 (As¼ 4.80 in.2)

This reinforcement is required for both direction.

Check the bars’ development length:

From Table A3.2, because cover> db¼ 0.875 in. and clear

space> 2db¼ 2(0.875 in.), we use condition A. From Table A3.3, the

required development length is:

‘d ¼ 48 in: #7 barsð Þ

From Table A3.1, ‘d can be reduced by
As, required
As, provided

to get the required

length (‘req). Therefore,

‘req ¼ 48� 4:42

4:80
¼ 44 in:

The bar length measured from the critical section for moment is:

D� 3 in: ¼ 3:33� 12ð Þ � 3 ¼ 37 in: < 44 in: ∴ N:G:

Use Equation (3.64) to calculate the more accurate required bar develop-

ment length:

cb ¼ 3þ 0:875

2
¼ 3:44

Ktr ¼ 0 conservativelyð Þ
cb þ Ktr

db
¼ 3:44

0:875
¼ 3:93 > 2:5 ∴Use 2:5

‘d ¼ 3

40

fy

λ
ffiffiffiffi
fc
0p ψtψeψs

cb þ Ktr

db

� �
2
664

3
775db As, required

As, provided

� �
� 12 in:

¼ 3

40

60,000

1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p 1:0ð Þ 1:0ð Þ 1:0ð Þ
2:5

	 

db

4:67

4:80

� �
¼ 31:97db

¼ 31:97 0:875ð Þ ¼ 28 in: > 12 in:

D� 3 ¼ 37 in: > 28 in: ∴ The bar development length is adequate:
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Step 5. Determine the required dowel bars.

Using Equations (7.32) to (7.36):

N1 ¼ ϕ 0:85fc
0A1ð Þ

N1 ¼ 0:65 0:85 4:0ð Þ 16� 16ð Þ½ 	 ¼ 565:8 kip

N2 ¼ min ϕ 0:85fc
0Ag

� � ffiffiffiffiffi
A2

A1

r
, 2ϕ
�
0:85fc

0A1

�� �

N2 ¼ min 0:65 0:85 3:0ð Þ 16� 16ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96� 96

16� 16

r" #
, 2 0:65ð Þ 0:85 3:0ð Þ 16� 16ð Þ½ 	

( )

N2 ¼ min 2,546 kip, 848:6 kipf g ¼ 848:6 kip

Nbearing ¼ min N1,N2f g ¼ min 565:8 kip, 848:6 kipf g ¼ 565:8 kip

Pu ¼ 621:9 kip > 565:8 kip

Pd ¼ Pu � Nbearing ¼ 621:9� 565:8 ¼ 56:1 kip

Asd ¼ max
Pd
fy
, 0:005Ag

( )

¼ max
56:1

60
, 0:005 16� 16ð Þ

� �

¼ max 0:94 in:2, 1:28 in:2
� � ¼ 1:28 in:2

Table A2.9 ! Use 4 #6 (As¼ 1.76 in.2)

Refer to the comment regarding the selection of size of dowels in the

solution for Example 7.3.

From Table A3.6 the required development length of #6 bars in the

footing for fc
0 ¼ 3,000 psi is:

‘dc ¼ 17 in:

‘dowel ¼ ‘dc
As, required

As, provided

� �
¼ 17

1:28

1:76

� �
¼ 13 in:

Therefore, use 13 in. minimum dowel length in the footing. The compres-

sion lap splice in the column for fy� 60,000 is (see Chapter 3):

‘sc ¼ 0:0005fydb � 12 in:

¼ 0:0005 60,000ð Þ 0:75ð Þ ¼ 22:5 in:

The column has 8 # 8 bars as the main reinforcement. The development

length for these compression bars per Table A3.6 is 19 in. Therefore, use a

23 in. splice in the column.

Figure 7.40 is a sketch of the final design.
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7.12 Rectangular Reinforced Concrete Footing

A square footing is sometimes impractical due to space limitations. For example, if

a building column is located close to a property line, the designer has to size the

footing to keep it within the property boundaries. A rectangular footing may be used

in such cases. The design method for rectangular footings is similar to that for

square footings. There are a few differences, however. The steps for the design of

rectangular reinforced concrete footings follow and are also summarized in the

flowchart of Figure 7.45.

Step 1. Determine the required area of the footing:

PT ¼ PD þ PL þ PLr

Arequired ¼ PT

qa

If the footing area is b‘� bs (b‘ is the longer dimension, and bs the

shorter, as shown in Figure 7.41) and the side (bs) is limited to a certain

known value, then b‘ ¼ A

bs
. Round up b‘ to the nearest even inch and

calculate the footing contact area (A):

A ¼ b‘ � bs
Step 2. Estimate the footing thickness.

23 in. min.

3 in. clear cover

8 #7 each way

13 in. min.

16 in.

4 #6 dowels

8'-0"  8'-0"

2'-3"

Figure 7.40 Final design of the spread footing of Example 7.4
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A reasonable preliminary thickness is about 50% of the overhanging

length for a square footing of equivalent area. Thus:

b¼ ffiffiffi
A

p

hest ¼ 0:5
b� t

2

� �

where t is the column width. Round up the thickness to the nearest inch,

if necessary.

Step 3. Calculate and check shear.

The factored pressure on the footing from the soil is:

qu ¼
Pu
A

Step 3a. Check two-way (punching) shear.

The two-way shear requirements for a rectangular footing are similar to

those of a square footing. The critical sections are at a distance d/2 from the

concrete column face (d¼ h� 3 in.� 1 in.).

Figure 7.41 shows the critical two-way shear perimeter for a rectangular

footing with a square column. Cut the footing at the critical sections and

obtain the resulting shear force:

B¼ tþ 2
d

2

� �
¼ tþ d

Vu2 ¼ qu A� B2
� �

The nominal two-way shear capacity of concrete, Vc2, is:

Vc2 ¼ min 2þ 4

β

� �
λ
ffiffiffiffi
fc
0p
bod,

αsd

bo
þ 2

� �
λ
ffiffiffiffi
fc
0p
bod, 4λ

ffiffiffiffi
fc
0p
bod

� �

b

bs

t

The critical shear periphery

B

B

d
2

Figure 7.41 Two-way shear in rectangular reinforced concrete footings
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which is the same equation (Equation (7.25)) as for square footings. (Refer

to the section on square footings for the definitions of the parameters.)

In order to satisfy the ACI Code’s requirements, the shear capacity of

the concrete has to be greater than the applied shear force:

ϕVc2 � Vu2

If this condition is not satisfied, we need to increase the footing depth, h,
and repeat the process.

Step 3b. Check one-way shear.

The one-way shear requirements for rectangular footings are also

similar to those for square footings. But, the rectangular shape of the

footing places the critical section for the one-way shear at the distance

d from the face of the column in the long direction, as shown in

Figure 7.42a. Therefore, the distance, C, from the edge of the footing to

the critical section is:

C ¼ b‘ � t

2
� d

Figure 7.42b shows the applied loads at the critical section for shear,

Vu1, which can be calculated as:

Vu1 ¼ qubsC

The one-way shear strength of the footing is:

ϕVc1 ¼ ϕ 2λ
ffiffiffiffi
fc
0p
bd

� �
¼ ϕ 2λ

ffiffiffiffi
fc
0p
bsd

� �

Column

a

t

C

b

bs

d

t

Critical section for one-way shear

Vu1

b

qu

C

bs

Figure 7.42 One-way shear in rectangular reinforced concrete footings: (a) plan view, and (b) cut
at the critical section
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For the footing to be adequate in one-way shear:

ϕVc1 � Vu1

If the above relationship is not satisfied, we increase the footing depth

and repeat the process.

Step 4. Determine required reinforcement.

Finding the required area of steel reinforcements for rectangular footings

is much different than for square footings, as the bending moments in the

footing are different in each direction. The critical sections for moments are

at the face of the column in each direction, as shown in Figure 7.43a.

Therefore, the distance in the long direction (D‘) from the edge of the

footing to the critical section is:

D‘ ¼ b‘ � t

2

Column

a

D

b

Ds

bs

Critical section for moment (long direction)

Critical section for moment
(short direction)

b

Mu

qu

D

bs

c

qu

Mus

Ds

b

Figure 7.43 (a) Plan view of critical sections for moment; (b) moment at the critical section in the

long direction; (c) moment at the critical section in the short direction
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and the moment at the critical section, Mu‘, shown in Figure 7.43b, is:

Mu‘ ¼ qubsD‘
D‘

2

� �

Mu‘ ¼ qubs
D2

‘

2

The coefficient of resistance, R, can be calculated as follows:

R ¼ 12,000Mu‘

bd2
¼ 12,000Mu‘

bsd
2

Use Tables A2.5 through A2.7 to obtain ρ, and calculate the required

area of steel in the long direction:

As ¼ ρbsd

This reinforcing is distributed uniformly across the width (bs) of the

footing. For the short direction, the location of the critical section, Ds, is:

Ds ¼ bs � t

2

and the moment at the critical section, Mus, shown in Figure 7.43c is:

Mus ¼ qub‘Ds
Ds

2

� �

Mus ¼ qub‘
D2

s

2

The coefficient of resistance, R, can be calculated as follows:

R ¼ 12,000Mus

bd2
¼ 12,000Mus

b‘d
2

Using Tables A2.5 through A2.7, we obtain ρ. Then, the required area of
steel in the short direction is:

As ¼ ρb‘d

The reinforcement is not distributed uniformly in the short direction.

Figure 7.44 shows how the reinforcement is distributed in the short direc-

tion. According to the ACI Code (Section 13.3.3.3), a portion of the total

reinforcement equal to γsAs should be uniformly distributed over a band-

width equal to the footing width (bs) under the column. The remainder of

the reinforcement [(1� γs)As] should be distributed uniformly outside this

bandwidth. γs is defined as:
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γs ¼
2

βþ 1
ð7:37Þ

where

β ¼ long side of footing

short side of footing
¼ b‘

bs
ð7:38Þ

We must check the development length of the reinforcements in both

directions, measured from the critical section for moment. The procedure is

similar to that used for square footings.

Step 5. Determine the required dowel bars.

The dowel requirements are the same as those for square footings.

Example 7.5 Design a rectangular reinforced concrete footing for the 16 in. square

reinforced concrete exterior column shown in Figure 7.46. The dead load is 100 kip

and the roof live load is 75 kip. The soil bearing capacity is 3,500 psf, fc
0 ¼ 3,000

psi for the footing and the column, and fy¼ 60,000 psi. The width of the footing is

limited to 60–000 due to its proximity to the property line. Concrete is normal weight.

Solution

Step 1. Determine the required area.

PT ¼ PD þ PLr ¼ 100þ 75 ¼ 175 kip

A¼ PT

qa
¼ 175

3:5
¼ 50 ft2

Column

bs/2 bs/2

of reinforcement in this band
2

 1

b

bs

Figure 7.44 Rectangular footing plan for reinforcement distribution
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Design of Reinforced Concrete
Rectangular Spread Footing

Determine the required
reinforcement. Short Direction

From Tables A2.5 to A2.7
find ; As b d

Select the size and number of bars.
Check the bar development length.

Determine the required
dowel bars.

Calculate and check shear:

qu
Pu

A

Mus

qub D2
s

2

R
12,000Mus

b d 2

reinforcement over bs centered 
on the footing.

Distribute ofs  1
2

Long Direction

Yes

Yes

No

No

Increase the
thickness (h)

From Tables A2.5 to A2.7
find ; As bsd

Select the size and number of bars.
Check the bar development length.

Mu

qubsD
2

2

R
12,000Mu

bsd
2

Check two-way shear:

d h  – 4 in.   Vu2 qu(A B2)

 0.75 1.0,

Check one-way shear:

Vu1 qubsC

Vc1 2  f c bsd

Vc2 Vu2 ?

Estimate the footing thickness:

Vc1 Vu1 ?

hest 0.5
b t

2
b A

Determine the required area:

Round up b , A b bs

Arequired ,
PT

qa

Arequired

bs
b

1.

2.

3.

3a.

3b.

4. 

5.

4 sd

bo
Vc2  min{(2 ) f c bod, (  2)  f c bod,      f c bod }4l

l

 0.75 1.0,l

l

l l

Figure 7.45 Flowchart for the design of reinforced concrete rectangular spread footing
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The long dimension, b‘ is:

b‘ ¼ A

bs
¼ 50

6
¼ 8:33 ft

Select an 80–400 � 60–000 footing

A ¼ 8:33� 6 ¼ 50 ft2

Step 2. Estimate the footing thickness.

b¼ ffiffiffi
A

p ¼ ffiffiffiffiffi
50

p ¼ 7:07 ft

hest ¼ 0:5
b� t

2

� �
¼ 0:5

7:07� 12ð Þ � 16

2

� �
¼ 17:2 in:

∴h¼ 18 in:

Step 3. Calculate and check shear.

The factored load, Pu, and the pressure acting on the footing from the

soil, qu, are:

Pu ¼ 1:2PD þ 1:6PLr

Pu ¼ 1:2 100ð Þ þ 1:6 75ð Þ ¼ 240 kip

qu ¼
Pu
A

qu ¼
240

50

qu ¼ 4:8 ksf

Step 3a. Check two-way shear.

d ¼ h� 4 in: ¼ 18� 4 ¼ 14 in:

16 in.

4'-0"

Figure 7.46 Rectangular spread footing of Example 7.5
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The length of one side of the critical section for two-way shear, B, is:

B ¼ tþ d ¼ 16þ 14 ¼ 30 in: ¼ 2:5 ft

Figure 7.47 shows the forces acting at the critical two-way shear sections,

Vu2, which can be calculated as follows:

Vu2 ¼ qu A� B2
� �

Vu2 ¼ 4:8 50� 2:5ð Þ2
h i

Vu2 ¼ 210 kip

The two-way shear capacity of the concrete, Vc2, is:

Vc2 ¼ min 2þ 4

β

� �
λ
ffiffiffiffi
fc
0p
bod,

αsd
bo

þ 2

� �
λ
ffiffiffiffi
fc
0p
bod, 4λ

ffiffiffiffi
fc
0p
bod

� �

β ¼ 16

16
¼ 1:0; αs ¼ 40 column at the center of the footingð Þ

bo ¼ 4B ¼ 4� 30 ¼ 120 in:, λ ¼ 1:0 normal weight concreteð Þ

Vc2 ¼ min 2þ 4

1

� �
1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p 120ð Þ 14ð Þ

1,000
,

40� 14

120
þ 2

� ��

1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p 120ð Þ 14ð Þ
1,000

, 4 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p 120� 14

1,000

�

Vc2 ¼ min 552, 613, 368f g ¼ 368 kip

ϕVc2 ¼ 0:75 368ð Þ ¼ 276 kip > 210 kip ∴ ok

Therefore, the footing thickness is adequate for the two-way shear action.

Step 3b. Check one-way shear.

The critical section for one-way shear, as shown in Figure 7.48, is at a

distance d from the face of the column in the long direction:

18 in.

2.5 ft

2.5 ft
Vu2

b  8.33 ftqu  4.8 ksf

bs  6'-0"

Figure 7.47 Two-way shear in the rectangular spread footing
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C¼ b‘ � t

2
� d

C¼ 8:33� 12� 16

2
� 14 ¼ 28 in: ¼ 2:33 ft

Vu1 ¼ qubsC

Vu1 ¼ 4:8 6:0ð Þ 2:33ð Þ
Vu1 ¼ 67:1 kip

Vc1 ¼ 2λ
ffiffiffiffi
fc
0p
bsd

Vc1 ¼ 2 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p 6� 12ð Þ 14ð Þ
1,000

Vc1 ¼ 110:4 kip

ϕVc1 ¼ 0:75 110:4ð Þ ¼ 82:8 kip > 67:1 kip ∴ ok

Therefore, the one-way shear is ok, and the footing thickness is

adequate.

Step 4. Calculate the required reinforcement.

Long Direction
The location of the critical section for moment, shown in Figure 7.49, is:

D‘ ¼ b‘ � t

2
¼ 8:33� 12� 16

2
¼ 42 in: ¼ 3:50 ft

Mu‘ ¼ qubs
D2

‘

2

Mu‘ ¼ 4:8 6ð Þ 3:50ð Þ2
2

¼ 176:4 ft-kip

R ¼ 12,000 176:4ð Þ
6� 12ð Þ 14ð Þ2 ¼ 150 psi

qu  4.8 ksf

C  2.33 ft

bs  6'-0"

Vu1

Figure 7.48 One-way shear in the rectangular spread footing
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From Table A2.6a fc
0 ¼ 3,000 psi, fy ¼ 60,000 psi

� �
! ρ ¼ 0:0029

rounded upð Þ
As ¼ ρbsd
As ¼ 0:0029 6� 12ð Þ 14ð Þ
As ¼ 2:92 in:2

As,min ¼ 0:0018bsh

As,min ¼ 0:0018 6� 12ð Þ 18ð Þ
As,min ¼ 2:33 in:2 < 2:92 in:2

From Table A2.9 select 7 #6 (long direction).

As ¼ 3:08 in:2
� �

Short Direction
The location of the critical section for moment, shown in Figure 7.50, is:

Ds ¼ bs � t

2
¼ 6� 12ð Þ � 16

2
¼ 28 in: ¼ 2:33 ft

Mus

qu  4.8 ksf

b  8.33 ft

Ds  2.33 ft

Figure 7.50 Moment at the critical section in the short direction

Mu

qu  4.8 ksf

D  3.50 ft

bs  6'-0"

Figure 7.49 Moment at the critical section in the long direction
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The moment at the critical section (see Figure 7.50) is:

Mus ¼ qub‘
D2

s

2

Mus ¼ 4:8 8:33ð Þ 2:33ð Þ2
2

¼ 109 ft-kip

R¼ 12,000Mus

b‘d
2

R¼ 12,000 109ð Þ
8:33� 12ð Þ 14ð Þ2 ¼ 67 psi

From Table A2.6a! ρ¼ 0.0013

As ¼ ρb‘d ¼ 0:0013 8:33� 12ð Þ 14ð Þ
As ¼ 1:82 in:2

As,min ¼ 0:0018b‘h

As,min ¼ 0:0018 8:33� 12ð Þ 18ð Þ
As,min ¼ 3:24 in:2 > 1:82 in:2

Therefore, we need the minimum required reinforcement.

From Table A2.9! use 8 #6 (As¼ 3.52 in.2)

For the distribution of reinforcement in the short direction:

β ¼ b‘
bs

¼ 8:33

6
¼ 1:39

We must place a portion of reinforcement equal to γs of the total in a

band centered on the column and having a width equal to bs:

γs ¼
2

βþ 1
¼ 2

1:39þ 1
¼ 0:84

Therefore, the number of bars to be distributed in this band is:

γsAs ¼ 0:84 8ð Þ ¼ 6:7

Use 7 #6 bars in the 60–000 center bandwidth and one #6 bars on each

side. This results in 9 #6 bars (As¼ 3.96 in.2).

Check the bars’ development length:

Bar spacing in the long direction

¼ 6 12ð Þ � 2 3ð Þ � 0:75ð Þ
6

¼ 10:9 in:
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From Table A3.2, because cover >0.75 in. and clear space >2(0.75 in.),

use condition A. From Table A3.3:

‘d ¼ 33 in: #6 barð Þ

From Table A3.1, ‘d can be reduced by
As, required

As, provided
:

For the long direction:

‘d ¼ 33� 2:92

3:08
¼ 31 in:

The provided bar length is:

D‘ � 3 in: ¼ 3:5 12ð Þ � 3 ¼ 39 in: > 31 in: ∴ ok

For the short direction:

‘d ¼ 33� 1:82

3:96
¼ 15:2 in:

The provided bar length in the short direction is:

Ds � 3 in: ¼ 2:33 12ð Þ � 3 ¼ 25 in: > 15:2 in: ∴ ok

We demonstrate how to use Equation (3.64) and Table A3.1 to calculate

the development length more accurately:

cb ¼ 3þ 0:75

2
¼ 3:38 in:

Ktr ¼ 0

cb þ Ktr

db
¼ 3:38 in:

0:75
¼ 4:5 > 2:5 ∴use 2:5

‘d ¼ 3

40

fy

λ
ffiffiffiffi
fc
0p ψtψeψs

cb þ Ktr

db

� �
2
664

3
775db As, required

As, provided

� �
� 12 in:

¼ 3

40

60,000

1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
3,000

p 1:0ð Þ 1:0ð Þ 0:8ð Þ
2:5

	 

db

1:82

3:96

� �
¼ 12:08db

¼ 12:08 0:75ð Þ ¼ 9 in: < 25 in: ∴ok

∴ The bars are long enough:
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Step 5. Determine the required dowel bars.

Using Equations (7.32) to (7.36):

N1 ¼ ϕ 0:85 fc
0A1ð Þ

N1 ¼ 0:65 0:85 3ð Þ 16� 16ð Þ½ 	 ¼ 424:3 kip

N2 ¼ min ϕ 0:85 fc
0Ag

� � ffiffiffiffiffi
A2

A1

r
, 2ϕ 0:85 fc

0A1ð Þ
� �

N2 ¼ min 0:65 0:85 3:0ð Þ 16� 16ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72� 72

16� 16

r" #
, 2 424:3ð Þ

( )

N2 ¼ min 1,909, 848:6f g ¼ 848:6 kip

Nbearing ¼ min N1, N2f g ¼ min 424:3, 848:6f g ¼ 424:3 kip
Pu ¼ 240 kip < 424:3 kip

∴ Use the minimum area for dowels:
Asd ¼ 0:005Ag ¼ 0:005 16� 16ð Þ ¼ 1:28 in:2

Refer to the comment regarding the selection of size of dowels in the

solution for Example 7.3.

Table A2.9!Use 4 #6 (As¼ 1.76 in.2).

The required development length from Table A3.6 is:

‘d ¼ 17 in:

‘dowel ¼ ‘d
As, required

As, provided

� �
¼ 17

1:28

1:76

� �
¼ 12:4 in:

∴ Use 13 in: minimum:

Figure 7.51 shows the final design of the footing.

13 in. minimum

7 #6

4 #6 dowels
#6 (typical)

#6 @ 12 in. c/c1 #6

.ni41.ni41 6'-0"

1 #6

18 in.

3 in. clear cover

16 in.

Figure 7.51 Final design of the rectangular footing of Example 7.5
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7.13 Earth Supporting Walls

Basement walls and retaining walls are two common concrete (plain or reinforced)

structural systems. Sometimes, however, they are made of concrete masonry units.

These structural elements have to resist lateral soil pressure. Therefore, it is

important to understand the action of soil on them. This section briefly explains

lateral soil pressure, then discusses the different aspects of the design and analysis

of basement and retaining walls.

7.13.1 Lateral Earth Pressure

Soil that is retained on one side of a wall is confined on the higher grade and

prevented from moving freely. Figure 7.52 shows a vertical section of a retaining

wall. A wedge-shaped part of the soil in this vertical cut is pulled downward by

gravity and tries to slide down along a plane of rupture. The wall, however, prevents

these downward and outward movements, resulting in a lateral pressure on the wall.

Frictional resistance occurs along the plane of rupture as the grains of the soil try

to slide by one another. If the soil has clay content, cohesion increases this sliding

resistance. The plane also supports part of the weight (W ) of the wedge. The

combination of the weight support and the sliding resistance results in the force R.
The earth pressure (E) on the back of the wall is the resultant of the soil friction

on the wall and the lateral earth pressure. The reaction to this force, E0, acts on the

soil wedge, which is in equilibrium with the weight of the wedge (W ) and the

R force. The inclination of force E is due to the frictional resistance the wall offers

Retaining wall

Plane of rupture

Soil wedge W

R

E
h

E

Figure 7.52 The retained soil wedge
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to the sliding wedge. If the wall surface is practically frictionless (e.g., smooth

waterproofing on a basement wall), then the earth pressure on the wall is horizontal.

The magnitude and the distribution of the earth pressure on the back of the wall

depend on many factors. The most important of these are the type of the retained

soil (granular or cohesive), its moisture content, and the slope of the backfill

(if any). In addition, there may be loads on the upper surface, called surcharge
loads. These are caused by stored materials, traffic, or permanent installations such

as neighboring building foundations. All these factors increase the gravity loads on

the sliding wedge, which in turn increase the pressure on the wall.

A detailed discussion of the theory of lateral earth pressure is beyond the scope

of this book, as it belongs to the field of soil mechanics. Our intention is to

familiarize you sufficiently with the results of the theory.

There are three different types of earth pressure, distinguished from each other

by their pressure coefficients. The first type is earth pressure at rest. This is the
theoretical pressure on an essentially immovable object. The second type is the

so-called active earth pressure. This occurs when the wall moves ever so slightly.

This very slight movement activates the sliding resistance along the plane of

rupture, which in turn reduces the pressure on the back of the wall. The active
earth pressure, which occurs in the direction of wall movement, is significantly less

than the at-rest earth pressure. The third type is the passive earth pressure. This
happens when the wall is moving against the soil.

This section of the text is concerned mainly with the active earth pressure. We use

Rankine’s theory here, which is the easiest and simplest theoretical solution for

calculating active earth pressure. The theory assumes that the rupture plane is a straight

line and the backfill material is cohesionless. It also assumes that the frictional resis-

tance at the back of the wall is nonexistent (i.e., the wall is smooth). Thus, our primary

concern is with the horizontal component of the pressure that is exerted on the wall.

The theory assumes that the distribution of the pressure on the back of the wall is

triangular, as shown in Figure 7.53. In the absence of surcharge loads, the pressure

is zero at the top and increases linearly with depth.

y

h

pa  Ka soilh

Figure 7.53 Pressure distribution on the back of a wall (no surcharge)
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Level Backfill, No Surcharge The pressure at any depth (y) can be expressed as:

pa, y ¼ Kaγsoily ð7:39Þ

where

Ka ¼ the coefficient of the active pressure

γsoil ¼ the unit weight of the soil in pcf

y¼ the depth measured from the surface

The maximum pressure at the base is:

pa ¼ Kaγsoilh ð7:40Þ

The value of Ka depends on the angle of internal friction within the soil (ϕ). This
relationship is:

Ka ¼ tan 2 45� � ϕ
2

� �
ð7:41Þ

As the value of ϕ increases, Ka decreases. Conversely, when the angle of internal

friction decreases, the value of Ka increases. Thus, if water is present in the soil, the

friction between the solid particles is reduced, and Ka increases. Hence, it is

important to have good drainage in the backfill. Footing drains (a drain tile system

at the bottom of the basement walls) and weep holes in retaining walls can provide

this drainage.

The value of Ka changes within narrow limits of about 0.27 – 0.34 for level

backfill when it is evaluated for well-drained granular soils using the values listed in

Table 7.4.

Sloping Backfill When the backfill slopes, as shown in Figure 7.54, the formula

for Ka is more involved. The equation is presented here for completeness. Using the

Rankine formula:

Ka ¼ cos β
cos β�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2β� cos 2ϕ

p
cos βþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2β� cos 2ϕ

p ð7:42Þ

Table 7.4 Angle of internal

friction for drained granular

soils

Soil type ϕ (Degrees)

Gravel and coarse sand 33–36

Medium to fine sand 29–32

Silty sand 27–30

476 7 Foundations and Earth Supporting Walls



The maximum pressure at the base is:

pmax ¼ Kaγsoilh

The Effect of Surcharge Any additional load surcharge atop the surface increases

the gravity force on the sliding wedge. This in turn increases the lateral pressure on

the back of the wall, as illustrated in Figure 7.55. The lateral pressure at any depth is

pa¼Kaγsoily, where the product γsoily is the weight of the soil above level y, so the

increased lateral pressure from a distributed surcharge load (wsc) will be

pa,y ¼ Ka γsoilyþ wscð Þ ¼ Kaγsoilyþ Kawsc ð7:43Þ

The second part of the equation represents the increased lateral pressure from the

surcharge, which is independent of the depth. The surcharge may also be concep-

tualized as having an additional height (hsc) of soil atop the finish surface. If we

express the surcharge with the unit weight of the soil as

wsc ¼ hscγsoil ð7:44Þ

then this fictitious height, as illustrated in Figure 7.56, is:

hsc ¼ wsc

γsoil
ð7:45Þ

Equivalent Fluid Pressure The triangular lateral earth pressure is similar to a

liquid pressure. The pressure in a liquid (like water) at a given depth is uniform in

every direction and is equal to the unit weight of the liquid multiplied by the depth.

h

pmax  Ka soilh

Figure 7.54 Horizontal component of the pressure distribution, sloping granular drained backfill
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h

pa  Ka soilh

wsc

psc  Kawsc

Figure 7.55 Additional lateral pressure from surcharge

hsc

h

pa  Ka soilh

psc  Kawsc  Ka soilhsc

Figure 7.56 Representation of surcharge by additional backfill height
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So if the unit weight of a fictitious liquid is γa¼Kaγsoil, and we substitute this value
into Equations (7.39) and (7.40) that express the lateral pressure, we obtain what is

referred to as equivalent fluid pressure. Geotechnical engineers usually make their

recommendations regarding lateral pressures on walls in terms of the equivalent

fluid density (γa).
The unit weight of compacted granular backfill is between 105 and 115 pcf.

From the average values of Ka the calculated equivalent fluid density for granular

backfills is between 30 and 40 pcf, with a mean value of about 35 pcf.

Note that these values hold for soils that are well drained. Clay soils or saturated

soils may produce much higher pressure values. The designer should always

consult with a geotechnical engineer to verify the most likely equivalent fluid

density prior to designing retaining structures.

7.13.2 Basement Walls

Basement walls are earth retaining walls that are supported laterally by the first

floor construction at their top and by the basement slab on grade at their bottom. In

addition, they are vertically supported on wall footings.

Figure 7.57 shows a schematic section through a basement wall. The wall will be

stable only after the first floor construction is complete, so no backfill (or only a

very limited height of backfill) should be placed against the wall until after the first

Backfill

First floor

Undisturbed earth

Drain tile

Sealant and premolded filler

Basement wall

Basement floor (slab on grade)

Footing
Crushed stone

Figure 7.57 Schematic section through a basement wall
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floor is in place. The backfill should be a compacted granular fill that will drain well

into the footing drain. The footing drain (drain tile) is made of perforated tiles or

plastic drain pipes. This drain tile is then connected into either the storm drains or a

sump pit out of which the water is pumped. This prevents water from accumulating

behind the basement wall, and thereby prevents the increase of the lateral pressure.

Basement walls are usually made of concrete (either reinforced or unreinforced).

In residential construction they are sometimes built using concrete masonry units

(CMU) and hence are called CMU walls. These also may be reinforced or

unreinforced.

Design of Basement Walls The structural behavior of a basement wall is similar to

that of a simply-supported one-way slab spanning vertically between the slab on

grade at the base and the first floor at the top. Similar to slabs, only a 1-ft-long strip

of the wall, as shown in Figure 7.58, is considered in the design of these walls.

The minimum thickness commonly used for unreinforced concrete basement

walls is 10 in. It is difficult to properly consolidate the concrete within the forms for

thinner walls. In addition, basement walls have to be thick enough to provide width

for placement of members such as stud walls, brick veneer, and so on. In

unreinforced concrete walls, it is advisable to use vertical control joints at a

maximum spacing of 20 ft. The control joints prevent the random cracking of the

wall due to volumetric changes.

Unreinforced Concrete Basement Wall Design The steps to design unreinforced

(plain) concrete basement walls are as follows. They are summarized in

Figure 7.61:

1'-0"

Figure 7.58 Basement wall design is based on a 1-ft strip

480 7 Foundations and Earth Supporting Walls



Step 1. Calculate the maximum moment.

To help with the analysis, Figures 7.59 and 7.60 show the four most

common loading cases with closed-form solutions. The ACI Code Section

5.3.8 requires a load factor of 1.6 when the lateral earth pressure acts alone or

adds to the primary load effects. Hence, we must multiply the moments that

are calculated from unfactored pressures by a load factor of 1.6 to getMu, max.

(M )(V )R1

R2
pmax

M
m

ax

0.
57

7h

R2

R1

E pmax
h
2

Vmax R2

Mmax (@0.577h from grade)  0.128 EhR1 
E
3

R2 
2E
3

E

h

a

wsc

Mmax (@ x from grade)Vmax R2p1 Kawsc

h
2

E (p1 p2)

h
6

R1 (2p1 p2) R2 E R1

x [h 2 (2p1 p2) 3hp1x  (p2 p1)x 2]
6h

x is found by solving: 

x 2 2p1x 2R1 0
(p2 p1)

h

(M )(V )R1

R2
p2

M
m

ax

R2

R1

E

h

x

p1

p2  p1 Ka soilh

b

Figure 7.59 Shear force and bending moment in basement wall with full height backfill: (a)
without surcharge, and (b) with surcharge
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Step 2. Determine the wall thickness (t).
To determine the wall thickness, set the wall resisting moment,

MR¼ϕMn, equal to the maximum moment, Mu, max, calculated in step 1.

ACI Code Equation 14.5.2.1a gives the nominal resisting moment of a

plain concrete section as:

(M )(V )R1

M
m

ax

E
pmaxh2

2
Vmax R2

R2 E R1

h

h2

h1

x

Mmax  
Eh2

3h
2
3

h1 x x h2
h2

3h
at

R1 
Eh2

3h

R2
pmax

E

R2

R1

a

b

Vmax R2

(M )(V )

M
m

axh

h2

h1

x

R2 E R1

p1 Kawsc

h2

2
E (p1 p2)

R1 
h2 (2p1 p2)

6h

2

Mmax (@ x from grade) 

x 2

6h2
[3h2p1 x (p2 p1)](2p1 p2)(h1 x)

6h
h2

2

x is found from solving: 

x2 2p1x 2R1 0
(p2 p1)

h2

wsc

R1

R2
p2

E

p1

R2

R1

Figure 7.60 Shear force and bending moment in basement wall with partial backfill: (a) without
surcharge, and (b) with surcharge
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Mn ¼ 5λ
ffiffiffiffi
fc
0p� �
Sm

where λ is the light weight concrete factor. Typically, basement walls are

made of normal weight concrete (λ ¼ 1:0). Sm is the elastic section modulus

of 1-ft-long wall, or:

Sm ¼ bt2

6
, b ¼ 12 in:

MR ¼ ϕMn � Mu,max

where for an unreinforced concrete wall, ϕ ¼ 0:60 (ACI Code

Section 21.2.1).

Substituting ϕ and Sm into the above equation:

0:60 5λ
ffiffiffiffi
fc
0p� � 12t2

6
� 12,000Mu,max ð7:46Þ

Solving for t:

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12,000Mu,max

6λ
ffiffiffiffi
fc
0p

s
ð7:47Þ

In this equation, Mu,max is in ft-kip, fc
0 is in psi, and t is in inches.

There is no need to check for shear. Shear is never critical in the design

of basement walls subject to lateral earth pressure.

Example 7.6 Design the plain concrete basement wall shown in Figure 7.62. The

backfill is made of granular material with a unit weight of γsoil¼ 120 pcf and the

Determine the wall thickness (t ):

(Mu, max ft-kip, fc psi, t inches)
Round up t to the nearest inch. Use a 

minimum wall thickness of 10 in.

t ≥ 12,000Mu,max

f c6λ

Calculate the maximum moment (Mu, max):
Use Figures 7.59 and 7.60

Design of Plain Concrete
 Basement Walls

1.

, λ = 1.0

2. 

Figure 7.61 Flowchart for the design of plain concrete basement walls

7.13 Earth Supporting Walls 483



coefficient of active soil pressure, Ka¼ 0.33. Consider two cases: (a) without a

surcharge; (b) with a surcharge of 100 psf acting on the backfill. Use fc
0 ¼ 4;000 psi.

Solution

(a) Without Surcharge

Step 1 Calculate the maximum moment.

This is Case (a) on Figure 7.60, a basement wall with partial backfill

and without surcharge. The lateral soil pressure and resulting maxi-

mum moments are:

Equivalent fluid density ¼ γa ¼ Ka γsoil ¼ 0:33 120ð Þ ¼ 40pcf

The pressure at the base of the wall, pmax, is:

pmax ¼ γah2 ¼ 40� 7 ¼ 280 lb=ft2

Use the factored pressure, which is obtained by multiplying the actual

pressure by the soil pressure load factor (H ) of 1.6, instead of using the

actual pressure. Then all of the results will be factored values.

pu ¼ 1:6pmax ¼ 1:6� 280 ¼ 448 lb=ft2=1,000 ¼ 0:45 kip=ft2

Figure 7.63 shows the wall with the factored pressures.

Using the equations for reactions and the maximum moment from

Figure 7.60:

10
'-

0"

7'
-0

"

Figure 7.62 Basement wall of Example 7.6
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Eu ¼ puh2
2

¼ 0:45 7ð Þ
2

¼ 1:58 kip=ft of wall

Ru1 ¼ Euh2
3h

¼ 1:58 7ð Þ
3 10ð Þ ¼ 0:37 kip=ft

Ru2 ¼ Eu � Ru1 ¼ 1:58� 0:37 ¼ 1:21 kip=ft

and the location of the maximum moment, x ¼ h2

ffiffiffiffiffi
h2
3h

r
:

x¼ 7:0

ffiffiffiffiffiffiffiffiffiffiffiffi
7:0

3 10ð Þ
r

¼ 3:38 ft

Mu, max ¼
Euh2
3h

h1 þ 2

3
x

� �

Mu, max ¼
1:58 7ð Þ
3 10ð Þ 3þ 2

3
� 3:38

� �
Mu, max ¼ 1:94 ft-kip=ft

Step 2. Determine the wall thickness.

From Equation (7.47):

R1

R2

E

pu 0.45 ksf

10
'-0

"

h 2
 

7'
-0

"
h 1

 
3'

-0
"

Figure 7.63 Factored pressure distribution on basement wall in Example 7.6
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t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12,000Mu, max

6λ
ffiffiffiffi
fc
0p

s

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12,000 1:94ð Þ
6 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi

4,000
p

s

t � 7:8 in:

∴ Use t ¼ 10 in: minimum wall thicknessð Þ

(b) With Surcharge

Step 1. Calculate the maximum moment.

This is Case (b) in Figure 7.60. Use the formulae from this figure to

calculate the lateral loads from the retained soil and the surcharge, and

the resulting maximum moment:

pa ¼ γah ¼ 40� 7 ¼ 280 lb=ft2

Surcharge pressure¼ ps¼Kawsc¼ 0.33(100)¼ 33 lb/ft2.

The factored pressures from the soil, pu, and the surcharge, psu, are:

pu ¼ 1:6pa ¼ 1:6� 280 ¼ 448 lb=ft2=1,000 ¼ 0:45 ksf

psu ¼ 1:6ps ¼ 1:6� 33 ¼ 53 lb=ft2=1,000 ¼ 0:053 ksf

Obtain the equations for the reactions and the maximum moment

from Figure 7.60:

pu1 ¼ psu ¼ 0:053 ksf

pu2 ¼ pu þ psu ¼ 0:45þ 0:053 ¼ 0:503 ksf

Eu ¼ pu1 þ pu2ð Þh2
2
¼ 0:053þ 0:503ð Þ7

2
¼ 1:95 kip=ft

Ru1 ¼ h22 2pu1 þ pu2ð Þ
6h

¼ 7:0ð Þ2 2� 0:053þ 0:503ð Þ
6� 10

¼ 0:50 kip=ft

Ru2 ¼ Eu � Ru1 ¼ 1:95� 0:50 ¼ 1:45 kip=ft

To determine the location of the maximum moment (x), solve the

quadratic equation shown in Figure 7.60, Case (b):
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pu2 � pu1ð Þ
h2

x2 þ 2pu1x� 2Ru1 ¼ 0

0:503� 0:053ð Þ
7:0

x2 þ 2 0:053ð Þx� 2 0:50ð Þ ¼ 0

0:0643x2 þ 0:106x� 1:0 ¼ 0

x ¼
�0:106þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:106ð Þ2 þ 4 0:0643ð Þ 1:0ð Þ

q
2 0:0643ð Þ

x ¼ 3:20 ft

Mu,max ¼
h22
6h

2pu1 þ pu2ð Þ h1 þ xð Þ � x2

6h2
3h2 pu1 þ x pu2 � pu1ð Þ½ 	

Mu,max ¼
7:0ð Þ2
6 10ð Þ 2� 0:053þ 0:503ð Þ 3þ 3:20ð Þ

� 3:20ð Þ2
6 7:0ð Þ 3 7:0ð Þ 0:053ð Þ½ 	 þ 3:20 0:503� 0:053ð Þ�

Mu,max ¼ 2:46 ft-kip=ft

Step 2. Determine the wall thickness.

Use the formula (Equation (7.47)) developed for calculating the

necessary wall thickness for a plain concrete basement wall.

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12,000Mu,max

6λ
ffiffiffiffi
fc
0p

s

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12,000 2:46ð Þ
6 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

4,000
p

s

t � 8:8 in:

∴ Use t ¼ 10 in:

Reinforced Concrete Basement Wall Design The design of reinforced concrete

basement walls is often dictated by considerations other than the absolute minimum

wall thickness required by flexure. It is difficult to place and consolidate concrete

into the forms when the design contains at least two layers of reinforcing (vertical

and horizontal) near the inside face, especially with thin walls. To make matters

more difficult, often both faces of the wall may need reinforcement to better control

cracking induced by shrinkage and temperature changes.

Architectural requirements also influence the selection of an appropriate wall

thickness. The support of the exterior wall finish (e.g., a brick ledge), in addition to
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providing for adequate support for the first floor construction, often results in much

thicker walls than would be required by strict structural considerations only.

Hence, the thickness of reinforced concrete basement walls is usually

preselected by the designer, and the wall is strengthened by providing the needed

amount of reinforcement. An absolute minimum thickness in a reinforced concrete

wall is 8 in. As with plain concrete basement walls, only flexure needs to be

considered; the shear stresses in normal basement walls are never excessive.

The steps in the design are as follows and are summarized in the flowchart of

Figure 7.64.

Step 1. Calculate the maximum moment.

Use the formulae listed in Figures 7.60 and 7.61 to calculate the factored

pressures, reactions, and the maximum moment, Mu,max.

Step 2. Select an appropriate wall thickness (t).
Use a minimum wall thickness of 8 in. Keep in mind, however, that you

may need at least 10 in. or more thickness in some situations to provide

enough width at the top to place studs, brick veneer, and so on.

Calculate the maximum moment
(Mu, max): Use Figures 7.59 and 7.60.

Design of Reinforced
Concrete Basement Wall

Use Table A2.10 to find the size and spacing of the bars.
(b) Design the horizontal shrinkage and temperature
reinforcements:

Use Table A2.5 through A2.7 to find ρ. (Check for ρmin from Table A2.4)

As bd

Ash  0.002bt  (#5 and smaller)

Ash  0.0025bt  (otherwise)

Determine the required reinforcement.
(a) Design the vertical reinforcements:

d t y Rreq
12,000Mu,max

bd 2

Select the wall thickness t :
Minimum wall thickness  8 in. 

Assume y  1.13 in. (#6 bars with 3/4 in. cover)

1. 

2. 

3. 

Figure 7.64 Flowchart for the design of reinforced concrete basement walls
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Step 3. Determine the required area of vertical reinforcement.

The primary reinforcing will be located near the inside face of the wall, and

the ACI Code requires a minimum concrete cover of ¾ in. Assuming #6

bars for the vertical reinforcing, the effective depth (d ) is:

d ¼ t� 0:75� 0:75=2 ¼ t� 1:13 in:

The required resistance coefficient is:

Rreq ¼ 12,000Mu

bd2

Use the appropriate fc
0 and fy in Tables A2.5 through A2.7 to obtain the

steel ratio, ρ. Then the required area of vertical reinforcement, As is:

As ¼ ρbd

According to the ACI Code (Section 9.6.1.2), the minimum area of the

vertical flexural reinforcements is:

As, min ¼ ρminbd ¼ max
3
ffiffiffiffi
fc
0p

fy
,
200

fy

( )
bd ð7:48Þ

Table A2.4 lists the corresponding ρmin values.

Use Table A2.10 to select the size and spacing of the vertical reinforcements.

The horizontal shrinkage and temperature reinforcement is specified in the ACI

Code (Section 11.6.1) as:

Ash ¼ 0:002bt when #5 and smaller bars are usedð Þ ð7:49Þ

Ash ¼ 0:0025bt when larger bars are usedð Þ ð7:50Þ

The bar spacing for the vertical and horizontal reinforcements (ACI Code, Sections

11.7.2.1 and 11.7.3.1) is limited to:

s � min 3t, 18 in:f g ð7:51Þ

For basement walls with a thickness of 10 in. or less, shrinkage and temperature

horizontal reinforcement typically is placed on only one face. For thicker walls, we

distribute the required horizontal reinforcing evenly between the inside and the

outside faces.
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Example 7.7 Design the reinforced concrete basement wall shown in Figure 7.65.

The unit weight of backfill is γsoil¼ 115 pcf, and the coefficient of active soil

pressure is Ka¼ 0.33. The surcharge on the backfill is 150 psf. Use fc
0 ¼ 4;000 psi

and fy¼ 60,000 psi.

Solution

Step 1. Calculate the maximum moment.

This basement wall is subjected to full backfill with surcharge. This is

Case (b) in Figure 7.59.

The equivalent fluid density and pressure are:

γa ¼ Kaγsoil ¼ 0:33 115ð Þ ¼ 38 pcf

pa ¼ γah ¼ 38 12:5ð Þ ¼ 475 psf

The pressure from the surcharge is:

ps ¼ Kawsc ¼ 0:33 150ð Þ ¼ 50 psf

The factored pressures are:

pau ¼ 1:6pa ¼ 1:6� 475 ¼ 760 psf=1,000 ¼ 0:76 ksf

psu ¼ 1:6ps ¼ 1:6� 50 ¼ 80 psf=1,000 ¼ 0:08 ksf

12'-6"

wsc  150 psf

Figure 7.65 Sketch of basement wall in Example 7.7
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Figure 7.66 shows the wall with the factored pressures.

Using the equations in Case (b) of Figure 7.59, we calculate reactions

and maximum moment.

pu1 ¼ psu ¼ 0:08 ksf

pu2 ¼ pau þ psu ¼ 0:76þ 0:08 ¼ 0:84 ksf

Eu ¼ pu1 þ pu2ð Þh
2
¼ 0:08þ 0:84ð Þ12:5

2
¼ 5:75 kip=ft

Ru1 ¼ 2pu1 þ pu2ð Þh
6
¼ 2� 0:08þ 0:84ð Þ12:5

6
¼ 2:08 kip=ft

Ru2 ¼ Eu � Ru1 ¼ 5:75� 2:08 ¼ 3:67 kip=ft

To determine the location of the maximum moment, x, we solve the

following equation:

pu2 � pu1ð Þ
h

x2 þ 2pu1x� 2Ru1 ¼ 0

0:84� 0:08ð Þ
12:5

x2 þ 2 0:08ð Þx� 2 2:08ð Þ ¼ 0

0:061x2 þ 0:16x� 4:16 ¼ 0

x ¼
�0:16þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:16ð Þ2 þ 4 0:061ð Þ 4:16ð Þ

q
2 0:061ð Þ

x ¼ 7:05ft

12'-6"

x  7.05 ft

Location of Mu, max
Eu  5.75 kip/ft

pu2  0.84 ksf

pu1  0.08 ksf

wsc  150 psf

Ru2  3.67 kip / ft

Ru1  2.08 kip /ft

Figure 7.66 Factored pressure values and reactions in Example 7.7
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The maximum factored moment is:

Mu,max ¼ x

6h
h2 2pu1 þ pu2ð Þ � 3hpu1x� pu2 � pu1ð Þx2� �

Mu,max ¼ 7:05

6 12:5ð Þ 12:5ð Þ2 2� 0:08þ 0:84ð Þ � 3 12:5ð Þ 0:08ð Þ 7:05ð Þ � 0:84� 0:08ð Þ 7:05ð Þ2
h i

Mu,max ¼ 9:15 ft-kip=ft

Step 2. Select a wall thickness.

Assume that there are no particular architectural requirements for the

thickness of the wall. Select t¼ 8 in.

Step 3. Design the required reinforcement.

(a) Design the vertical reinforcement.
Assume 3/4 in. cover and #6 bars; then

d ¼ 8� 1:13 ¼ 6:87 in:

Calculate the required resistance coefficient, Rreq:

Rreq ¼ 12,000Mu

bd2
¼ 12,000 9:15ð Þ

12 6:87ð Þ2 ¼ 194 psi

Obtain the required reinforcement ratio from Table A2.6b:

ρreq ¼ 0:0038

Check for the minimum flexural reinforcement required from

Table A2.4:

ρmin ¼ 0:0033 < 0:0038 ∴ok

As ¼ 0:0038ð Þ 12ð Þ 6:87ð Þ ¼ 0:31 in:2=ft

From Table A2.10 select 5 @ 12 in. c/c (As¼ 0.31 in.2/ft).

(b) Design the horizontal reinforcements.
The horizontal reinforcement required for shrinkage and temperature,

based on the ACI Code (Section 11.6.1) is:

Ash ¼ 0:0020bt assuming #5 or smaller barsð Þ
Ash ¼ 0:0020 12ð Þ 8ð Þ ¼ 0:19 in:2=ft

From Table A2.10 select #4 @ 12 in. (As¼ 0.20 in.2/ft).

Check for the maximum permitted bar spacing:

smax ¼ min 3t, 18 in:f g ¼ min 3 8ð Þ, 18f g ¼ 18 in:

With 12 in. bar spacing, the requirement is satisfied.

Figure 7.67 shows the sketch of the final design.
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7.13.3 Retaining Walls

The behavior of retaining walls is very different from that of basement walls.

Basement walls are vertical simply-supported slabs bending between two supports

(i.e., the basement floor and the first floor). Unlike basement walls, retaining walls

are not supported at the top. They must have substantial weight to prevent toppling

over from the earth pressure.

Figure 7.68 shows the acting forces on a retaining wall. In addition to the weight

(W ), the earth pressure (E) is applied to the back side of the wall. If the back of the

wall is smooth (i.e., frictionless), the E force is horizontal. The two forces,W and E,
are combined into the resultant (R).

The E force “wants” to overturn the wall, or to pivot it around the toe point. In

Figure 7.68 E exerts a counterclockwise moment on the toe. The W force (i.e., the

weight of the wall) “wants” to prevent the overturning by applying a clockwise

moment about the toe. As long as the resisting moment,Mr , ofW is greater than the

overturning moment, Mot , from E, the wall will be stable. Another way to express

the same concept is that the wall is stable as long as the resultant force, R, intercepts
the base of the wall inside the bottom width, as shown in Figure 7.68. On the other

hand, the wall will tip over if the R force intercepts the base line outside the bottom

12'-6"

#5 @ 12 in.
vertical

#4 @ 12 in.
horizontal

t  8 in.

Clear cover 3
4 in.

Figure 7.67 Final design of Example 7.7
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width. Figure 7.69 shows a typical gravity retaining wall, and the applied forces

(assuming a smooth wall), with their corresponding application locations.

The overturning moment, Mot , can be calculated as follows:

Mot ¼ E
h

3
ð7:52Þ

And the resisting moment, Mr, is:

Mr ¼ Wc ð7:53Þ

Stability against overturning requires that:

Mr � FSot �Mot ð7:54Þ

where FSot is the factor of safety against overturning. Section 1807.2.3 of the

International Building Code (IBC 2015) requires a minimum factor of safety

against overturning of

FSot,min ¼ 1:5

h
E

Passive pressure
(commonly neglected)

Active pressure

F

W

c

h
3

Figure 7.69 Forces on a retaining wall

W

R

E
R

E

W

Toe

The force polygon

Figure 7.68 Forces on a retaining wall
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A second failure mode besides overturning exists. The earth pressure (E) tries to
push the wall (from right to left in Figure 7.69) to make it slide along its base.

Resistance against sliding comes from two sources. The first is frictional resistance

(F) at the bottom of the wall. The magnitude of this force is equal to the weight of

the wall (W ) multiplied by the coefficient of friction (μ) between the two materials

(i.e., the wall and the soil). The larger the weight, the larger is the frictional

resistance. The second force that resists sliding is the passive earth pressure in the

front of the wall. The bottom of the retaining wall, as with any other footing, is

usually placed below the frost line. The fill at the front provides passive resistance,

which can be considerable when the fill is there. Sometimes, however, this fill in the

front is removed for one reason or another. Thus, its continuous presence is not a

given, and most designers disregard it.

To ensure safety against sliding:

F ¼ μW � FSs � E ð7:55Þ

where

μ¼ the coefficient of friction between the bottom of the wall and the soil

FSs¼ the factor of safety against sliding. (The recommended minimum safety

factor against sliding is 1.5, per IBC 2015, Section 1807.2.3)

All retaining walls in essence are gravity walls, although only one type is

designated as such. They differ only in the way we provide the mass needed to

safely retain the soil at the upper elevation. These differences in design, however,

increase the diversity of structural behavior within the wall structures themselves.

Figure 7.70 shows various types of retaining walls, and discussed as follows.

1. Gravity walls These walls are constructed of plain concrete, stone, or brick

masonry. Their extensive use of material and labor costs limit their economy

to relatively low heights of about 8 ft above the low grade (Figure 7.70a).

2. Cantilever retaining walls These are by far the most common type of retaining

wall. They are constructed with reinforced concrete or reinforced masonry, and

are economical to use for heights up to about 20 ft. Figure 7.70b shows a typical

cantilever retaining wall. The backfill above the heel provides much of the

weight needed for the stability of the wall. There are, however, variations of

these walls such as cantilever walls without heel or toe as shown in Figures 7.70c,

d. They are used when property lines or other limitations prevent the footing from

extending beyond one side of the wall. These walls are not as efficient as the

typical cantilever retaining walls.

3. Counterfort walls The wall stem will be subjected to very large bending

moments if a cantilever retaining wall is higher than 20 ft. In such cases it

may be economical to construct the wall with counterforts (walls perpendicular

to the stem, spaced about 12–15 ft apart) that attach the stem to the heel. The

reinforced counterforts act like tension members supporting the stem. They also

greatly increase the bending strength of the stem. Figure 7.70e shows a

counterfort wall.
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4. Buttress walls These walls are similar to counterfort walls, except that the

buttresses, which attach the stem to the toe, are located in front of the wall

(see Figure 7.70f). The buttersses are in compression

Vertical Soil Pressure Under the Base of a Retaining Wall So far we have

discussed only wall and column footings that are concentrically loaded (i.e., the

load acts at the centroid of the footing, and the distribution of the pressures on the

soil is uniform). In general, concentric loading cannot be achieved under retaining

walls. The resultant force (R), as shown in Figure 7.68, does not intercept the

footing at its center, but rather is eccentric to it.

Figure 7.71 shows three different possibilities of pressure distribution under a

footing. In Case I the load is concentrically applied to the footing. In Case II the

load is applied at a small eccentricity (e), which is less than b=6. In Case III the load
is applied at an eccentricity larger than b=6. Because a 1-ft-long strip is considered

in a wall footing:

Cantilever wall without heel Cantilever wall without toe

Gravity wall

a b

c d

e f

Counterfort wall Buttress wall

Cantilever retaining wall

Stem
Toe

Heel

Figure 7.70 Different types of retaining walls (a) gravity wall (b) cantilever retaining wall (c)
cantilever wall without heel (d) cantilever wall without toe (e) counterfort wall (f) buttress wall
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A ¼ b� 1 ¼ b ft2 and Sm ¼ 1� b2

6
ft3

The pressures for the individual cases then can be found as:

fmax ¼
P

b

Case Ið Þ

���������
fmax ¼

P

b
1þ 6e

b

� �

fmin ¼ P

b
1� 6e

b

� �
Case IIð Þ

����������
fmax ¼

2P

3c

Case IIIð Þ

ð7:56Þ

If 1� 6e
b

� �
< 0 in Case II, the expression for fmin becomes negative, which

indicates that theoretically there is tension between the footing and the soil. But

tension cannot develop between the bottom of the footing and the soil, as a gap

would appear. This is an impossible and inadmissible situation, so Case III applies.

With a straight-line pressure distribution, the pressure volume under the footing

must be in equilibrium with the P force. Hence, the resultant of the reaction pressure

must be colinear with the P force. Then the neutral axis (i.e., where the pressures

become zero) must be located at a distance 3c from the toe (see Figure 7.71).

Shear keys and weep holes We can easily increase inadequate sliding resistance
in a retaining wall by using a shear key at the bottom of the footing, as shown in

Figure 7.72. The passive earth pressure in front of the key provides a sure and

economical resistance.

As with basement walls, it is important to prevent water saturation of the backfill

behind retaining walls. Saturated backfill increases the earth pressure dramatically

fmax

f fmax

e 0

e 0 ;  c

e ;  c

P
c b/2

fminfmax

b

P

b

c e

fmax

P

b

c

3c

e

Case I Case II Case III

P
A

fmax
P
A

Pe
Sm

fmin
P
A

Pe
Sm

fmaxFrom V 0,  P 3c
2

fmax
2P
3c

b
2 b

3
b
6

e ;  c
b
3

b
6

Figure 7.71 Eccentric pressures under wall footings
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and may endanger the stability of the wall. Providing weep holes in the wall at

regular spacing is the easiest and safest way to drain the backfill. A typical retaining

wall weep hole is shown in Figure 7.72. Figure 7.73 shows a flowchart for the

stability analysis and design of cantilever retaining walls.

Weep hole

Shear key

Figure 7.72 Weep hole and shear key in retaining walls

Stability Analysis and Design of Retaining Walls

Calculate the lateral soil pressures and overturning moment.

Calculate the weight and the resisting moment.

Determine the factor of safety against overturning and sliding.

Calculate the soil pressure under the footing.

Design the reinforcement required in the stem.

Design the reinforcement required in the heel and the toe.

Check the bar development length.

1.

2.

3.

4.

5.

6.

7.

Figure 7.73 Flowchart for the stability analysis and design of retaining walls

498 7 Foundations and Earth Supporting Walls



Example 7.8 Analyze the stability of the gravity retaining wall shown in

Figure 7.74. The backfill is sandy gravel, γsoil¼ 120 pcf; the coefficient of the

lateral active earth pressure is Ka¼ 0.32; and the coefficient of friction at the base

is μ¼ 0.52. The wall is constructed of concrete, which weighs 150 pcf. A sur-

charge load of 150 psf exists on the upper elevation. Calculate the toe pressure on

the soil in addition to the stability analysis. Disregard the passive pressure in front

of the toe in the analysis.

Solution

Step 1. Calculate the lateral soil pressures and the overturning moment.

p1 ¼ Kawsc ¼ 0:32� 150 ¼ 48 psf

E1 ¼ 48� 12 ¼ 576 lb=ft

applied at half the soil height.

p2 ¼ Kaγsoilh ¼ 0:32� 120� 12 ¼ 461 psf

E2 ¼ 461� 12=2 ¼ 2,766 lb=ft

applied at one-third of the soil height.X
E ¼ 576þ 2,766 ¼ 3,342 lb=ft

2'-0"4'-0"

4'-0"

wsc 150 psf

W3

3
W2

2

W1

1

10'-0"

12'-0"

E2

E1

p2  461 psfp1  48 psf

Figure 7.74 Sketch for Example 7.8
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The overturning moment about the toe is the sum of the moments caused by

E1 and E2:

Mot ¼ 576� 12=2þ 2,766� 12=3 ¼ 14,520 ft-lb=ft

Step 2. Calculate the weight and the resisting moment.

We divide the area of the wall into three component parts, as shown in

Figure 7.74, and do our calculations in a tabulated form.

Part No. W x (Distance of W from Toe) Wx

1 2� 14� 150¼ 4,200 lb/ft 5.00 ft 21,000 ft-lb/ft

2 (4� 10/2)� 150¼ 3,000 lb/ft 2.67 ft 8,000 ft-lb/ft

3 4� 4� 150¼ 2,400 lb/ft 2.00 ft 4,800 ft-lb/ft

∑¼ 9,600 lb/ft 33,800 ft-lb/ft

Step 3. Determine the safety factor against overturning and sliding:

FSot ¼ Mr

Mot
¼ 33,800

14,520
¼ 2:33 ! 2:33 > 1:5 ∴ ok

Calculate the factor of safety against sliding:

The friction force

F ¼ μW ¼ 0:52� 9,600 ¼ 4,992 lb=ft

FSs ¼ FX
E
¼ 4,992

3,342
¼ 1:49 ! 1:49 � 1:5 ∴ ok

Step 4. Calculate the soil pressure under the footing.

Figure 7.75 shows all the forces acting on the wall. Determine the

location where the R force (the reaction of the resultant of W and E)

W

R

Rh  E

Rv  W

E

c

0

Figure 7.75 The R force and its components at the base
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intercepts the base of the wall. The vertical component of the resultant is

Rv¼W, and the horizontal component is Rh¼E; (W, E, Rh, and Rv are the

forces acting on the wall). The moment of a resultant about any point must

equal the sum of the moments of the composing forces about the same

point.

The moments of the composing forces are already known. The moment

of W about the toe is the resisting moment (Mr). The moment of E is the

overturning moment (Mot).
Hence, from the equilibrium of forces acting on the wall:X

Mo ¼ 0

�WcþMr �Mot ¼ 0

Wc ¼ Mr �Mot

c ¼ Mr �Mot

W

ð7:57Þ

Substituting the calculated values, we obtain c:

c ¼ 33,800� 14,520

9,600
¼ 2:0 ft

Because b¼ 6.0 ft, this is Case III of Figure 7.71 c ¼ b
3

� �
. Find the

maximum pressure, fmax:

fmax ¼
2� 9,600

3� 2:0
¼ 3,200 psf

Figure 7.76 shows the resulting soil pressure distribution.

fmax 3,200 psf

Figure 7.76 Soil pressure distribution below the wall in Example 7.8
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Example 7.9 Analyze the stability of the reinforced concrete cantilever retaining

wall shown in Figure 7.77. Calculate the reinforcement required in the wall and the

footing. Disregard the passive resistance of the soil in front of the toe. Assume

Ka¼ 0.32, γsoil¼ 115 pcf, and μ¼ 0.50. Use fc
0 ¼ 3,000 psi and fy¼ 60,000 psi.

Concrete is normal weight.

Solution

Step 1. Calculate the lateral soil pressure and the overturning moment:

pmax ¼ Kaγsoilh ¼ 0:32� 115� 10:5 ¼ 386:4 psf

E¼ pmaxh

2
¼ 386:4� 10:5

2
¼ 2,029 lb=ft

Mot ¼ E
h

3
¼ 2,029� 10:5

3
¼ 7,102 ft-lb=ft

Step 2. Calculate the weight and the resisting moment. Include the weight of the

backfill atop the heel of the wall and treat that as an integral part of the

retaining wall.

pmax

Wsoil

Wftg

Wwall

E

10'-6"

1'-0"

1'-0" 1'-0" 3'-6"

hw 12'-0"

5'-6"

Figure 7.77 Sketch of the wall in Example 7.9
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Item W x (From Toe) Wx (Moment to Toe)

Wall 12� 1� 150¼ 1,800 lb/ft 1.50 2,700 ft-lb/ft

Footing 5.5� 1� 150¼ 825 lb/ft 2.75 2,269 ft-lb/ft

Soil 3.5� 9.5� 115¼ 3,824 lb/ft 3.75 14,340 ft-lb/ft

∑¼ 6,449 lb/ft 19,309 ft-lb/ft

Step 3. Determine the factors of safety against overturning and sliding:

FSot ¼ Mr

Mot
¼ 19,309

7,102
¼ 2:72 > 1:5 ∴ ok

FSs ¼ μW
E

¼ 0:50� 6,449

2,029
¼ 1:59 > 1:5 ∴ ok

Step 4. Calculate the soil pressure under the footing. Determine the location at

which the resultant force intersects the bottom of the footing and calculate

the resulting soil pressures.

c ¼ Mr �Mot

W
¼ 19,309� 7,102

6,449
¼ 1:89 ft from the toe

So the eccentricity is

e ¼ b

2
� c ¼ 5:50

2
� 1:89 ¼ 0:86 ft

Because

e ¼ 0:86 <
b

6
¼ 5:5

6
¼ 0:92 ft

Therefore, Case II (see Figure 7.71) is applicable. The soil pressures under

the footing are:

fmax ¼
W

b
1þ 6e

b

� �
¼ 6,449

5:50
1þ 6� 0:86

5:50

� �
¼ 2;273 psf

fmin ¼
W

b
1� 6e

b

� �
¼ 6,449

5:50
1� 6� 0:86

5:50

� �
¼ 72 psf

Step 5. Design the required reinforcement in the stem. Calculate the factored

bending moment in the stem, as illustrated in Figure 7.78. The maximum

pressure at the base of the stem is:

pa ¼ 0:32� 115� 9:5 ¼ 349:6 psf

pu ¼ 1:6� 349:6 ¼ 559:4 psf

The factored design moment at the bottom of the stem is:
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Mu ¼ puhstem
2

� �
hstem
3

� �
¼ 559:4� 9:5

2
� 9:5

3

¼ 8,414 ft-lb=ft ¼ 8:41 ft-kip=ft

The minimum concrete cover required for #6 or larger bars (ACI Code,

Section 20.6.1.3.1) is 2 in., as the back of the wall is exposed to the soil.

Thus (assuming #6 bars):

d ¼ 12� 2� 0:75=2ð Þ ¼ 9:63 in:

For a 1-ft length of the wall:

R ¼ 12,000Mu

bd2
¼ 12,000 8:41ð Þ

12ð Þ 9:63ð Þ2 ¼ 91 psi

Using fc
0 ¼ 3,000 psi concrete and fy¼ 60,000 psi steel from Table A2.6a:

pu 559.4 psf

10'-6"hstem 9'-6"

Location of the maximum
moment in wall

Figure 7.78 Pressures on the stem
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ρreq ¼ 0:0018 conservativelyð Þ

From Table A2.4:

ρmin ¼ 0:0033 > 0:0018 ∴ use ρmin ¼ 0:0033
As, req ¼ 0:0033� 12� 9:63 ¼ 0:38 in:2=ft

From Table A2.10 select

#5 @9 in: c=c As ¼ 0:41 in:2=ft
� �

or

#6 @12 in: c=c As ¼ 0:44 in:2=ft
� �

We place some vertical reinforcements to support the horizontal bars on the

exterior face of the wall. Use #4 @ 18 in. for walls with a height, hw� 14 ft,

and use #5 @ 18 in. where hw> 14 ft. Therefore, here we use #4 @ 18 in.

since hw¼ 12 ft. The horizontal shrinkage and temperature reinforcement

required in the stem and footing is:

Ash ¼ 0:002bt ¼ 0:002� 12� 12 ¼ 0:288 in:2=ft

From Table A2.10 select #5 @ 12 in. c/c (As¼ 0.31 in.2/ft) for the footing.

Use #4 @ 16 in. on each face of the stem, as walls thicker than 10 in. require

two layers of reinforcement (total As¼ 2� 0.15¼ 0.30 in.2/ft).

Step 6. Design the reinforcement required in the heel and toe.

The heel acts like a cantilever from the back of the stem to the end of the

heel, as shown in Figure 7.79. The loads acting on it are the weight of the

soil from above, its self-weight, and the upward reaction pressures at its

bottom (found in step 4):

p1 ¼ 72 psf

p2 ¼ 72þ 2,273� 72

5:5
3:5ð Þ

p2 ¼ 1,473 psf

The moment at the intersection of the heel and the stem is:

7.13 Earth Supporting Walls 505

http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1
http://dx.doi.org/10.1007/978-3-319-24115-9_BM1


M ¼ 1, 093þ 150ð Þ � 3:5½ 	 � 3:5

2
� 72� 3:5� 3:5

2

� 1, 473� 72ð Þ � 3:5

2
� 3:5

3
¼ 4;312 ft-lb=ft

The factored moment is:

Mu ¼ 1:6� 4;312 ¼ 6;900 ft-lb=ft ¼ 6:9 ft-kip=ft

The reinforcement will be placed at the top of the heel. Thus, 2 in. cover

(as in the case of stem) is required, therefore, d¼ 9.63 in. For a 1-ft length

of the heel:

R ¼ 12,000Mu

bd2
¼ 12,000 6:9ð Þ

12ð Þ 9:63ð Þ2 ¼ 74 psi

From Table A2.6a:

ρreq ¼ 0:0014 ! As ¼ 0:0014 12ð Þ 9:63ð Þ ¼ 0:16 in:2=ft

Per the ACI Code, Sections 13.3.2.1 and 7.6.1.1 the minimum reinforce-

ment is equal to the required shrinkage and temperature reinforcements.

As,min ¼ 0:0018bt ¼ 0:0018bt ¼ 0:0018� 12� 12

¼ 0:26 in:2=ft > 0:16 in:2=ft

From Table A2.10 select #5 @ 14 in. c/c (As¼ 0.27 in.2/ft).

smax ¼ min 3h, 18f g ¼ min 3� 12, 18f g ¼ 18 in: > 14 in: ∴ ok

w 9.5 115 1,093 psf

Self-weight 150 psf
72 psf

1,473 psf

Location of maximum
moment in heel

3.5 ft

Figure 7.79 Forces on the heel in Example 7.9
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The toe is only 10–000 long, so the reinforcement required will not be

significant. For the sake of thoroughness, however, we will also determine

the reinforcement in the toe.

p1 ¼ 2,273 psf

p2 ¼ 72þ 2,273� 72

5:5
4:5ð Þ ¼ 1,873 psf

Neglecting, conservatively, the soil on the toe, the moment at the intersec-

tion of the toe and the stem, as shown in Figure 7.80, is:

M ¼ 1,873�150ð Þ 1:0ð Þ 1:0

2

� �
þ 2;273�1;873ð Þ 1:0

2

� �
2

3
�1:0

� �
¼ 995 ft-lb=ft

Mu ¼ 1:6 995ð Þ¼ 1,592 ft-lb¼ 1:6 ft-kip=ft

d ¼ 12�3 footing coverð Þ�0:75

2
¼ 8:63 in: assuming#6 barsð Þ

For a 1-ft length of the toe:

R ¼ 12,000 1:6ð Þ
12 8:63ð Þ2 ¼ 22 psi ! Table A2:6a ! ρreq < 0:0010

∴ use minimum steel

As ¼ 0:0018 12� 12ð Þ ¼ 0:26 in:2=ft

Table A2.10!Use 6 @ 12 in. c/c to dowel bars from the footing into the

stem (As¼ 0.44 in.2/ft). These bars will also serve for reinforcement in

the toe.

Step 7. Check the bar development length.

(a) Stem Reinforcement For the reinforcements in the stem, we must lap

splice the dowels in the footing to the main reinforcement. From

Table A3.3, for #6 bars, ‘d¼ 33 in., which can be reduced by
As, required

As, provided
:

Self-weight 150 psf

1,873 psf2,273 psf

1'-0" 1'-0"

Figure 7.80 Forces on the toe in Example 7.9
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Therefore

‘required ¼ 33� 0:38

0:44
¼ 29 in:

Using a Class B lap splice according to the requirements discussed

in Chapter 3, Section 3.4.5:

Required lap splice ¼ 1:3‘d ¼ 1:3 29ð Þ ¼ 38 in: > 12 in:

The footing is too small to provide the above length, so the bars are

hooked into the toe. The development length (per Equation (3.65)) is:

‘dh ¼
fyψeψcψr

50λ
ffiffiffiffi
fc
0p

 !
db

‘dh ¼ 60,000ð Þ 1:0ð Þ 0:7ð Þ 1:0ð Þ
50 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi

3,000
p

� �
db ¼ 15:3db

‘dh ¼ 15:3 0:75ð Þ ¼ 11:5 in:

From Table A3.4, we can reduce ‘dh by
As, required
As,provided

. Therefore, the

required length is:

required
0.38
0.44

Toe cover Stem cover

= 11.5 ´ = 9.9 in. > min{8(0.75), 6 in.}     \ok

required  = 9.9 in. <    provided  = 24 - (3 + 2) = 19 in.     \ok

dh
As, required
As, provided

required = ´

We could also use a shear key with the dowels extended into the key

to provide the required bar length if needed (see Figure 7.81).

(b) Heel Reinforcement The development length for #5 bars, per

Table A3.3, is 28 in. The required length is:

‘d ¼ 28� 0:26

0:27
¼ 27 in:

The provided reinforcement length in the heel is (cover¼ 3 in.):

3:5 12ð Þ � 3 ¼ 39 in: > 27 in: ∴ ok

Hooks are required in the toe area, as the toe is not long enough.
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‘dh ¼
fyψeψcψr

50λ
ffiffiffiffi
fc
0p

 !
db ¼ 60,000ð Þ 1:0ð Þ 0:7ð Þ 1:0ð Þ

50 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
3,000

p 0:625ð Þ ¼ 9:6 in:

‘required ¼ 9:6
0:26

0:27

� �
¼ 9:2 in: > min 8 0:625ð Þ, 6 in:f g

‘provided ¼ 24 in:� 3 in: ¼ 21 in: > 9:2 in: ∴ ok

(c) Toe Reinforcement The dowels from the stem are used as reinforce-

ment for the toe. From Equation (3.65), the required length of bars

with hook for #6 bars is:

‘dh ¼
fyψeψcψr

50λ
ffiffiffiffi
fc
0p

 !
db

‘dh ¼ 60,000ð Þ 1:0ð Þ 0:7ð Þ 1:0ð Þ
50 1:0ð Þ ffiffiffiffiffiffiffiffiffiffiffi

3,000
p

� �
0:75 ¼ 11:5 in:

#4 @ 16 in. horizontal

#5 @ 14 in.
#5 @ 12 in.

#4 @ 16 in. horizontal

#6 @ 12 in. dowels

Possible use of shear key Dowels could be
extended into the key

#6 @ 12 in. vertical

#4 @ 18 in. vertical

3'-2"

Figure 7.81 Final reinforcement results for Example 7.9
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‘required ¼ 11:5� 0:26

0:44
¼ 6:8 in: � min 8 0:75ð Þ, 6 in:f g

‘provided ¼ 12 in:� 3 in: ¼ 9 in: > 6:8 in: ∴ ok

Figure 7.81 shows the retaining wall and the details of the

reinforcements.

Problems

In the following problems assume concrete is normal weight unless noted
otherwise.

7.1. Design a plain concrete wall footing to support a 12 in. thick concrete wall.

The dead load, including the weight of the wall, is 5.0 kip/ft, and the roof live

load is 6.0 kip/ft. The bearing capacity of the soil is 2,500 psf and

fc
0 ¼ 3,000 psi:

7.2. Redesign the footing of Problem 7.1 for a soil bearing capacity of 6,000 psf.

7.3. Rework Problem 7.1 for a reinforced concrete wall footing. Use

fy¼ 60,000 psi.

7.4. The following figure shows a partial section of a four-story office building. It is
constructed of 8 in.-thick precast hollow core planks for roof and floors,

supported by 12 in. block walls. The planks weigh 55 psf, and the block wall

weighs 80 psf. The floor superimposed dead load is 25 psf, and the floor live

load is 50 psf. The roofing weighs 15 psf, and the roof snow load is 30 psf. The

soil bearing capacity is 3,500 psf. Use fc
0 ¼ 3,000 psi and fy¼ 60,000 psi.

Design a reinforced concrete footing for the interior walls shown.

10'-0"

10'-0"

10'-0"

10'-0"

4'-0"

Building section

24'-0" 24'-0"
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7.5. A 16 in.� 16 in. reinforced concrete column supports 150 kip dead load and

75 kip roof live load. The allowable soil bearing pressure is 4,000 psf. Design a

square footing to support the column. Use fc
0 ¼ 3,000 psi for the column and

the footing and fy¼ 60,000 psi. Assume the column to have 4 #6 bars as the

main reinforcement.

7.6. Design a square reinforced concrete spread footing for the interior columns of

Problem 5.11. The soil bearing capacity is 6,000 psf. Use fc
0 ¼ 3,000 psi for the

footing, fc
0 ¼ 4,000 psi for the column, and fy¼ 60,000 psi. Column has 8 #9

main reinforcement. Neglect the self-weight of column.

7.7. Design a square reinforced concrete spread footing to support a 24 in.� 24 in.

column carrying a 600 kip dead load and a 400 kip roof live load. The soil bearing

capacity is 10,000 psf. Use fc
0 ¼ 3,000 psi for the footing, fc

0 ¼ 4,000 psi for

the column, and fy¼ 60,000 psi. The column’s main reinforcements are 8 #11.

7.8. Redesign the footing of Example 7.3, if one of the horizontal dimensions of

the footing is limited to 70–000 due to the proximity of an adjacent property line.

7.9. Redesign the footing of Problem 7.7 if one of the horizontal dimensions of the

footing is limited to 80–000.
7.10. Determine the thickness of the unreinforced basement wall shown below for

the following cases. The unit weight of the backfill material is 120 pcf, and the

coefficient of active pressure Ka¼ 0.33. Show the soil lateral pressure and

draw the shear force and bending moment diagrams for the applied loads. Use

fc
0 ¼ 4;000 psi:

(a) h2¼ 80�000, no surcharge (wsc¼ 0) (c) h2¼ 70�000, wsc¼ 200 psf

(b) h2¼ 60�000, no surcharge (d) h2¼ 100�000, wsc¼ 200 psf

h2

wsc

h 10'-0"
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7.11. Rework Problem 7.10 for h¼ 120–000. For case d, use h2¼ 120–000.
7.12. Design the plain concrete basement wall shown. The equivalent fluid active

density of the backfill material is 36 pcf. The unit weight of the soil is 120 pcf.

Consider two cases: (a) without surcharge, and (b) a surcharge of 150 psf

acting on the backfill. Use fc
0 ¼ 3,000 psi.

7.13. Redesign the basement wall of Problem 7.12 using reinforced concrete. Use

fy¼ 60,000 psi.

7.14. Check the adequacy of the 10-in.-thick reinforced concrete basement wall

shown below. Use fc
0 ¼ 4,000 psi and fy¼ 60,000 psi. The clear cover is ¾ in.

The unit weight of the backfill is 100 pcf, and the coefficient of active soil

pressure Ka¼ 0.30.

12'-0"

6'-0"

Figure for Problem 7.12

#5 @ 12 in. horizontal

#6 @ 12 in. vertical

t  10 in.

14'-0"

Figure for Problem 7.14
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7.15. What is the maximum allowable surcharge that can be placed on the outside

grade of the basement wall of Problem 7.14?

7.16. Check the stability of the concrete gravity retaining wall shown below. Also,

determine the soil pressure distribution on the base. The unit weight of the

backfill is 120 pcf, the coefficient of active soil pressure is 0.30, and the

coefficient of friction at the base is 0.50. The unit weight of the concrete is

150 pcf. The applied surcharge on the backfill is 100 psf. Disregard the

passive pressure action on the wall.

12'–0"

3'–0"

3'–0"    6'–0"

wsc 100 psf

7.17. Check the stability of the concrete gravity retaining wall shown below. Also,

determine the soil pressure distribution on the base. The unit weight of the

backfill is 115 pcf, the coefficient of active soil pressure is 0.33, and the

coefficient of friction at the base is 0.45. The unit weight of the concrete is

150 pcf. The applied surcharge on the backfill is 130 psf. Disregard the

passive pressure action on the wall.

3'–0"
"0–'1"0–'1

6'–0"

3'–6"

wsc 130 psf

2'–0"

14'–0"
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7.18. Check the stability of the reinforced concrete cantilever retaining wall shown

below. Disregard the passive resistance of the soil in front of the toe. Assume

Ka¼ 0.3, γsoil¼ 120 pcf, and μ¼ 0.52. The unit weight of the concrete is

150 pcf.

2'–6" 1'–6" 6'–6"

wsc 200 psf

1'–6"

16'–6"

10'–6"

7.19. Design the cantilever retaining wall of Problem 7.18. Use fc
0 ¼ 3,000 psi and

fy¼ 60,000 psi. Use the ACI Code-recommended minimum covers.

Self-Experiments

In this self-experiment we study the behavior of square spread column footings.

Include all the details of your tests such as sizes, times, concrete and ingredient

proportions, problems you encountered, and so on, together with images showing

the steps of the tests in your report.

Experiment 1

To study the behavior of spread footings, we will use a square piece of rubber

(about 1/2 in. thick) or any other flexible material. Put the rubber on some soft soil or

sand. Place a Styrofoam column on the center of the rubber. Press the column down,

as shown in Figure SE 7.1, and observe how the rubber mat reacts. Document all

findings and observations.
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Experiment 2

To gain a better understanding of the behavior of different types of soil under a

foundation, we repeat Experiment 1 in the following order:

1. Fill a dish with dry sand. Compact the sand by gently pounding it with the

bottom of a bottle. Smooth the top, and place a wood block (representing a

square footing) on the sand. Load the block with an increasing load. Note what

happens to the sand around the loaded block.

2. Repeat step 1 using wet sand.

3. Repeat step 1 using wet clay. The clay must be wet enough to be moldable.

4. Repeat step 3 after letting the clay dry for a few days.

P

Styrofoam column

Rubber footing

Soil

Figure SE 7.1 Spread footing under concentrated load

Experiment 3

Form and cast a reinforced concrete square spread column footing. We will

use wires to represent the two required sets of reinforcement, as illustrated in

Figure SE 7.2. Document all your problems and observations in casting the footing.

Self-Experiments 515



Figure SE 7.2 Reinforced concrete spread footing

Experiment 4

Using the concrete footing of Experiment 3, repeat Experiment 1 by adding a

square reinforced concrete column at the center of the footing. Remember that you

need dowel bars to tie the column to the footing. Document all problems and your

observations in the construction of the column and footing model.

What is the approximate capacity of the footing if it is placed on a soil with a

bearing capacity of 2,000 psf?

516 7 Foundations and Earth Supporting Walls



Chapter 8

Formwork for Monolithic Concrete
Construction

8.1 Introduction

This Chapter discusses the issues that need to be studied and understood by an

aspiring architectural or construction engineer, regardless whether works as a

designer, or is engaged in construction.

We encourage the readers to consult the National Design Specification for Wood

Construction, which provides comprehensive instructions for the use and the

allowable values for metal connectors (nails, bolts, etc.) in wood construction.

Besides offering detailed guidance to the analysis and design of formwork

elements, this Chapter discusses the design of wood shores. We have also included

many useful Tables and step-by-step numerical examples for the easier compre-

hension and safe design of different wood and plywood formwork component

elements. The scope and available space unfortunately does not permit us to include

here the many, mostly patented, metal shoring and forming systems offered by a

large number of manufacturers. A search of the Internet will help those readers,

who may wish to expand their knowledge in the subject beyond wood materials

used in formwork and shoring.

Formwork and shoring that supports it are the largest cost-component in mono-

lithic concrete construction, often reaching 50%-or more-of the total. Even more

important is to know that the formwork materials’ costs amount to about 1/6th of

that and labor cost associated with the formwork in the U.S.-and other countries

with relatively high wages-is about 5/6th.

Formwork should be thought of as a mold into which first the reinforcement is

assembled, then the freshly mixed concrete is poured, consolidated and cured. The

shoring should be thought of as the temporary structure necessary to support the

formwork, the weight of the workers during the construction process, the weight of

the fresh concrete and the weight of the equipment used during the concreting

operation.
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8.2 Planning for Formwork

The most important reference material for the design and construction of formwork

is the American Concrete Institute’s Guide to Formwork for Concrete, ACI 347R-
14. In addition, a much more comprehensive and authoritative treatment of the

subject may be found in the ACI SP-4 7th Ed., a book titled Formwork for Concrete,

written by Mary K. Hurd.

Shoring and formwork are essentially temporary structures that must be built to

provide a mold into which the fluid concrete is poured, consolidated and cured.

Thus they have to be carefully designed to provide for the essential attributes of all

structural designs, which are quality, safety and economy.

Quality in formwork means:

(a) the quality of the facing material, which is an important constituent in achiev-

ing the desired finish of the formed components;

(b) the formwork must be watertight. Butt joints, or corner joints between the

plywood sheets must be sealed to prevent leakage from the fresh concrete.

Leakage leads to unsightly cement fins at such locations, which when broken

off clearly show a discontinuity of appearance. It may also lead to

honeycombing in the concrete, which is rather difficult and expensive to

repair.

The sealing may be done by using a thin adhesive tape, or an appropriate

caulk. Corner joints are often protected from leakage by sealed wooden

(or plastic) chamfers.

(c) the accuracy, i.e. size, thickness, and geometrical conformance of the finished

concrete construct to the design documents. The reader is referred to ACI

Standard Specification for Tolerances for Concrete Construction, ACI

117, which lists the acceptable deviations from the dimensions provided for

in the Contract Documents.

Forms that are not designed and/or constructed to produce elements satis-

fying the tolerance requirements, or the finish requirements set forth in the

project specifications, may result in expensive refinishing (or in some cases

demolishing and re-construction)!

Safety refers to the requirements:

(a) that the temporary structure must be designed and built to safely withstand all

the loads (gravity and lateral) that it is subjected to during the construction

process;

(b) that it provides for the safety of the construction personnel.

Economy in the design and construction of the formwork looms huge among the

attributes, when one looks at the share of its cost in the overall concrete construction

cost. In the construction process there are three major components contributing to

the total cost of monolithic reinforced concrete construction in architectural struc-

tures (refer to Figure 8.1):
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– Concrete: materials, delivery, placement and finish;

– Reinforcement: materials, fabrication, accessories and placement;

– Formwork: materials for shoring and forming, construction and removal;

Each of these have a labor component, but the formwork, with its attendant

shoring that supports it, is the most labor intensive. So in countries where the cost of

skilled labor is expensive, the cost of formwork represents the largest percentage of

the total cost.

8.3 Loads on Formwork

8.3.1 Gravity Loads

For the purposes of design, Dead Loads are defined as the weight of the formwork,

shoring and scaffolding, the weight of the reinforcement and the freshly placed

concrete. In the authors’ experience an allowance of 10 psf to 15 psf is generally

sufficient to account for the weight of the formwork, scaffolds and shores. To

account for the weight of concrete and reinforcement, use the customary 150 pcf

for the design.

Live loads are more difficult to predict. Those represent the weight of workers,

concrete buggies or other concrete conveying equipment, pumping hoses,

generators, compressors, consolidating and finishing equipment, etc. The ACI

347 recommends the use of a minimum 50 psf uniformly distributed live load to

account for these, and minimum 75 psf, when motorized carts are used for the

conveyance of concrete.

Figure 8.1 Average concrete construction cost distribution
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Example 8.1 Calculate the uniformly distributed load a formwork (and its

supporting post-shores) must be designed for a 10 in. thick normal weight concrete

slab. The concrete will be delivered via a concrete pump.

Solution

Weight of the concrete slab: (10/12)� 150 125 psf

Self-weight of formwork (estimate) 10 psf

Live Load (min. per ACI 347 recommendations) 50 psf

Total design load for the slab formwork 185 psf

8.3.2 Lateral Pressure on Formwork

Fresh concrete behaves like a fluid when placed, thus exerts hydrostatic pressure

against the sides of the forms. The value of the pressure depends upon many

variables. If the concrete is poured to full height of the form within a time that is

less than the initial set, then the formwork will experience full hydrostatic pressure

in the form of

p ¼ wch ð8:1Þ

where:

wc¼ unit weight of concrete, lb/ft3

h¼ depth of fluid or plastic concrete from top of placement to point of consider-

ation in the form, ft

However, when the rate of pour is slower than the time required for the initial set

of the concrete mix, the pressure at the bottom of the formwork will diminish from

the full hydrostatic pressure. The parameters influencing the magnitude are the

temperature of the concrete inside the form (higher temperature accelerates the

setting time) and the chemistry of the concrete mix (pozzolans used as cement

replacement, retarding admixtures, etc.). In combining all these effects into one

empirical formula, ACI 347 recommends

pmax ¼ CwCc 150þ 9,000R=Tð Þ � 600Cw lb=ft2 ð8:2Þ

but not more than

pmax ¼ wch ð8:3Þ

where

R ¼ rate of placement, ft/hr

T ¼ temperature of concrete during placement, �F
Cw¼ unit weight coefficient (see Table 8.1)

Cc ¼ chemistry coefficient (see Table 8.2)
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For walls higher than 14 ft, or for placement rates between 7 and 15 ft per hour

the following empirical formula is recommended:

pmax ¼ CwCc 150þ 43,400=T þ 2,800R=Tð Þ lb=ft2 ð8:4Þ

Example 8.2 Assume a 24 in.� 24 in. column form 14 ft high. The project

specifications require normal weight concrete with Type I cement and allow the

use of maximum 25% fly ash cement replacement. Calculate the maximum lateral

pressure at the base of the forms.

Solution The total volume of concrete will be 2� 2� 14 ¼ 56cubic feet !
2:07cubicyards. This is a small amount, hence it is more than likely that it will

be poured faster than the initial set—about 2 hours after mixing—regardless of the

temperature of the concrete. Thus Equation (8.3) will apply:

pmax ¼ 150� 14 ¼ 2,100 psf

Example 8.3 Calculate the maximum pressure on a wall-form for an 18 in. thick,

60 ft long and 12 ft high wall. Normal weight concrete with Type I cement is

specified with a 40% GBFS (Ground Blast Furnace Slag) cement replacement

without retarders. The average temperature during the pour is expected to be

about 80 �F and the rate of pour is estimated to be about 4 ft/hr.

Solution

Cw ¼ 1:0
Cc ¼ 1:2 (From Table 8.2 (fourth row): blend with less than 70% slag and no

retarder)

Using Equation (8.2): pmax ¼ 1:0� 1:2� 150þ 9,000� 4=80ð Þ ¼ 720psf

Table 8.1 Unit weight coefficient Cw

Unit weight of concrete Cw

Less than 140 lb/ft3 Cw ¼ 0:5 1þ wc=145 lb=ft
3

� �� � � 0:8

140–150 lb/ft3 1.0

More than 150 lb/ft3 Cw ¼ wc=145 lb=ft
3

Table 8.2 Chemistry coefficient Cc

Cement type or blend Cc

Types I, II, and III without retarders 1.0

Types I, II, and III with a retarder 1.2

Other types or blends containing less than 70% slag or 40% fly ash without retarders 1.2

Other types or blends containing less than 70% slag or 40% fly ash with a retarder 1.4

Blends containing more than 70% slag or 40% fly ash 1.4
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Since this is greater than 600�Cw¼ 600 psf (refer to Equation (8.2)), use

720 psf for the design.

Example 8.4 Same data as in Example 8.3, but the rate of pour is 5 ft/hr and the

temperature is expected to be only 50 �F.
Then

pmax ¼ 1:0� 1:2� 150þ 9,000� 5=50ð Þ ¼ 1,260 psf

A comparison of the results in Examples 8.2 and 8.3 shows, rather dramatically,

the importance of the R and T parameters. While the first, i.e. the rate of pour can be

more accurately planned and enforced on the field, the temperature on the date of

the pour is more difficult to assess with much accuracy. Hence, the designer should

always be cautious. Many authorities in the field recommend that unless the

economy of the formwork design absolutely forbids it, the most conservative

design, i.e. Equation (8.3) be used.

8.3.3 Lateral Loads on the Shoring and Forming Assembly

The temporary structure of the shoring, bracing and forming assembly also must be

designed for lateral loads, such as wind and/or seismic loads, just like any other

structure. For the evaluation of such loads, the reader is referred to the SEI/ASCE

37-10 Standard “Design Loads on Structures during Construction”.

ACI 347R-14 Paragraph 4.2.3.1 states the following:

“Formwork exposed to the elements should be designed for wind pressures
determined in accordance with ASCE/SEI 7 with adjustments as provided in
ASCE/SEI 37 for shorter recurrence interval. Alternatively, formwork may be
designed for the local building code-required lateral wind pressure, but not
less than 15 psf. Consideration should be given to possible wind uplift on
formwork.”

In addition, concrete formwork is subject to other horizontal loads from the

starting and stopping of motorized equipment, from the concrete dumping opera-

tions, and other not-easily-calculable effects. ACI 347 recommends a minimum

horizontal force of 100 lb per linear ft (lb/ft) of floor edge in any direction be used to

account for these effects. This force is an alternative requirement to the minimum

wind load cited above, for it is unlikely that concreting operations would occur

during a wind storm.

In concrete construction usually the vertical elements are poured first, thus they

are often available to provide lateral support to the shoring and forming elements.

The designer of the formwork must, however, carefully analyze the available

strength of the already-in-place elements when considering their utilization for

providing the necessary stability of the temporary structure.
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8.4 Materials for Formwork

8.4.1 Form Panels

Form panels should be thought of as the lining of the mold, i.e. the surface that will

be in intimate contact with the concrete. While many different materials may be

used as form panels, the overwhelming majority of them are APA (American

Plywood Association) Exterior type Plywood. These products are manufactured

using moisture resistant adhesives.

The industry also manufactures a trademarked special product known as

Plyform®, manufactured for the specific purpose of forming for concrete.

Plyform®-and indeed almost all plywood-panels are manufactured in odd num-

ber of layers (also called plies). The layers are laid up with the grain perpendicular

in adjacent layers, and bonded together under high pressure using adhesives. The

adhesives are selected on the basis of intended use, i.e., interior (not exposed to

weather), or exterior use. Plyform® panels are always made with exterior quality

(waterproof) adhesives.

The alternating direction of the grain in the adjacent layers helps to minimize

the shrinking and warping of the panels. The typical plywood panels are

manufactured in 4 ft� 8 ft size, although they may be available in larger sizes

on special order. The grain orientation in the outer plies is always in the long

direction.

Plyform® panels are always manufactured with exterior bond classifications and

in three basic grades: Plyform Class I, Plyform Class II and Structural I Plyform.

The Class refers to the strength of the Plyform, which in turn depends upon the

Group wood species that form the outer ply.

Overlaid Plyform® panels are also manufactured for concrete form use. Two

types MDO (Medium Density Overlay) and HDO (High Density Overlay) are

available. During the fabrication process thermo-setting phenolic resins are

bonded-usually on one side only-to the surface of the plywood using high heat

and pressure. The overlay produces a smooth, hard, semi-opaque surface and

increases the durability, hence the re-use, of the forming panels manifold. It can

help to create concrete to appear nearly like a polished surface.

Since many different species of wood are used in manufacturing plywood and

due to its inner construction grains in adjacent layers are perpendicular to each other

and thus have different strength and stiffness characteristics, the cross-sectional

properties cannot be simply calculated like we do when using homogenous mate-

rials. Table 8.4 shows the calculated cross section properties of a 1 ft (12 in.) wide

section of Plyform®. Thus the designer may need to select only the appropriate

effective section properties and the allowable stresses for the face ply in order to

perform any required calculations.

Table 8.3 shows the allowable design stress values and the Modulus of

Elasticity of the various Plyform materials. Note that the listed values are adjusted
values, used specifically in concrete forming. In wood products the Codes require
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the application of several adjustment factors, like wet service factor, load duration

factor, etc. So, the values taken from the Plywood Design Specification’s allow-

able stress are adjusted to wet use (outdoor construction must assume that the

formwork is in “wet” condition); however the load duration is a relatively short

one, for as the concrete stiffens and begins to carry its own weight, the pressures

on the plywood diminish. Thus, a special Cs¼ 1.65 concrete setting factor was

applied together with the wet design stresses. Table 8.3 shows the allowable

design stresses already adjusted to account for the wet service and load duration

factors.

The term Rolling Shear Constant (see Table 8.4) maybe unfamiliar to the reader.

The fibers in an inner layer of the plywood, laid perpendicular to the face layer, tend

to roll over each other, (not unlike a layer made out of toothpicks), when subjected

to horizontal shear due to bending.

Horizontal shear in members in bending is calculated as:

v ¼ VQ

Ib
¼ V

Ib

Q

� � ð8:5Þ

The term in parenthesis in the denominator is referred as the rolling shear constant.
Due to the non-homogenous and non-isotropic nature of the plywood material,

calculations of the cross-sectional properties are far from being simple. Conve-

niently, however, all the design-applicable information is tabulated and made

readily available. (Refer to Table 8.4).

Table 8.3 Allowable stresses and moduli of elasticity used with Plyform®

Plyform
Class I

Plyform
Class II

Structural
I Plyform

Modulus of elasticity—E
(adjusted, use for bending

and deflection calculation)

1,650,000 psi 1,430,000 psi 1,650,000 psi

Modulus of elasticity—Es

(unadjusted, use for shear

deflection calculation)

1,500,000 psi 1,300,000 psi 1,500,000 psi

Bending stress—Fb 1,930 psi 1,330 psi 1,930 psi

Rolling shear stress—Fs 72 psi 72 psi 102 psi
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Table 8.4 Section properties of plyform (courtesy of APA—The Engineered Wood Association)

Section properties for Plyform Class I and Class II, and Structural I Plyforma

Performance
category

Approx.
weight
(psf)

Nominal
thickness
t (in.)

Properties for stress applied
parallel with face grain

Properties for stress applied
perpendicular to face grain

Moment
of inertia
I (in.4/ft)

Effective
section
modulus
KS
(in.3/ft)

Rolling
shear
constant
Ib/Q
(in.2/ft)

Moment
of inertia
I (in.4/ft)

Effective
section
modulus
KS
(in.3/ft)

Rolling
shear
constant
Ib/Q
(in.2/ft)

Class I

15/32 1.4 0.469 0.066 0.244 4.743 0.018 0.107 2.419

1/2 1.5 0.500 0.077 0.268 5.153 0.024 0.130 2.739

19/32 1.7 0.594 0.115 0.335 5.438 0.029 0.146 2.834

5/8 1.8 0.625 0.130 0.358 5.717 0.038 0.175 3.094

11/16 2.0 0.688 0.164 0.409 6.175 0.044 0.183 3.524

23/32 2.1 0.719 0.180 0.430 7.009 0.072 0.247 3.798

3/4 2.2 0.750 0.199 0.455 7.187 0.092 0.306 4.063

7/8 2.6 0.875 0.296 0.584 8.555 0.151 0.422 6.028

1 3.0 1.000 0.427 0.737 9.374 0.270 0.634 7.014

1–1/8 3.3 1.125 0.554 0.849 10.430 0.398 0.799 8.419

Class II

15/32 1.4 0.469 0.063 0.243 4.499 0.015 0.138 2.434

1/2 1.5 0.500 0.075 0.267 4.891 0.020 0.167 2.727

19/32 1.7 0.594 0.115 0.334 5.326 0.025 0.188 2.812

5/8 1.8 0.625 0.130 0.357 5.593 0.032 0.225 3.074

11/16 2.0 0.688 0.164 0.409 6.020 0.036 0.236 3.496

23/32 2.1 0.719 0.180 0.430 6.504 0.060 0.317 3.781

3/4 2.2 0.750 0.198 0.454 6.631 0.075 0.392 4.049

7/8 2.6 0.875 0.300 0.591 7.990 0.123 0.542 5.997

1 3.0 1.000 0.421 0.754 8.614 0.220 0.812 6.987

1–1/8 3.3 1.125 0.566 0.869 9.571 0.323 1.023 8.388

Structural I

15/32 1.4 0.469 0.067 0.246 4.503 0.021 0.147 2.405

1/2 1.5 0.500 0.078 0.271 4.908 0.029 0.178 2.725

19/32 1.7 0.594 0.116 0.338 5.018 0.034 0.199 2.811

5/8 1.8 0.625 0.131 0.361 5.258 0.045 0.238 3.073

11/16 2.0 0.688 0.167 0.418 5.621 0.051 0.249 3.493

23/32 2.1 0.719 0.183 0.439 6.109 0.085 0.338 3.780

3/4 2.2 0.750 0.202 0.464 6.189 0.108 0.418 4.047

7/8 2.6 0.875 0.317 0.626 7.539 0.179 0.579 5.991

1 3.0 1.000 0.479 0.827 7.978 0.321 0.870 6.981

1–1/8 3.3 1.125 0.623 0.955 8.841 0.474 1.098 8.377

aThe section properties presented here are specifically for Plyform, with its special layup restric-

tions. For other grades, section properties are listed in the APA’s Plywood Design Specification,
Form Y510
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8.4.2 Lumber

Practically any formwork construction and consequently its design involve lumber.

Although the material selection may use any species listed in the National Design
Specification for Wood Construction and its Supplement: Design Values for Wood
Construction, published by the American Forest & Paper Association (AFPA) and the

American Wood Council (AWC), only a few species are typically used in the con-

struction industry. These are:Douglas Fir-Larch North; Douglas Fir South; Hem-Fir;
Spruce-Pine-Fir and Southern Pine. Within all these species each piece of cut-to-size

lumber is either visually or machine graded and classified as to their stress-grade.

Table 8.5 shows the sizes and section-properties of lumber typically used in

formwork construction. The listed values are for (S4S—Surfaced 4 Sides) “dressing”,

which means that after rough sawing from the timber, the boards are run through a

planingmachine to obtain smooth surface on all four sides and uniform cross-section.

Table 8.6 shows the Reference Design Stress values for 2 in.–4 in. thick

lumber of selected species and grades. These values are subject to a number of

Adjustment Factors. We list only those factors that are typically used in formwork

design.

Table 8.5 Properties of selected lumber sizes, typically used in formwork construction

Nominal
size
(in.)

Actual
size
(in.)

Approx.
weight
(lb/ft)

Area of
cross-
section
(in.2)

Moment
of inertia
Ix (in.

4)

Section
modulus
Sx (in.

3)

Moment
of inertia
Iy (in.

4)

Section
modulus
Sy (in.

3)

2� 4 1.5� 3.5 1.3 5.25 5.36 3.06 0.98 1.31

2� 6 1.5� 5.5 2.0 8.25 20.80 7.56 1.55 2.06

2� 8 1.5� 7.25 2.6 10.87 47.63 13.14 2.04 2.72

2� 10 1.5� 9.25 3.4 13.87 98.93 21.39 2.60 3.47

2� 12 1.5� 11.25 4.1 16.87 177.97 31.64 3.16 4.21

3� 4 2.5� 3.5 2.1 8.75 8.93 5.10 4.56 3.65

3� 6 2.5� 5.5 3.4 13.75 34.66 12.60 7.16 5.73

3� 8 2.5� 7.25 4.4 18.12 79.39 21.90 9.44 7.55

3� 10 2.5� 9.25 5.6 23.12 164.89 35.65 12.04 9.63

3� 12 2.5� 11.25 6.8 28.12 296.63 52.73 14.65 11.72

4� 4 3.5� 3.5 3.0 12.25 12.50 7.15 12.50 7.15

4� 6 3.5� 5.5 4.7 19.25 48.53 17.65 19.65 11.23

4� 8 3.5� 7.25 6.2 25.38 111.15 30.66 25.90 14.80

4� 10 3.5� 9.25 7.9 32.38 230.84 49.91 33.05 18.88

4� 12 3.5� 11.25 9.6 39.38 415.28 73.83 40.20 22.97

6� 6 5.5� 5.5 7.4 30.25 76.26 27.73 76.26 27.73

6� 8 5.5� 7.5 10.0 41.25 193.36 51.56 103.98 37.81

8� 8 7.5� 7.5 13.7 56.25 263.67 70.31 263.67 70.31

Notes: (1). Weights shown assume dry condition, approx. 35 lb/ft3; (2). Ix and Sx are about the

strong axis of the section; (3). Iy and Sy are about the weak axis of the section; and (4). 6� and

8� sizes are mostly used as shore-posts.
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• CD–Load Duration Factor. The stress level that wood may safely sustain for

short periods of time is higher than those from loads that are permanent. Thus for

concrete formwork a CD¼ 1.25 (load duration 7 days or less) applies.

• CM–Wet Service Factor. The strength and stiffness of wood is adversely

affected, when the moisture content in the material is greater than about 19%.

The reduction of the allowable stress is different from the type of stress, for

example perpendicular to grain compression is more affected than shear

stress, etc.

• Ct–Temperature Factor. Sustained temperatures above 100 �F adversely affect

some properties of wood. In very hot climates, the stresses and the Modulus of

Elasticity (used in deflection calculations) should be adjusted accordingly.

• CF–Size Factor. The NDS Code permits the use of this adjustment factor (see

Table 8.8) for joists, beams and studs. As its name implies, the factor depends

upon the size of the member. The magnitude of the factor is based on probability

studies of reliability and is applicable to all species of timber used in formwork

construction, with the exception of Southern Pine, where the size factors are
already included in the tabulated reference design stresses.

• Cr–Repetitive Members Factor. The NDS Code permits the increase of the

allowable bending stresses (only) for 2 in.�4 in. wide joists, beams, studs by

15%, provided that there are at least three such members, spaced not more than

Table 8.6 Reference design stresses for selected species of visually graded lumber

2 in. to 4 in. thick

Species and

grade

Size

classification

Bending

Fb (psi)

Shear

parallel

to grain

Fv (psi)

Compression

perpendicular

to grain

Fc⊥ (psi)

Compression

parallel to

grain

Fc (psi)

Modulus

of elasticity

(psi)

E (psi) Emin (psi)

Douglas Fir-Larch (North)

No. 2 2 in. and wider 850 180 625 1,400 1,600,000 580,000

Construction 2 in.–4 in. wide 950 180 625 1,800 1,500,000 550,000

Douglas Fir (South)

No. 2 2 in. and wider 850 180 520 1,350 1,200,000 440,000

Construction 2 in. and wider 975 180 520 1,650 1,200,000 440,000

Hem-Fir

No. 2 2 in. and wider 850 150 405 1,300 1,300,000 470,000

Construction 2 in.–4 in. wide 975 150 405 1,550 1,300,000 470,000

Spruce-Pine-Fir

No. 2 2 in. and wider 775 135 335 1,000 1,100,000 400,000

Construction 2 in.–4 in. wide 875 135 335 1,200 1,000,000 370,000

Southern Pine

No. 2 2 in.–4 in. wide 1,500 175 565 1,650 1,600,000 580,000

5 in.–6 in. wide 1,250 175 565 1,600 1,600,000 580,000

8 in. wide 1,200 175 565 1,550 1,600,000 580,000

10 in. wide 1,050 175 565 1,500 1,600,000 580,000

12 in. wide 975 175 565 1,450 1,600,000 580,000

Construction 4 in. wide 1,100 175 565 1,800 1,500,000 550,000

Note: Emin is used with the calculation of the Column Stability Factor, CP
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24 in. apart and are joined by floor, roof or other load distributing elements.

Minimum two span, appropriately designed plywood qualifies for that role. Thus

Cr¼ 1.15. However, ACI 347 does not recommend the use of this factor for

dimensional lumber, when CD and/or CF factors are also utilized.

• Cp–Column Stability Factor. This factor applies to elements (primarily

shoring posts) and applies to allowable compression parallel-to-grain stress values.

• Cfu–Flat use factor. This factor is applicable to the Fb reference design bending

stress, when the load is applied to the wide face of the member. (See Table 8.8)

• Cb–Bearing Area Factor. Allowable perpendicular to grain compression stresses

are permitted to be multiplied by a factor of

Cb ¼ ‘b þ 0:375

‘b
ð8:6Þ

where ‘b is the bearing length measured in inches parallel with the grain, provided

the bearing length is less than 6 in. and it is not less than 3 in. from the end of the

member. Cb¼ 1.0 for bearing at the end of a member and/or ‘b> 6 in.
It can be disregarded conservatively.

To make it easier to comprehend, we summarize the use and applicability of

these adjustment factors in Table 8.9.

Thus the general formula to compute allowable stresses (F0) is the reference

design stress (F) multiplied by all the applicable adjustment factors:

F0 ¼ Fð Þ � CDð Þ � CMð Þ � Ctð Þ � CFð Þ � Crð Þ � Cp

� �� Cfu

� �� Cbð Þ ð8:7Þ
Note that only a selected few adjustment factors are typically applicable,

depending on condition and type of stress involved. See Table 8.9. (Refer to the

NDS Code for additional information).

Table 8.7 Reference design stresses for selected species of visually graded lumber

Posts and Timbers 5 in.� 5 in. or larger

Species
and
grade

Bending
Fb (psi)

Shear
parallel
to grain
Fv (psi)

Compression
perpendicular
to grain
Fc⊥ (psi)

Compression
parallel to
grain
Fc (psi)

Modulus of elasticity

E (psi) Emin (psi)

Douglas Fir-Larch (North)

No. 2 725 170 625 700 1,300,000 470,000

Douglas Fir (South)

No. 2 675 165 520 650 1,000,000 370,000

Hem-Fir

No. 2 575 140 405 575 1,100,000 400,000

Spruce-Pine-Fir

No. 2 500 125 425 500 1,000,000 370,000

Southern Pine

No. 2 850 165 375 525 1,200,000 440,000
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8.4.3 Formwork Accessories

Formwork accessories are hardware items that are typically used in the construction

of the formwork. The reader is encouraged to search the Internet, where numerous

companies list and exhibit their proprietary products.

TIES are used in holding the opposite sides of the form secure against the lateral

pressure from the fresh concrete. (See Section 8.3.2.) There are many different,

usually patented devices. Some typical form ties are shown in Figure 8.2. They pass

through the concrete and fastened onto the formwork on each side. Manufacturers

Table 8.8 Size and flat use adjustment factors for grades #1 and #2

(for construction grade lumber the size factor is 1.00 for all widthsa)

Width of
lumber

Bending stress adjustment factor

Compression parallel
to grain adjustment factor

Size factor Flat use factor

2 in.–3 in.
thick

4 in.
thick

2 in.–3 in.
thick

4 in.
thick

2 in. and 3 in. 1.50 1.50 1.00 – 1.15

4 in. 1.50 1.50 1.10 1.00 1.15

6 in. 1.30 1.30 1.15 1.05 1.10

8 in. 1.20 1.30 1.15 1.05 1.05

10 in. 1.10 1.20 1.20 1.10 1.00

12 in. 1.00 1.10 1.20 1.10 1.00
aSize and Flat use factors are not applicable for Southern Pine

Table 8.9 Tabulation of typical adjustment factors to basic material property values for dimen-

sion lumber used in formwork design

Type of stress (or property) Adjustment factors Comment

Bending stress, Fb Load duration factor, CD¼ 1.25 Typically used

Size factor, CF¼ see Table 8.8 Typically used

Flat use factor, Cfu¼ see Table 8.8 Used as applicable

Repetitive member factor, Cr¼ 1.15 Not recommended

by ACI 347

Shear stress, Fv Load duration factor, CD¼ 1.25 Typically used

Wet service factor, CM¼ 0.97 Used as applicable

Compression

perpendicular to grain, Fc⊥

Bearing area factor, Cb¼ see

Equation (8.6)

Used as applicable

Wet service factor, CM¼ 0.67 Used as applicable

Compression

parallel with grain, Fc

Load duration factor, CD¼ 1.25* Typically used

Wet service factor, CM¼ 0.8 Used as applicable

Size factor, CF¼ see Table 8.8 Typically used

Column stability factor, CP¼ see

Equation (8.9)

Always used

Modulus of elasticity, E Wet service factor, CM¼ 0.9 Used as applicable

*CD¼ 1.0 for shoring posts
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provide information on the safe working loads, which may range from about

2,000 lb for light duty to in excess of 60,000 lb for some super-heavy duty ties.

The published working load values carry a typically used safety factor of 2.

After the concrete hardened, they are either fully, or partially withdrawn, usually

12–24 hours after placement of the concrete. Snap ties (as the name implies) have a

weakened point about 1.5 in.–2 in. inside the concrete surface, called break-back

cone shaped
plastic spreader.

break back
point.

wedge anchor
plate.

optional
water stop.

tapered rod to be
withdrawn entirely.

bearing plate.

wing nut.

bearing plate.

wing nut.

plastic tube
and end cones.

tie threads into
she-bolts

she-bolts screwed
onto threaded

ends of ties.

coil bolt threads
into ends of

2 coil ties.

2 coil ties welded
onto tubular ends
with inner threads 

cone shaped
plastic spreader.

Figure 8.2 Examples of typical form ties
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points. The idea is that after breaking the tie, the outer part is withdrawn, but the rest

remains inside. A similar idea is represented by the so-called she-bolt type of tie,

where the outer parts are unscrewed from the inner tie-rod. The crimping in the ties

prevents the inner tie from rotating.

It is very important to note that the holes left in the concrete, whether just partial

on the surfaces, or all the way through, as in the case fully withdrawn types of ties,

be thoroughly filled with grout or pressure-grouted. ACI 347 recommends that no

corrodible metal be left in the concrete closer than 1.5 in. from the surface,

especially on concrete surfaces left exposed to view.

SPREADERS are used to keep the opposing sides of the formwork apart at a

fixed dimension during concrete placement. Sometime they are just wooden blocks,

or special adjustable metal products, not left in the concrete, but removed either

during, or immediately after the placement of the fresh concrete. Some tie systems

(see Figure 8.2) incorporate plastic cone or hemisphere shaped spreaders secured to

the tie. After the removal of these plastic appurtenances and the withdrawal of the

outside portions of the ties, the remaining indentations provide good base for the

grouting of the holes in a visually acceptable manner.

SPACERS are usually small plastic attachments that are snapped onto the

reinforcement and used to maintain the specified concrete cover distance from the

vertical form.

CLAMPS are used to secure column forms. (See Figures 8.3 and 8.4; also

Example 8.6 for more detailed explanation).

HANGERS are primarily used to hang slab formwork from steel or pre-cast

concrete beams. Their use eliminate the need for shoring under the slab forms.

In addition to these most often used accessories, many different purpose and

design inserts, anchors, etc. are offered by manufacturers. All aim to help with

building the temporary structure speedily and economically and to enable the

clamp

batten

plywood sheeting

Figure 8.3 Three dimensional view of the formwork components for a concrete column
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contractor in forming the desired mold, regardless how complicated and/or unusual

is the designed concrete element. Discussion about these accessories is beyond the

scope of this chapter.

8.4.4 Release Agents

Fresh concrete will adhere to the surfaces of the formwork, unless a special coating,

or release agent is applied to the contact area. Coatings are differentiated from

release agents, for they also provide other sometimes desirable benefits.

Coatings (sealers) are used to:

– modify the texture of the concrete surface;

– enhance the durability of the finished concrete surface;

– prevent the fresh concrete adhering to the form material; and

– seal the concrete surface from moisture intrusion.

Release agents (often commonly referred to as form-oils, as a reference to the

past, when petroleum based products were used exclusively) serve only as a bond-

breaker between the fresh concrete and the form surfaces, thus facilitating the easy

removal and preservation of the formwork material. Release agents may be applied

to the form material during its manufacture, or applied in the field. Care must be

taken during field application to prevent the release agent from coating reinforcing

steel.

There are two different types of release agents available on the market:

(a) barrier release agents and (b) reactive release agents.

chamfer
if req'd.

Figure 8.4 Plan view of Figure 8.3
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(a) Barrier release agents, as the name clearly implies, develop a film (barrier)

on the contact surface, thus preventing bond from the fresh concrete to the

forms.

(b) Reactive release agents interact with the free lime in the cement matrix and

through a chemical reaction process a bond-preventing-film is created. This

film is considered bio-degradable, hence their use is better for the

environment.

8.5 Design of Formwork Elements

8.5.1 Typical Design Formulas

When designing formwork for vertical structural members, such as walls and

columns, four elements: sheathing, studs, wales and ties need to be carefully

analyzed and selected. (Refer to Figure 8.5 for the visual representation of these

designations used in the industry.) The sheathing (Plyform1, or plywood) retains

the lateral pressure from the fresh concrete, the studs support the sheathing and the

wales support the studs. Finally, the ties are attached to the outside of the wales to

hold together the two faces. Figure B8.1 in Appendix B shows the process for a

large wall forming.

In the design of horizontal structural members elements (slabs and beams), the

elements that need to be carefully analyzed and selected are: sheathing, joists,

stringers (beams) and shores. The sheathing supports the weight of the concrete

(plus the construction loads), the joists support the sheathing, the stringers support

the joists and the shores support the stringers.

With the exception of the ties and the shores, all other elements are flexural

elements and conventional beam formulas are used in their analysis. Since form-

work design involves many assumptions about the loads, the quality of the mate-

rials used and the workmanship in the actual construction, a simplified design
approach is justified. Thus, the following assumptions are commonly accepted

and used:

(a) Assume that all loads are uniformly distributed. The loads (pressures) on the

sheathing are truly distributed (albeit not always uniformly). So are the loads

on the studs and the joists that support the sheathing.

(b) Wales and stringers are actually loaded by point loads (typically closely

spaced) and can be approximated by an equivalent distributed load.

(c) Flexural elements that are continuous over three or more spans can be safely

designed by the formulas that apply for the 3-span condition.

Three governing conditions need to be considered in the design of flexural

elements. These are: bending stresses, shear stresses and deflection.
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Figure 8.5 Typical formwork components for a concrete wall: (a) Section, (b) Three-dimen-

sional view
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8.5.1.1 Bending Members (Sheathing, Joists, Beams, Studs,

Wales, Etc.)

The formulas in Table 8.10 are for calculating the maximum bending moment and

shear-force that in turn are used in the analysis of the stresses in the member under

investigation. In additon, this table includes the equations to compute the maxi-

mum deflections. The numerical coefficients are adjusted to the fact that the load is

input in lb/ft (pounds per lineal foot) units. The formulas forMmax are those for the

absolute maximum that will occur; i.e. at mid-span for the simple span; at an

intermediate support for the two or three span condition. The formulas for Vmax

include the fact, that the critical shear does not occur at the point support, but a “d”
distance away from it.

The formulas shown in Table 8.10 can be solved for the allowable maximum
span for a pre-selected type and thick Plyform sheathing, or a pre-selected size and
species of lumber. The resulting formulas are shown in Table 8.11. Among the

Table 8.10 Design formulas for bending members

Simple span Two spans Three or more spans

w lb/ft

L(in)

w lb/ft

L (in) L (in)

w lb/ft

L (in) L(in) L(in)

Mmax ¼ wL2

96
Mmax ¼ wL2

96
Mmax ¼ wL2

120
Vmax ¼ 0:5w L� 2dð Þ Vmax ¼ 0:625w L� 2dð Þ Vmax ¼ 0:6w L� 2dð Þ

Δmax ¼ 5

384
� w

12
� L4

EI
Δmax ¼ 1

185
� w

12
� L4

EI
Δmax ¼ 1

145
� w

12
� L4

EI

Note: In the formulas shown care must be taken to use the correct units for the variables. Thus:

w¼ uniformly distributed loads, lb/ft

L¼ center-to-center span, in.

E¼Modulus of elasticity, psi

I¼Moment of inertia, in.4 (effective moment of inertia for Plyform)

d¼ depth of section, in.

Table 8.11 Allowable maximum spans

Governing condition Simple span Two spans Three or more spans

Allowable bending

stress, F
0
b

Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
96F

0
b S

w

r
Lmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
96F

0
b S

w

r
Lmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120F

0
b S

w

r
Allowable Shear

Stress, F
0
v – solid

lumber

Lmax ¼ 16F
0
v A

w
þ 2d Lmax ¼ 12:8F

0
v A

w
þ 2d Lmax ¼ 13:33F

0
v A

w
þ 2d

Allowable Shear

Stress, F
0
v – plywood Lmax ¼

24F
0
v

Ib
Q

� �
w

þ 2d Lmax ¼
19:2F

0
v

Ib
Q

� �
w

þ 2d Lmax ¼
20F

0
v

Ib
Q

� �
w

þ 2d

Deflection ¼ L
240 Lmax ¼ 1:57

ffiffiffiffiffi
EI

w

3

r
Lmax ¼ 2:10

ffiffiffiffiffi
EI

w

3

r
Lmax ¼ 1:94

ffiffiffiffiffi
EI

w

3

r
Deflection ¼ L

360 Lmax ¼ 1:37

ffiffiffiffiffi
EI

w

3

r
Lmax ¼ 1:83

ffiffiffiffiffi
EI

w

3

r
Lmax ¼ 1:69

ffiffiffiffiffi
EI

w

3

r
Deflection ¼ Δmax

Lmax ¼ 5:51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r
Lmax ¼ 6:86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r
Lmax ¼ 6:46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r

S¼ Section Modulus, in.3 (Effective Section Modulus for Plyform)
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formulas for deflection check, we list three different cases, the first two are

applicable when the deflection limit is specified as a fraction of the span, i.e.,
L/240 or L/360. The third case provides for when the deflection limit is specified
as a definite value, for example Δmax¼ 1/16 in.

8.5.1.2 Axially Loaded Compression Members (Shoring Posts, Etc.)

The allowable compression load on a solid wood post is:

P ¼ AFc
0 ð8:8Þ

where

A¼ cross-section area of the solid post;

Fc
0 ¼ allowable compression stress, which is an adjusted reference design stress

parallel with grain in compression (Fc) for the selected species and grade;

The following adjustment factors apply:

CD¼ 1.0 (Load Duration Factor)-Shoring posts may be left in place for an extended

period of time, hence ACI 347 does not recommend an increased value for the

design of posts.

CM (Wet Service Factor) CM¼ 0.8 when used in Equation (8.10), CM¼ 0.9 for

Equation (8.12). This is a conservative approach, again due to the likelihood that

shoring posts may be used for an extended period of time.

Ct¼ 1.0 (Temperature Factor)-It is unlikely that the shoring will serve in temper-

atures in excess of 150 �F.
CF (Size factor)-Applicable species listed in Table 8.7, except Southern Pine. Refer

to Table 8.8 for applicable values.

CP (Column Stability Factor):

CP ¼
1þ FcE

F*
c

� �
2c

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FcE

F*
c

� �
2c

2
64

3
75
2

�
FcE

F*
c

c

vuuuuut ð8:9Þ

where

F*
c ¼ FcCD CMCtCF ð8:10Þ

FcE ¼ 0:822Emin
0

‘e=dð Þ2 ð8:11Þ

c ¼ 0:8 for sawn lumber

‘e ¼ the effective length of compression member

d ¼ least dimension of rectangular compression member

Emin
0 ¼ EminCD CMCtCF ð8:12Þ

‘e=d ¼ slenderness ratio of compression member
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Note: while in wood construction the maximum slenderness ratio for solid

columns is limited to 50, during construction this limit may be raised to 75.

Equation (8.9) may be simplified by introducing:

a ¼ FcE

F*
c

ð8:13Þ

Then

CP ¼ 1þ a

2c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

2c

	 
2
� a

c

s
ð8:14Þ

Example 8.5 Find the maximum allowable load on a 10.0 ft high 6� 6 shore post

using Douglas Fir-Larch (North) No. 2 grade material.

Solution
‘e=d ¼ 10� 12=5:5 ¼ 21:8 < 75 ∴ o:k:

From Table 8.7, Fc¼ 700 psi, and Emin¼ 470,000 psi

Adjustment Factors: CD¼ 1.0, CM¼ 0.8 (for F
�
c ), CM¼ 0.9 (for Emin

0 ), Ct¼ 1.0,

CF¼ 1.1 (Table 8.8)

F*
c ¼ Fc CD CMCtCF ¼ 700� 1:0� 0:8� 1:0� 1:1 ¼ 616psi

Emin
0 ¼ 470,000� 1:0� 0:9� 1:0� 1:1 ¼ 465,300 psi

FcE ¼ 0:822Emin
0

‘e=dð Þ2 ¼ 0:822� 465,300

21:82
¼ 805psi

a ¼ 805

616
¼ 1:31

CP ¼ 1þ a

2c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

2c

	 
2
� a

c

s
¼ 1þ 1:31

2� 0:8
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:31

2� 0:8

	 
2
� 1:31

0:8

s
¼ 0:775

Fc
0 ¼ F*

c � Cp ¼ 616 � 0:775 ¼ 478psi

Pallow ¼ AFc
0 ¼ 30:25� 478 ¼ 14,460 lb

8.6 Wall Formwork Design

Example 8.6 Design the formwork for the wall in Example 8.3. The wall’s face

will be exposed to view, hence a maximum allowable deflection for the sheathing

and the studs of span/360 is desired. Use ¾ in. Structural I Plyform for the
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sheathing and Douglas Fir-Larch - North #2 for the studs and wales. The maxi-

mum internal formwork pressure of 720 psf was found in Example 8.3. Assume

dry service conditions for the design of all formwork elements, i.e., CM¼ 1.0.

Design the necessary lateral bracing for the ACI recommended 15 psf minimum

wind load on the formwork, or the alternate lateral load of 100 lb/ft. (See

Figure 8.5).

Solution
1. Sheathing design

The sheathing is pre-selected in the problem statement, hence the first element of

the design requires the finding of the stud-spacing, i.e., the maximum span that the

sheathing can safely span. Since stud spacing rarely exceeds 24 in., the sheathing

will span over three or more spans.

Three criteria must be satisfied: bending strength, shear strength and deflection.

Step 1. Using the sheathing to span horizontally between the studs, the

section properties of the ¾ in. Structural I Plyform from Table 8.4 are:

I¼ 0.202 in.4/ft

KS¼ 0.464 in.3/ft

Ib/Q¼ 6.189 in.2/ft

Step 2. The Material Properties from Table 8.3:

Fb¼ 1,930 psi

Fs¼ 102 psi

E¼ 1,650,000 psi

Step 3. From Table 8.11 for 3-span condition, the maximum allowable span for the

sheathing:

(a) Based on bending:

Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120�1,930�0:464

720

r
¼ 12:2in:

(b) Based on rolling shear:

Lmax ¼
20Fv

0 Ib
Q

w
þ 2d ¼ 20� 102� 6:189

720
þ 2� 0:75 ¼ 19:0 in:

(c) Based on deflection:

Lmax ¼ 1:69

ffiffiffiffiffi
EI

w

3

r
¼ 1:69�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,650,000� 0:202

720

3

r
¼ 13:1 in:

Bending strength governs the maximum span selection. Select 12 in.

c/c spacing for the studs.
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2. Studs design

In most wall forming the studs are 2� 4 (rarely 2� 6) lumber, because the

spacing of the wales is limited by the form-tie layout. So the design of the studs,

after pre-selecting the species and the size of the lumber, is simplified into

finding the maximum allowable span of the studs between the wales,

i.e., finding the wales’ spacing.

Step 1. Select 2� 4 and find its section properties from Table 8.5:

A¼ 5.25 in.2

I ¼ 5.36 in.4

S ¼ 3.06 in.3

Step 2. Find the material properties applicable to Douglas Fir-Larch (North)

No. 2 grade lumber.

(a) From Table 8.6, reference design bending stress: Fb¼ 850 psi.

Applicable adjustment factors from Tables 8.8 and 8.9

CF¼ 1.50 and CD¼ 1.25

Thus

Fb
0 ¼ 850� 1:25� 1:50 ¼ 1,594psi

(b) From Table 8.6, reference design shear stress: Fv¼ 180 psi.

Applicable adjustment factors:

CD¼ 1.25

Thus

Fv
0 ¼ 1:25� 180 ¼ 225psi

(c) Modulus of elasticity: E¼ 1,600,000 psi

No adjustment factor applies.

Step 3. Find the loads on the stud.

Since the studs are 12 in. c/c, the maximum load on the studs is 720 lb/ft.

Step 4. As stated above, in finding the maximum wales-spacing, based on the

strength of the studs, 3-span condition will apply. Using the formulas

listed in Table 8.11, the maximum allowable span for the studs is:

Based on bending: Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120�1,594�3:06

720

r
¼ 28:5in:

Based on shear:

Lmax ¼ 13:33Fv
0A

w
þ 2d ¼ 13:33� 225� 5:25

720
þ 2� 3:5 ¼ 28:9 in:

Based on deflection:

Lmax ¼ 1:69

ffiffiffiffiffi
EI

w

3

r
¼ 1:69�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,600,000� 5:36

720

3

r
¼ 38:6 in:

The maximum wale spacing is governed by bending. For practical

purposes select 24 in. spacing.
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Step 5. Check the bearing stress (compression perpendicular to the grain) at the

interface of the stud and the wales.

The reaction force on the stud equals (the pressure)� (stud
spacing)� (wales spacing). Thus:

R ¼ 720� 1� 2 ¼ 1,440 lb

Wales are assumed to be made of two 2� 4’s.

The bearing area A ¼ 2� 1:5� 1:5 ¼ 4:50 in:2

The bearing pressure fbrg ¼
1,440

4:5
¼ 320psi

The reference design stress from Table 8.6 is 625 psi. The applicable

adjustment factor from Equation (8.6) is

Cb ¼ ‘b þ 0:375

‘b
¼ 1:5þ 0:375

1:5
¼ 1:25

Thus, considering Table 8.9: Fc⊥
0 ¼ 625� 1:25 ¼ 781psi > 320psi

∴o.k.

3. Wale design

Wales are typically double members with a gap between them to provide for the

ties to pass through and the double members also provide appropriate bearing

areas for the tie anchorages. The wale design is again finding the maximum span

length the wale can span between its supports: the form-ties (see Figure 8.5(b)).

Step 1. Find the section properties for double 2� 4 member.

From Table 8.5: A¼ 2� 5.25¼ 10.50 in.2

I¼ 2� 5.36¼ 10.72 in.4

S¼ 2� 3.06¼ 6.12 in.3

Step 2. The material properties are the same as for the studs.

Step 3. Find the loads on the wale.

The loads on the wale are the reaction forces from the studs, which are

not distributed loads but concentrated loads on the wales. As an accepted

practice, for simplification it is customary to assume a uniformly dis-

tributed load on the wales. Hence it is assumed that the load on the wale

equals to the pressure multiplied by the wale spacing. Thus:

w ¼ 720psf � 2 ft ¼ 1,440 lb=ft

Step 4. Find the maximum allowable span (the maximum allowable horizontal

tie-spacing) for the wales. From Table 8.11

Based on bending:

Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb0S

w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120� 1,594� 6:12

1,440

r
¼ 28:5 in:

540 8 Formwork for Monolithic Concrete Construction



Based on shear:

Lmax ¼ 13:33Fv
0A

w
þ 2d ¼ 13:33� 225� 10:50

1,440
þ 2� 3:5 ¼ 28:9 in:

Based on deflection:

Lmax ¼ 1:69

ffiffiffiffiffi
EI

w

3

r
¼ 1:69�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,600,000� 10:72

1,440

3

r
¼ 38:6 in:

It appears that the bending strength of the selected size (double

2� 4� s) and species of lumber governs the maximum tie spacing.

Therefore, the maximum horizontal spacing of the ties is 28.5 in.

4. Tie design

The ties act as supports for the wales. The selection of tie spacing is not

just a structural problem, but a visual problem as well. After the completion of

the construction, the locations of the ties (regardless of the type used) will

always show up on the exposed surfaces, hence a well-planned layout is

desirable.

The required strength of the ties depends upon the maximum tension force

during the concrete placement of the wall. The vertical spacing of the ties is

already set by the selected wale-spacing. The horizontal spacing of the ties is up

to the designer as long as it is not more than the maximum wales’s span. One can

select the spacing, then calculate the tie force and then select a tie, whose

strength at least equals to the force. Alternatively, one can select a tie and use

its allowable strength to calculate the horizontal spacing. The spacing should not

exceed the maximum span of the wales found in Step 4 above, i.e., 28.5 in.

Step 1. Calculate the tie-force:

T¼ (pressure on the formwork)� (wale spacing)� (horizontal tie-

spacing)

Thus, if we select a horizontal tie spacing of 2 ft (to match the vertical

spacing), the tie must safely withhold:

T ¼ 720psfð Þ � 2 ftð Þ � 2ftð Þ ¼ 2,880 lb

Step 2. Checking the bearing stress at the interface of the tie anchorage (wedge

or other device) is also required. As it was mentioned before, ties and

their anchorages are proprietary items and thus the bearing area at the

surface of the wales and the selected anchorage becomes known only

after the selection of the tie system.
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If, for example, the anchor wedge is 3.50 in. high and 1.5 in. wide,

then the bearing area equals 2� 1:5 in:� 1:5 in: ¼ 4:50 in:2 and

fbearing ¼
2,880

4:50
¼ 640psi

The reference design stress from Table 8.6 is 625 psi. The applicable

adjustment factor from Equation (8.6) is ‘b ¼ 1:5 in:ð Þ

Cb ¼ 1:5þ 0:375

1:5
¼ 1:25

Thus:

Fc⊥
0 ¼ 625� 1:25 ¼ 781psi > 640psi ∴o:k:

5. Lateral bracing design

As mentioned in Section 8.3.3, wall forms must be adequately braced

against wind and horizontal construction loads. With reference to Section 8.3.3,

the minimum required wind-load on wall forms is 15 psf, or an alternative

horizontal load of minimum 100 lb/ft applied at the top of the formwork.

These are shown in Figure 8.6.

100 lb / ft

H

V

8'
-0

"
4'

-0
"

6'-0"

H

a b

V V

V15
 p

sf

strut force

strut force

8'
-0

"
4'

-0
"

6'-0"

Figure 8.6 Minimum lateral loads and brace forces: (a) Lateral wind pressure (15 psf), (b)
Horizontal force (100 lb/ft)
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The effect of the wind load to the base of the 12 ft high formwork per ft of

wall is:

W ¼ 15� 12 ¼ 180 lb=ft

Its overturning moment to the base is M ¼ 180� 12

2
¼ 1,080 ft-lb=ft

This moment needs to be kept in equilibrium by the horizontal component of

the strut force (H) by providing a balancing moment with its moment arm¼ 8 ft.

Hence:

H � 8ftð Þ ¼ 1,080 lb-ft� strut spacingð Þ

H ¼ 1,080 lb-ft

8 ft
� strut spacingð Þ ¼ 135� strut spacingð Þ lb

From Figure 8.6, the length of strut is:

‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 þ 82

p
¼ 10.0 ft

And the force in the strut (from similar triangles-see Figure 8.6) is:

C ¼ 135� 10=6� strut spacingð Þ ¼ 225� strut spacingð Þ lb

The effect of the alternative 100 lb/ft horizontal force to the base of the 12 in.

high formwork of wall is:

M ¼ 100� 12 ¼ 1,200 lb-ft

Then the horizontal component of the strut force is:

H ¼ 1,200=8� strut spacingð Þ ¼ 150� strut spacingð Þ lb
And

C ¼ H � 10=6 ¼ 250� strut spacingð Þ lb

Since this is greater than the force from the 15 psf wind-load, we will use this

as the basis of designing the bracing strut.

When we follow the flow of forces, we find the following: the 100 lb/ft force at

the top creates bending in the studs, which in turn create bending in the double

wale at the level where the strut is connected. The available bending capacity of

those wales then is used to determine the strut spacing.

1. Bending in the studs:

The cantilever length of the studs is 4 ft as shown on Figure 8.6(b). They are

spaced at 1 ft centers, hence the bending moment in each stud will be
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M ¼ 100� 4 ¼ 400 lb-ft

2� 4 studs S¼ 3.06 in.3 (from Table 8.5)

Then

f ¼ 400� 12

3:06
¼ 1,569psi

Previously, when designing the studs, we found

Fb
0 ¼ 1,594psi > 1,569psi ! studs are o:k:

2. Bending in wales between the lateral support struts:

As a simplification, instead of using the concentrated loads from the studs, we

will assume that the loads on the wales may be represented by a uniformly

distributed load of 150 lb/ft. Refer to the calculation on the effect of the

100 lb/ft required alternative lateral load on the previous page:

H ¼ 100 lb=ft � 12ft

8 ft
¼ 150 lb=ft

With reference to earlier calculations in this design example (see 3. Wale
design) we now use the available bending and shear strengths of the wales to

calculate the maximum strut spacing.
For the calculation we will use the formulas for Two Spans from

Table 8.11. The strut spacing is expected to be several feet, hence it is

unlikely to have sufficiently long wales for continuous Three Spans

condition.

Thus:

Based on bending: Sections are: 2� (2� 4)

strut spacingð Þmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
96Fb0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96� 1,594� 6:12

150

r
¼ 79 in:

Based on shear:

strut spacingð Þmax ¼
12:8Fv

0A
w

þ 2d ¼ 12:8� 225� 10:50

150
þ 2� 3:5 ¼ 209 in:

The bending strength governs. Select the strut spacing as 60-000 (72 in.<
79 in. ∴ok).

3. Design of the lateral bracing struts:

Since the struts are spaced at 6 ft, the horizontal component of the force in a

strut will be:

H ¼ 150� 6 ¼ 900 lb
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The strut-force is

C ¼ 250� 6 ¼ 1,500 lb

Try 2� 4 Douglas Fir-Larch (North) #2 Grade. (1.5 in.� 3.5 in. dressed

sizes or true dimensions.)

Step 1. Check for maximum allowable slenderness.

‘e
d1

� �
¼ 10� 12

1:5
¼ 80 > 75 ∴N.G.

Introduce a secondary brace (as shown on Figure 8.6) to the midpoint

of the strut, thereby reducing its slenderness by half in the weak direc-

tion. Additionally it will help to reduce the deflection of the strut due to

its self-weight. Thus:

‘e
d1

� �
¼ 5� 12

1:5
¼ 40 and

‘e
d2

� �
¼ 10� 12

3:5
¼ 34:3

Step 2. Calculate the allowable force in the strut.

From Equation (8.10) F*
c ¼ FcCDCMCtCF

From Table 8.6 Fc ¼ 1,400 psi and Emin¼ 580,000 psi

From Table 8.9 CD ¼ 1.25 (load duration factor)

CM¼ 1.0 (wet service factor)

Ct ¼ 1.0 (temperature factor)

From Table 8.8 CF ¼ 1.15 (size factor)

thus

F*
c ¼ 1,400� 1:25� 1:0� 1:0� 1:15 ¼ 2,013psi

From Equation (8.12)

Emin
0 ¼580,000�1:25�1:0�1:0�1:15 ¼833,750psi

From Equation (8.11) FcE ¼ 0:822� 833,750

402
¼ 428psi

From Equation (8.13) a ¼ FcE

F*
c

¼ 428

2,013
¼ 0:213

From Equation (8.14)

CP ¼ 1þ að Þ
2c

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ að Þ

2c

	 
2
� a

c

s
¼ 1þ 0:213

2� 0:8
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:213

2� 0:8

	 
2
� 0:213

0:8

( )vuut ¼ 0:203

The allowable stress Fc
0 ¼ F*

c CP ¼ 2,013� 0:203 ¼ 409psi

From Equation (8.8)

Pallow ¼ Fc
0 �A¼ 409� 5:25¼ 2,147 lb>1,500 lb ∴o:k:
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8.7 Column Formwork Design

Reinforced concrete columns are built in many different cross-sectional shapes:

rectangular, square and round are the most typical, but L shapes, polygonal shapes,

etc. are not infrequent. In this short introductory chapter on the design of formwork,

we cannot deal with the intricacies involved with all these shapes. Hence, we

restrict ourselves to an example for a rectangular cross-section. Figure B8.2 in

Appendix B shows the forming of rectangular reinforced concrete columns.

As it was discussed in Section 8.3.2, column forms contain a relatively small

amount of concrete, hence they are filled and the concrete consolidated in a short

time, well before the concrete begins to set. Thus ACI 347 recommends that the

formwork for columns should be designed for the full hydrostatic pressure of the

fluid concrete, i.e.

p ¼ 150� h where h is measured from the top:

The plywood sheathing is usually cut in such a way that the face grains are

vertical. Flat 2� 4� s (called battens) are used to stiffen the plywood in the vertical
direction and the sheathing is subject to bending in its weak direction,

i.e., perpendicular to the face grains. Steel scissor clamps are used to hold the

sides together and resist the outward pressure. There are several manufacturers

supplying patented adjustable scissor clamps and the safe load capacities may be

obtained from their product catalogs. Figures 8.3 and 8.4 show the typical compo-

nents for a rectangular column formwork.

Example 8.7 An 11 ft high, 20 in.� 28 in. cross section column formwork is

planned using ¾ in. thick Structural I Plyform sheathing, and Douglas Fir-Larch

(North) No. 2 grade material for the battens. Assume that the sheathing will span

three or more spans. Assume dry service condition for the design of all the

elements. Design the required maximum batten spacing and the safe clamp spacing.

Limit the deflection in the plywood and the battens to a maximum of 1/16 in.

Solution

Step 1. Calculate the maximum pressure at the base. This value will be used to plan

the batten spacing.

pmax ¼ 150� 11 ¼ 1,650psf

Step 2. From Table 8.3 the allowable stresses and the modulus of elasticity for the

specified Plyform Structural I sheathing material are:

Allowable bending stress Fb¼ 1,930 psi

Allowable rolling shear stress Fs ¼ 102 psi

Modulus of elasticity E ¼ 1,650,000 psi

Step 3. From Table 8.4 the section properties of the specified sheathing in its weak

direction are:
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Moment of inertia Iy¼ 0.108 in.4/ft

Section modulus Sy¼ 0.418 in.3/ft

Rolling shear constant (Ib/Q)¼ 4.047 in.2/ft

Step 4. Using the formulas given in Table 8.11, we now calculate the maximum

length the plywood can safely span, which is the same as the maximum

spacing of the battens, considering three or more spans:

Based on bending: Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120�1,930�0:418

1,650

r
¼ 7:66in:

Based on rolling shear:

Lmax ¼
20Fv

0 Ib

Q

� �
w

þ 2d ¼ 20� 102� 4:047

1,650
þ 2� 0:75 ¼ 6:50 in:

Based on deflection:

Lmax ¼ 6:46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r
¼ 6:46�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,650,000� 0:108� 1

16

� �
1,650

4

vuuut ¼ 10:41 in:

Step 5. It appears that the rolling-shear-strength will govern the design. However,

the listed formulas used in the calculations are based on the theoretical

“knife-edge” (or at least “narrow width”) supports concept. The flat 2� 4

battens are not such, but will provide support to the plywood in a wider

zone than the center-to-center span dimensions would imply. Thus, the use

of 6.5 in. span is quite conservative.

After a bit of “trial and error” type of deliberations, the batten layout

shown on Figure 8.7 was adopted.

6 1/2" 6 1/2" 6 1/2" 6 1/2"

1 3/4"

1 3/4"

1 
3/

4"
6"

6"
6"

1 
3/

4"

Figure 8.7 Batten layout for the concrete column formwork of Example 8.7
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Step 6. Design the clamps’ spacing.

The battens that carry the largest pressure are the ones located along the

long side of the cross-section having a tributary width of 6.5 in. Assuming

the battens are 2� 4 sections, the section properties of the battens from

Table 8.5 are:

Iy ¼ 0:98 in:4 Sy ¼ 1:31 in:3 A ¼ 5:25 in:2

The reference design stresses for Douglas-Fir (North) No. 2 Grade mate-

rial from Table 8.6 are:

Fb ¼ 850psi Fv ¼ 180psi E ¼ 1,600,000psi

The applicable adjustment factors are

From Table 8.9 Load duration factor CD¼ 1.25

From Table 8.8 Flat use factor Cfu¼ 1.10

From Table 8.8 Size factor CF ¼ 1.50

Thus

Fb
0 ¼ Fb � CD � Cfu � CF ¼ 850� 1:25� 1:10� 1:50 ¼ 1,753psi

Fv
0 ¼ Fv � CD ¼ 180� 1:25 ¼ 225psi

Now we would be ready to apply the formulas listed in Table 8.11,

except we realize that the load on the battens is (1) not uniform between the

clamps, and (2) it varies along the height of the form from a maximum at

the base to zero at the top.

While a computer program could be written to solve the non-linear

problem of calculating the varying spacing of the clamps, we adopt a

much simpler method. We arbitrarily select a small distance for the first

clamp from the bottom, say 6 in. Since the formwork is restrained at its base

by 2� 4 toe members anchored into the floor (or footing), the first span on

the battens will be 6 in. Then, conservatively, we’ll assume that the pressure

in the next span will be constant and equal to the value at its lower end.

Thus the space between the first and second clamp will be calculated by

using the formulas given in Table 8.11.

If z denotes the distance from the top of the pour to the clamp, then the

pressure at the level of the first clamp is:

p1 ¼ 150� z1 ¼ 150� 11� 0:5ð Þ ¼ 1,575psf

and the load on the most-loaded batten is:

w1 ¼ 1,575� 6:5 in:

12 in:=ft
¼ 853:1 lb=ft
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Then using the Three or more spans case from Table 8.11:

Based on bending: Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120� 1,753� 1:31

853:1

r
¼ 18:0 in:

Based on shear:

Lmax ¼ 13:33Fv
0A

w
þ 2d ¼ 13:33� 225� 5:25

853:1
þ 2� 1:5 ¼ 21:5 in:

Based on deflection:

Lmax ¼ 6:46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r
¼ 6:46�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,600,000� 0:98� 1

16

� �
853:1

4

s
¼ 21:1 in:

Bending strength governs. Select this spacing of 18 in.. Thus the second

clamp from the bottom is at (6 in. + 18 in.), i.e. 20–000. Thus the distance

from the top to the second clamp from the bottom is:

z2 ¼ 11� 2 ¼ 9ft

and

p2 ¼ 9� 150 ¼ 1,350 psf

and

w2 ¼ 1,350� 6:5 in:

12 in:=ft
¼ 731:3 lb=ft

Using this load to calculate the maximum spacing between the second

and third clamps, we obtain the following:

Based on bending: Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120� 1,753� 1:31

731:3

r
¼ 19:4 in:

Based on shear:

Lmax ¼ 13:33Fv
0A

w
þ 2d ¼ 13:33� 225� 5:25

731:3
þ 2� 1:5 ¼ 24:5 in:

Based on deflection:

Lmax ¼ 6:46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r
¼ 6:46�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,600,000� 0:98� 1

16

� �
731:3

4

vuut
¼ 22:0 in:
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The process now should be clear. Using a rounded-down—from 19.4

in.—value of 18 in. as the space between the second and third clamps, the

third clamp will be 30 � 600 from the bottom. Then

z3 ¼ 11� 3:5 ¼ 7:5 ft

and

p3 ¼ 7:5� 150 ¼ 1,125psf

and

w3 ¼ 1,125� 6:5 in:

12 in:=ft
¼ 609:4 lb=ft

Using this load to calculate the maximum spacing between the third and

fourth clamps, we obtain the following limitations:

Based on bending: Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120�1,753�1:31

609:4

r
¼ 21:3in:

Based on shear:

Lmax ¼ 13:33Fv
0A

w
þ 2d ¼ 13:33� 225� 5:25

609:4
þ 2� 1:5 ¼ 28:8 in:

Based on deflection:

Lmax ¼ 6:46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r
¼ 6:46�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,600,000� 0:98� 1

16

� �
609:4

4

vuuut ¼ 23:0in:

Working our way up, we developed an acceptable design as shown on

Figure 8.8.

8.8 Floor Slab Formwork Design

Example 8.8 Design the formwork elements: decking, joists, beams and shores

required for an 8 in. thick flat slab floor. The bay sizes are 240 � 000� 240 � 000, the
floor to floor height is 12 ft. Assume normal weight concrete. Use ¾ in. thick Class

II Plyform decking (face grain perpendicular to the joists) and No. 2 Grade Hem-Fir

sawn lumber for the joists, beams and shore-posts. Assume dry service condition for
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the design of the joists and the beams (stringers). Limit the maximum allowable

deflection to L/360 in the decking, joists and beams. (Refer to Figure 8.9)

Solution

Step 1. Find the loads

Weight of concrete slab (8 in.)/(12 in./ft)� 150 pcf 100 psf

Weight of forms estimate (conservatively) 10 psf

Minimum construction live load (see Section 8.3.1) 50 psf

Total: 160 psf

Step 2. Find the section properties and the allowable stresses for the selected

decking material. This will enable the selection of an appropriate joist

spacing.

The section properties of ¾ in. Class II Plyform from Table 8.4

Moment of inertia I¼ 0.198 in.4/ft

Section modulus S¼ 0.454 in.3/ft

Rolling shear constant Ib/Q¼ 6.631 in.2/ft

toe

6"
2x

18
"=

 3
'-0

"
4x

21
"=

 7
'-0

"
6"

11
'-0

"

clamps

Figure 8.8 Final design of formwork for Example 8.7
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The allowable stresses in the plywood from Table 8.3

Bending Fb¼ 1,330 psi

Shear Fv¼ 72 psi

Modulus of elasticity E¼ 1,430,000 psi

Step 3. Find the maximum allowable joist spacing, i.e. the maximum allowable

spans for the deck.

w¼ 160� 1¼ 160 lb/ft

From Table 8.11—assuming minimum three span condition—

(a) Based on bending: Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120� 1,330� 0:454

160

r
¼ 21:3 in:

joist

spacing

shore post

spacing

parallel

with beams

shore post
spacing

perpendicular
to beams

beamspacing

plywood decking

x-bracing

Figure 8.9 Typical formwork components for a concrete floor slab
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(b) Based on shear:

Lmax ¼
20 Fv

0 Ib

Q

� �
w

þ 2d ¼ 20� 72� 6:631

160
þ 2� 0:75 ¼ 61:2 in:

(c) Based on deflection:

Lmax ¼ 1:69

ffiffiffiffiffi
EI

w

3

r
¼ 1:69�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,430,000� 0:198

160

3

r
¼ 20:4 in:

The deflection criterion governs the maximum allowable joist spac-

ing. Plywood typically is manufactured in 8 ft (96 in.) length, hence

for practical reasons we may select 96/5¼ 19.2 in., or 96/6¼ 16 in.

spacing. For best economy (using fewer joists) we select 19.2 in. joist

spacing.

Step 4. Joist design, assume the beams (sometime referred to as stringers) are

spaced at 4 ft on centers.

Try 2� 4 joists. If they turn out to be inadequate for the spacing, span and

load, thenwe couldmake adjustments either by reducing the spacing (thereby

reducing the load a joist has to carry), or increasing the size to 2� 6� s.

The uniformly distributed load on a joist equals the (psf floor load)�
(joist spacing). Thus:

w ¼ 160� 19:2

12
¼ 256 lb=ft

The Section Properties from Table 8.5

Area: A¼ 5.25 in.2

Moment of inertia I¼ 5.36 in.4

Section modulus Sx¼ 3.06 in.3

The allowable stresses for the selected Hem-Fir No. 2 from Table 8.6

Fb ¼ 850psi Fv ¼ 150psi E ¼ 1,300,000psi

Applicable adjustment factors

CD¼ 1.25 (load duration factor from Table 8.9)
CF¼ 1.50 (size factor from Table 8.8)

Thus:

Fb
0 ¼ Fb � CD � CF ¼ 850� 1:25� 1:50 ¼ 1,594 psi

Fv
0 ¼ Fv � CD ¼ 150� 1:25 ¼ 187psi
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The maximum allowable spans for the joists from Table 8.11 (assuming

three span conditions) are:

(a) Based on bending:

Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120� 1,594� 3:06

256

r
¼ 47:8 in:

(b) Based on shear:

Lmax ¼ 13:33Fv
0A

w
þ 2d ¼ 13:33� 187� 5:25

256
þ 2� 3:5 ¼ 58:1 in:

(c) Based on deflection:

Lmax ¼ 1:69

ffiffiffiffiffi
EI

w

3

r
¼ 1:69�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,300,000� 5:36

256

3

r
¼ 50:8 in:

While the maximum allowable length obtained from the governing crite-

rion—bending—is a tiny bit less than the planned span of 48 in., the

difference amounts to less than ½%, the use of the 2� 4 joists at 19.2 in.

spacing and 48 in. span can be accepted.

Step 5. Beam (Stringer) design.

As shown in Figure 8.9, the beams support the joists. We may approach this

problem either by assuming a size and then calculate the maximum allow-

able span, which is the same as finding the spacing of the shores under the

beams, or arbitrarily assume a shore spacing and then find an acceptable

beam section. We will select the first route, as it is the easier approach. In

the given bay size (24 ft) the beam spacing (which is based on the joists

spans) of 4 ft can provide an orderly layout of the shore-posts in one

direction.

Hence, we will select a trial beam size of 4� 6, No. 2 Hem-Fir. This is

still small enough to likely be available in length sufficient for 3-span

condition.

The reaction forces from the joists do not produce a “uniformly distrib-

uted” loading pattern on the beams. However, since the joists are closely

spaced, it is customary to assume an equivalent distributed load derived

from the total loads.

Thus, the design loads on the beams will be the (psf floor loads)� (beam
spacing).

w ¼ 160psf � 4ft ¼ 640 lb=ft

The section properties for a 4� 6 cross-section are (from Table 8.5):
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Area: A¼ 19.25 in.2

Moment of inertia I¼ 48.53 in.4

Section modulus Sx¼ 17.65 in.3

The reference design stresses for the selected Hem-Fir No. 2 from

Table 8.6:

Fb ¼ 850psi Fv ¼ 150psi E ¼ 1,300,000psi

Applicable adjustment factors

CD¼ 1.25 (load duration factor from Table 8.9)

CF¼ 1.30 (size factor from Table 8.8)

Thus:

Fb
0 ¼ Fb � CD � CF ¼ 850� 1:25� 1:30 ¼ 1,381psi

Fv
0 ¼ Fv � CD ¼ 150� 1:25 ¼ 187psi

The maximum allowable spans for the beams from Table 8.11 (assuming

three span conditions) are:

(a) Based on bending Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120� 1,381� 17:65

640

r
¼ 67:6 in:

(b) Based on shear: Lmax ¼ 13:33� 187� 19:25

640
þ 2� 5:5¼ 86:0 in:

(c) Based on deflection: Lmax ¼ 1:69�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,300,000�48:53

640

3

r
¼ 78:1 in:

Studying the results we realize that 67.6 in. is a somewhat awkward

value, when we try to fit it somehow into the 24 ft bay spacing. One simple

solution is to space the shores under the beams at 4.8 ft (57.6 in.), which

will produce five rows of shores in a 24 ft bay.

We select this as the best compromise.

Step 6. Check the supporting shore-posts using 4� 4 Hem-Fir No. 2 material.

From the previous calculations, each shore post has a tributary area of

4� 4:8 ¼ 19:2 ft2

Thus the load is: 19.2 ft2� 160 psf¼ 3,072 lb.
Since the floor-to-floor height was given as 12 ft, with reference to

Figure 8.10, the unsupported length of the shore post is:

‘e ¼ 144� 17:75 ¼ 126:25 in:

and the slenderness ratio is

‘e
d
¼ 126:25

3:5
¼ 36:1 < 75 ∴o:k:
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The reference design values for compression parallel with the grain for

the selected No. 2 Hem-Fir material from Table 8.6:

Fc ¼ 1,300 psi E ¼ 1,300,000 psi Emin ¼ 470,000 psi

The applicable adjustment factors (refer to discussion in Section 8.5.1.2)

are

CD¼ 1.0 (load duration factor)

CM¼ 0.8 (wet service factor) for F
�
c and 0.9 for E

0
min

CF¼ 1.15 (size factor from Table 8.8)

Ct¼ 1.0

Following the calculations shown in Example 8.5, we obtain:

From Equation (8.10):

F*
c ¼ FcCDCMCtCF ¼ 1,300� 1:0� 0:8� 1:0� 1:15 ¼ 1,196 psi

From Equation (8.12):

Emin
0 ¼ EminCDCMCtCF ¼ 470,000� 1:0� 0:9� 1:0� 1:15 ¼ 486,450psi

From Equation (8.11): FcE ¼ 0:822Emin
0

‘e=dð Þ2 ¼ 0:822 � 486,450

ð36:1Þ2 ¼ 307psi

Calculate the ratio a ¼ FcE

F*
c

¼ 307

1,196
¼ 0:257

Then the column stability factor from Equation (8.9) is:

CP ¼ 1þ 0:257

2� 0:8
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:257

2� 0:8

	 
2
� 0:257

0:8

( )vuut ¼ 0:242

Thus the allowable compression stress in the 4� 4 shore post is:

Fc
0 ¼ CP � F*

c ¼ 0:242� 1,196 ¼ 289psi

From Table 8.5 the cross-section area of the post is A¼ 12.25 in.2

8.00"

0.75"
3.50"

5.50"

17.75"

shore post

concrete:.......

plywood:.......
joists:............

beams:..........

total:.............

Figure 8.10 Section through the formwork for the concrete floor slab in Example 8.8
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Then the allowable load on top of the shore-post is:

Pallow ¼ Fc
0 � A ¼ 289� 12:25 ¼ 3,540 lb > 3,072 lb

The 4�4 shore post is safe for the load and height.

8.9 Beam Formwork Design

Beam forms can be developed in many different ways, depending on how the

formwork designer decides to integrate it within the slab forms. Figure 8.11

shows only one possible formation, however the issues that are associated with

the design of the elements involved therein are quite similar to any other type of

formwork layout for beams. Figure B8.3 in Appendix B shows the forming of

reinforced concrete beams and slabs.

The important items that will require our attention are the design of: (1) the

bottom form; (2) the side forms; (3) the runner joists; and (4) the kicker. [Refer to

Figure 8.11 for the identification of these elements.] The design (or checking) of the

other elements should be familiar by now, if the reader already studied the floor-

slab form design in Example 8.8.

chamfer strip
if required

beams

kicker
blocking

ledger

bottom sheathing
side sheathing

x-braces at
selected
locations.

4'-0" 4'-0"

top of concrete slab

shore posts

runner joists

2'-6"

joists for slab forms

Figure 8.11 Typical formwork components for a concrete beam
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Example 8.9 Design the formwork for a 16 in. wide, 24 in. deep beam as shown in

Figure 8.11. Slab is 6 in. thick. Use Class I Plyform for the sheathing and Grade

No. 2 Hem-Fir for the dimensional lumber. Assume dry service condition. Limit the

maximum deflection of bottom sheathing to L/360, and the kickers to 1/32 in.

Solution

Step 1. Bottom sheathing design.

The bottom form needs to be designed to support the weight of the fresh

concrete above it. (24 in.)

w ¼ 150pcf � 24 in:

12 in:=ft
¼ 300psf

Note: No construction Live Load is used for the design of the beam

bottom, for there is highly unlikely within the confines of the small space of

the beam forms. One may wish to add here the self-weight of the ply-

wood—approximately 3.3 psf—but it can be safely neglected in the design

of this element.

The bottom forms are usually cut in such a way that the plywood bends

in its strong direction. As it is shown in Figure 8.11, this bottom form spans

between the runner joists, which in turn are supported by beams. Assuming

a minimum 3-span condition, we will try to work with the thickest Plyform

decking available, 1–1/8 in. thick.

The section properties, i.e. the moment of inertia, the effective

section modulus and the rolling shear constant respectively from Table 8.4:

I ¼ 0:554 in:4=ft KS ¼ 0:849 in:3=ft Ib=Q ¼ 10:43 in:2=ft

The material properties, i.e. the allowable bending stress, the allowable

rolling-shear stress and the modulus of elasticity from Table 8.3:

Fb ¼ 1,930psi Fs ¼ 72psi E ¼ 1,650,000psi

From Table 8.11 the maximum allowable spans for the 1–1/8 in. thick

bottom is the least of

(a) Based on bending: Lmax¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120�1,930�0:849

300

r
¼25:6 in:

(b) Based on shear:

Lmax ¼
20Fv

0 Ib
Q

� �
w

þ 2d ¼ 20� 72� 10:43

300
þ 2� 1:125 ¼ 52:3 in:
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(c) Based on deflection:

Lmax ¼ 1:69

ffiffiffiffiffi
EI

w

3

r
¼ 1:69�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,650,000� 0:554

300

3

r
¼ 24:5 in:

Based on these results we select 24 in. span for the bottom, which

will be used as the spacing of the runner joists.

Step 2. Design the side forms.

The most conservative assumption is that the side-forms span vertically

from the base to the sheathing under the 6 in. slab (24 in.� 6 in.¼ 18 in.) in

our case, and the bending is in the weak direction of the plywood. The

lateral pressure from the fresh concrete will not be uniform, but vary with

the depth as shown on Figure 8.12.

p1 ¼ 150� 6=12ð Þ ¼ 75psf p2 ¼ 150� 24=12ð Þ ¼ 300psf

This type of loading condition on a simple span is analogous to the problem

of lateral pressure on basement walls, and the solution for the maximum

moment, reaction forces, etc. can be found from the formulas shown in Figure

7.59(b) of Chapter 7 of this book. Using that line of calculation, we obtain

Mmax ¼ 53:2 ft -lb=ft

Or we may want to use an approximation by using the average pressure

as a uniform load. This calculation results in

Mmax ¼ 75þ 300

2

� �
� 1:52

8
¼ 52:7 ft -lb=ft

The two results are about 1% different from each other.

R1=112.5 lb / ft

R2=168.8 lb / ft

75 psf

300 psf

18
" 

(1
.5

0'
)

Figure 8.12 Lateral concrete pressure on the beam formwork
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Try ¾ in. plyform. The section properties of the assumed ¾ in. Class I

Plyform from Table 8.4, bending perpendicular to grain:

I ¼ 0:092 in:4=ft KS ¼ 0:306 in:3=ft Ib=Q ¼ 4:063 in:2=ft

The material properties from Table 8.3:

Fb ¼ 1,930psi Fs ¼ 72psi E ¼ 1,650,000psi

(a) Check for bending from the calculated Mmax¼ 52.7 lb-ft

fb ¼
M

S
¼ 52:7� 12

0:306
¼ 2,067psi > 1,930psi ∴N:G:

We have to select a thicker Plyform for the side-wall sheathing.

Try 7/8 in.
The section properties from Table 8.4 are

I ¼ 0:151 in:4=ft KS ¼ 0:422 in:3=ft Ib=Q ¼ 6:028 in:2=ft

Re-check for bending: fb ¼
M

S
¼ 52:7 � 12

0:422
¼ 1,499psi < 1,930

psi ∴o:k:

(b) Check for deflection using the simplified assumption that the loads are

uniform:

From Table 8.10 for simple span

Δmax ¼ 5

384
� w

12
� L4

EI
¼ 5

384
�

300þ 75

2

� �
12

� 1:5� 12ð Þ4
1,650,000� 0:151

¼ 0:0857 in:

This is about Span/210. (18/0.0857¼ 210). The slight bulge of the

side form may be acceptable if the beam will not be exposed to view in

the finished building.

(c) Check for rolling shear.

Since the reactions, consequently the shears, are significantly different

at the top and the bottom, we need to evaluate the maximum design

shear more accurately.

The larger reaction force is at the bottom and equal to

R2¼ 168.8 lb/ft (see Figure 8.12). The critical section will be at a

d distance from the edge of the support. Since the lateral pressure on

the sides drops by
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1

12
� 150 ¼ 12:5psf

for each inch above the bottom, the lateral pressure at the location of

one inch above the bottom is 300� 12.5¼ 287.5 psf. Assuming the

critical section to be 1 in. (plywood thickness¼ 7/8 in.), then

Vcrit ¼ 168:8� 300þ 287:5

2
� 1

12
¼ 144:3 lb=ft

And the rolling shear stress (Equation 8.5):

fs ¼
V

Ib
Q

� � ¼ 144:3

6:028
¼ 24psi < Fs ¼ 72psi ∴o:k:

Step 3. Design the runner joists.

It is clear from the shoring configuration shown on Figure 8.11 that the

spacing of the posts, and the span of the runner joists that result from that, is

somewhat arbitrary. In this example we select 20–600.

(a) Calculate the loads that the runner joists must carry. Since the slab-

form joists also rest on the sides of the beam formwork, as shown on

Figure 8.11, in the load analysis we have to account for that as well.

Concrete in beam’s stem 150� (16� 18)/144¼ 300 lb/ft

Concrete in slab from 4 ft tributary width 150� 4� (6/12)¼ 300 lb/ft

Formwork, estimated 10 psf 4� 10¼ 40 lb/ft

Minimum construction live loads (Section 8.3.1) 4� 50¼ 200 lb/ft

Total¼ 840 lb/ft

At the conclusion of Step 1, we selected the spacing of the runner

joists as 20–000. Thus, the total load on a runner joist is 1,680 lb. We

may assume that this load is distributed over an approximately 18 in.

width, (beam width¼ 16 in. and 2 in. for the side sheathings),

resulting in a loading condition shown on Figure 8.13.

Then the maximum moment in the runner joist is:

Mmax ¼ 840� 2:5=2ð Þ � 1,120� 1:5=2ð Þ � 1:5=4ð Þ ¼ 735 lb -ft

The reference design stresses in the selected Hem-Fir No. 2 Grade

material from Table 8.6 for the assumed 2� 4 section

Fb ¼ 850psi Fv ¼ 150psi E ¼ 1,300,000psi
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The applicable adjustment factors

From Table 8.9 Load duration factor CD¼ 1.25

From Table 8.8 size factor CF¼ 1.50

Hence, the allowable design stresses

Fb
0 ¼ 850� 1:25� 1:50 ¼ 1,594psi and Fv

0 ¼ 150� 1:25 ¼ 187psi

Thus the allowable maximum moment in the 2� 4 section

(S¼ 3.06 in.3) is:

Fb
0 � S ¼ 1,594� 3:06 ¼ 4,877 lb -in: ¼ 406:5 lb-ft < 735 lb-ft ∴N:G:

A single 2� 4 is not sufficient!

Try double 2� 4� s for the runner joists: S¼ 2� 3.06¼ 6.12 in.3

Then the allowable moment is:

Ma ¼ 1,594� 6:12 ¼ 9,755 lb-in: ¼ 813 lb-ft > 735 lb-ft ∴o:k:

(b) Check shear in the double 2� 4� s. (A¼ 2� 5.25¼ 10.50 in.2)

fvmax ¼
3

2
� V

A
¼ 3

2
� 840

2� 5:25ð Þ ¼ 120psi < Fv
0 ¼ 187psi ∴o:k:

(c) Check for deflection

The formula for a single span beam shown in Table 8.10 may be

resolved in term of Mmax as follows (subsituted Mmax for wL
2/8):

Δmax ¼ 5

48
�MmaxL

2

EI

Substituting the values calculated above, the maximum deflection

in the Double 2� 4 runner joist is

84
0 

lb

84
0 

lb

1,680
1.5

=1,120 plf

1'-6"

2'-6"

Figure 8.13 Load distribution on a runner joist supporting the beam formwork
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Δmax ¼ 5

48
� 735� 12ð Þ � 302

1,300,000� 2� 5:36ð Þ ¼ 0:059 in:

L=360 ¼ 30=360 ¼ 0:083 in: > 0:059 in: ∴o:k:

Step 4. Check the kicker

The kicker must hold the bottom edge of the side form in place. (See

Figure 8.11). From Figure 8.12 this lateral load is 168.8 lb/ft. The kicker’s

span is 2.0 ft, the distance between the runner joists.

Using again 2� 4 Hem-Fir No. 2 Grade and assuming three (or more)

span condition, the allowable span from Table 8.11 is the least of

(a) Based on bending:

Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120Fb

0S
w

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120� 1,594� 3:06

168:8

r
¼ 58:9 in:

(b) Based on shear:

Lmax ¼ 13:33Fv
0A

w
þ 2d ¼ 13:33� 187� 5:25

168:8
þ 2� 3:5 ¼ 84:5 in:

(c) Based on an allowable Δmax¼ 1/32 in. deflection:

Lmax ¼ 6:46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIΔmax

w

4

r
¼ 6:46�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,300,000� 5:36� 1=32ð Þ

168:8

4

r
¼ 38:7 in:

38.7 in.> 24 in.—the 2� 4 kicker is safe to use.

Problems

Assume dry service condition for all the following problems.

8.1. A 60 ft long, 16 ft high and 24 in. thick wall pour is planned. Concrete trucks

arrive at the site at 20 minute intervals, each carrying 8 cubic yards of

concrete. The concrete is planned to be placed in uniform horizontal layers.

Calculate the expected rate of pour in the wall.

8.2. The concrete in Problem 1 is normal weight. The cementitious materials in

the mix are 50% Type I Portland Cement, 25% Fly Ash and 25% GBFS

(Granulated Blast Furnace Slag). A retarding admixture will be added since

the temperature is expected to be 80 �F. Calculate the pressures the wall

forms have to be designed for. Make a sketch of the vertical distribution of

the design pressures.

8.3. Calculate the maximum allowable pressure on ¾ in. thick Class II Plyform

sheathing that spans over 2� 4 studs placed at 16 in. center-to-center.

Problems 563



Assume minimum three span condition with the face grain perpendicular to

the supports. The maximum allowable deflection in the sheathing is L/360.
8.4. A 9 ft high 20 in.� 20 in. column form is planned. The form will be built from

¾ in. Class I Plyform material, face grain vertical, without battens. Calculate

the required clamp spacing for the first three clamps above the base. The

maximum deflection between the clamps may not exceed 1/16 in.

8.5. Calculate the allowable safe load on a Spruce-Pine-Fir No. 2, 4� 4 shore

post, if the laterally unsupported height is: (a) 80–000 and (b) 120–000.
8.6. A 10 in. thick floor slab using normal weight concrete is formed with 23/32

in. thick Class I Plyform decking on 2� 6 Douglas Fir Larch (DFL) (North)

No. 2 joists. The face grain will be perpendicular to the supports. The

maximum allowable deflection of the decking may not exceed L/360. Calcu-
late the allowable joist spacing.

8.7. A 10 in. thick floor slab using normal weight concrete is formed with

plywood over 2� 6 Douglas Fir-Larch (North) No. 2 joists at 16 in. center-

to-center. Assume 2-span condition. Calculate the maximum allowable spac-

ing of the beams made up from Double 2� 10 DFL No. 2 material. The

maximum allowable deflection of the joists may not exceed L/360.
8.8. Design the bottom form for a 24 in. wide by 30 in. deep beam using 1 in. thick

Class I Plyform. Assuming three span condition, calculate the allowable

spacing of the runner joists. The maximum allowable deflection of beam

bottom form between the runner joists is 1/16 in.

8.9. Design the formwork components for a 10 ft high, 12 in. thick wall.

Assume Cw¼ 1.0, Cc¼ 1.0, temperature 75 �F and 4 ft/hour rate of pour.

Materials will be 23/32 in. Class I Plyform for the sheathing and Construc-

tion Grade Hem-Fir 2� 4 studs, double 2� 4� s for wales. Limit the

deflection of all individual components to L/360. Calculate the maximum

tie force. Make a sketch of your design identifying all your selections.

8.10. The wall form described in Problem 8.9 is planned to be braced by 4� 4

Construction Grade Hem-Fir struts, the top end attached at 9 ft above the base

and slopes 45�. The spacing between the braces will be 8 ft. Check the

adequacy of the brace for a minimum 15 psf wind-load, or alternately for

ACI 347 recommended 100 lb/ft horizontal distributed load at the top of the

forms.

Self-Experiments

Experiment 1

Following the details shown in Figure 8.5, construct the formwork for a 24 in.

high – 3 in. thick concrete wall. Calculate the required thickness of the plywood

sheathing and the size of the studs, wales, ties and struts. Remove the forms 2 days

after the pour. Discuss the various stages of this task and the challenges you were

faced with.
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Experiment 2

Following the details shown in Figures 8.3 and 8.4, construct the formwork for a

8 in.� 8 in. – 24 in. high concrete column. Construct the forms without battens.

Calculate the required thickness of the sheathing, size and spacing of the clamps.

Remove the forms 2 days after casting the concrete. Discuss the various stages of

the form construction and concrete placement along with any challenges that you

were faced with.
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Chapter 9

Overview of Prestressed Concrete

9.1 Introduction

Concrete has a considerable compressive strength, but its tensile strength is quite

limited. Thus, designers use reinforcement in conjunction with concrete to make

useful elements in buildings.

Early on, researchers realized that tensile stresses could be eliminated in con-

crete structures by adding sufficient compressive stresses to balance them out. Then

the element would have a stress distribution throughout that consisted of

compression only.

Figure 9.1 shows a simply-supported beam with an applied distributed load

w¼ 800 lb/ft. The cross section of the beam is b¼ 12 in. and h¼ 18 in. If this

beam is made of a homogeneous elastic material, the stresses can be calculated as

follows:

Mmax ¼ 0:8 20ð Þ2
8

¼ 40 kip-ft

The elastic section modulus is:

Sm ¼ 12 18ð Þ2
6

¼ 648 in:3

The maximum stress at the location of the largest moment is:

fmax ¼
40� 12,000

648
¼ 741psi

This value represents the compression at the top edge of the section, and a similar

magnitude of tension at the bottom edge. Based on the discussions on the tensile
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strength of concrete in Chapter 1, we conclude that a plain (unreinforced) concrete

beam would fail under this load.

Now imagine that the beam is precompressed (prestressed) before it is loaded

with the distributed load. Figure 9.2 shows this beam with a pair of forces acting on

the centerline.

The force P would produce uniform compressive stresses over the cross section.

The magnitude of the force P needed to eliminate any tension on this beam could be

determined as follows:

f ¼ P

A
¼ 741psi

Then

P ¼ 741� 12� 18ð Þ ¼ 160,000 lb

Figure 9.3 shows a graphical representation of the superimposed stresses caused by

the axial load and the distributed load at the midspan of the beam.

As just mentioned, these are the stresses at midspan. At the bottom edge of the

section, the compression from the force P and the tension from the maximum

moment will exactly balance each other. At the top edge, the compression from

the moment is added to that from the force P. The rest of the beam will have

compressions at both the top and the bottom. For example, at 50�000 from the

support, the moment is only M¼ 30 kip-ft. Figure 9.4 shows the stresses at that

location.

n.a.

W  800 lb/ft

12 in.
20'-0"

h  18 in.

Figure 9.1 Bending of a simply-supported beam

P

20'-0"

P

Figure 9.2 Simply-supported beam subject to concentric axial load
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Now consider what will happen if the initial prestressing force is moved down-

ward at an eccentricity e from the centroid. As discussed in Chapter 5, an eccentric

force has the same effect as a concentric force plus a moment. See Figure 9.5. The

force P still causes a uniform compression on the section; however, the M¼P� e
moment will cause tension at the top edge and compression at the bottom edge. So

how large an eccentricity is needed so that the tension from the moment and the

compression from the force P at the top edge cancel out each other? To answer this

question we must first algebraically make the stresses due to the force equal to the

stresses due to the moment. Mathematically this is expressed as follows:

P

A
� M

Sm
¼ 0 or

P

bd
� P� e

bd2

6

¼ 0

Then we solve for e:

e ¼ d

6

1,482

0

c741 741

741 741

n.a.

a b

Figure 9.3 Stresses in the beam: (a) from force P, (b) from bending, (c) superimposed

from P force

1,297

185

741 556

741

n.a.

from 30 kip-ft bending

556

a b c

Figure 9.4 Stresses at 50–000 from the support: (a) from force P, (b) from 30 ft-kip moment, (c)
superimposed

P

e
P

M  P  e 

Figure 9.5 Moment due to an eccentric axial force, P
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Returning to the numerical problem: Assume e¼ 3 in. and determine the amount of

eccentric prestress force, P, is needed to have zero tension after the application of

uniform loads of 800 lb/ft to the beam. The equation expressing this condition is:

P

A
þ P� e

Sm
�Mmax � 12,000

Sm
¼ 0

where
P

A
is the compressive stress caused by the force P,

P� e

Sm
is the compressive

stresses caused by the eccentricity of the force P, and
Mmax � 12,000

Sm
is the tensile

stress caused by the maximum moment. P is assumed to be in lb, and Mmax is in

ft-kip. (Note that a positive value designates compressive stress and a negative

value designates tensile stress.)

Substituting e¼ 3 in., A¼ 12� 18¼ 216 in2, Sm¼ 648 in3, andMmax¼ 40 kip-ft

and solving for P:

P ¼ 80,000 lb

This value is only half that needed to achieve the same result when the P force was

concentrically applied. So, providing a well-selected eccentricity to the prestressing

force can drastically reduce the magnitude of the force and still have the same effect

as a concentrically applied force.

Although the tensile strength of concrete is small compared to its compressive

strength, the ACI Code (Section 24.5.3.2) allows the section initially (at the time the

prestressing force is applied) to have tensile stress equal to ft ¼ 3
ffiffiffiffiffiffiffi
f ci
0 :

p
Here fci

0 is
the specified compressive strength of the concrete at the time the prestress is

applied. This value is usually smaller than the final design strength of the concrete,

as prestressing is usually accomplished before the concrete is completely cured.

Similarly, the ACI Code permits a tensile stress of ft ¼ 7:5
ffiffiffiffi
fc
0p
under full service

load condition in most applications.

For the final introductory example we examine the use of the allowable tensile

stress at the bottom of the section at midspan. Assume that fc
0 ¼ 5,000 psi:Then the

beam can have ft ¼ 7:5
ffiffiffiffiffiffiffiffiffiffiffi
5,000

p ¼ 530:3 psi of tension in the final service load

condition. Using e¼ 3 in., we obtain the following equation for the service load

condition at midspan after the substitutions:

P

216
þ P� 3

648
� 40� 12,000

648
¼ �530:3 psi

(Note: The negative sign in front of “530.3” indicates tension.) Solving for P:

P ¼ 22,728 lb

This is the amount of prestress force that the beam needs at service load condition.
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Some further refinements to these foregoing introductory examples will be

discussed later in this chapter.

9.2 Advantages of Prestressed Concrete Structures

One major advantage of prestressing is that it prevents cracks in the concrete

structure by either limiting or completely eliminating tensile stresses in the

structure. But prestressing has another very important advantage. Prestressed

structural elements can be much shallower than ordinary reinforced concrete

elements for the same span and loading conditions, while still maintaining good

span/deflection ratios. The shallower depths in turn result in lighter structural

elements, thus providing considerable savings in the dead loads the structure

must carry. The savings extend to reduced floor-to-floor heights and lighter

column and foundation loads as well. The reduced floor-to-floor height in

multistory buildings results in large savings in nonstructural building elements

such as walls. The reduced building volume also lessens the energy needed for

heating and cooling.

It is somewhat difficult to give precise span-depth ratios for prestressed concrete

structural elements, so you should use the values listed in Table 9.1 only as a

recommendation for preliminary selection of structural depth. In the authors’

experience, using these values as limits will result in structural elements that

perform well and without excessive camber, deflection, or bothersome vibration.

The ratios may safely be exceeded by about 10% for roof structures. Thus,

prestressed hollow core slabs used for roofs will perform well with span-depth

ratios of 40.

Compare the values in Table 9.1 to those recommended in foregoing chapters for

elements using normal reinforced concrete, and note the depth and weight savings

the prestressing offers. For example, the 10 in. flat plate in Example 6.3 can be

designed with a thickness of 7.5–8 in. if prestressing is used, reducing the dead

loads by 20–25%.

Table 9.1 Recommended maximum span-depth ratios for prestressed floor structures with mod-

erate live loads

Single span
(floor)

Continuous spans
(floor)

Prestressed hollow core slabs 36 N.A.

Prestressed double tees 32 N.A.

Posttensioned one-way solid slabs 44 48

Posttensioned solid slab cantilevers 18 N.A.

Posttensioned flat plates (supported on
columns)

N.A. 45

Posttensioned waffle slabs (supported on
columns)

N.A. 35
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9.3 Types of Prestressing

9.3.1 Pretensioning

In pretensioning, as the expression illustrates, the prestressing strands are tensioned
before the casting of the element by stretching and fixing them against two

bulkheads, as illustrated in Figure 9.6. The bulkheads are very strong and designed

to take the large forces from the initial stretching of the prestressing strands. The

strands are anchored at one end (the “dead” end) and then pulled from the other end

(the “live” end) one by one with a specially designed hydraulic jack. The force in

the strands can be measured directly on the jack or determined from the amount of

elongation. Elongation is directly related to the stress in the strand, so we can

readily determine the force in the strand if we know the cross-sectional area of the

strand. The strands are anchored at the live end as well once the appropriate force

has been reached.

In the next step we set up the forms around the stressed strands and cast the

concrete, as illustrated in Figure 9.7.

After the concrete has gained sufficient strength, the strands are released, as

illustrated in Figure 9.8. The bond established between the strands and the cured

concrete transfers the force in the strands into the concrete element. The tension in

the strands now becomes compression on the concrete. This transfer occurs within a

few inches from the ends of the members.

This method is applicable for precast and prestressed elements produced in

manufacturing plants. The production technique often involves the casting of

Bulkhead Prestressing strands Anchorage

Figure 9.6 Prestressing process (step 1: placing strands)

Figure 9.7 Prestressing process (step 2: placing concrete)

Figure 9.8 Prestressing process (step 3: releasing strands)
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elements in long (up to 600 ft) casting beds, which permits the simultaneous

fabrication of many elements with a single tensioning of the strands. A large saw

is used to cut each element to its individual required length. Accelerated curing

techniques permit the release of the strands in only 16–18 hours after the placement

of the concrete; thus, a 24 hours manufacturing cycle can be maintained. The

production is highly mechanized and provides great quality control. Many standard-

ized profiles are available in catalog form for spans and loading capacities. These

can be readily called out and specified by the designer. Figures 9.9 to 9.13 show

some typical profiles that are popular in building construction.

Hollow core decks are a popular precast and prestressed building element. They

are typically available in standard depths of 6, 8, 10, and 12 in., and are

manufactured mostly in 40–000 width, although some manufacturers may supply

them in 20–000 or 80–000 widths. The shape of the cores may also differ from the

circles shown on Figure 9.9, as different patented manufacturing processes are used

to form them. Not all building designs can use the standard widths, so narrower

filler panels are made by slicing the panels lengthwise. Panels can also be cut at an

angle to accommodate supporting beams or girders that are not perpendicular to the

span of the panels.

A grout key is formed at the sides of the individual decks. As the name indicates,

the formed keyway is grouted solid after the erection of the panels. The keyways

prevent individual panels from deflecting differently after the grout cures. Thus, a

kind of lateral load transfer occurs if one of the floor panels is loaded much more

than its neighbors.

The top surface of hollow core decks is not smooth enough for floor structures,

which receive finish materials like tiles or carpets. Thus, in those types of applica-

tions, the decks usually receive a 2 in.-thick (nominal) concrete topping (see

Figure 9.10) that can be finished to the desired flatness and smoothness. The

concrete topping bonds to the surface of the decks and becomes a composite part

of the whole. It also makes the floor thicker, and consequently considerably stiffer

than one made of untopped decks.

Grout key

Figure 9.9 Hollow core decks (without concrete topping)

Concrete topping

Figure 9.10 Hollow core decks (with concrete topping)
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The topping thickness is a nominal thickness. Decks usually have an upward

deflection or camber when they are erected. This is a natural result of the

pretensioning process, in which the strands compress the bottom and sometimes

also cause tension on the top. Thus, the top elongates and the bottom shortens,

resulting in an upward curvature (i.e., camber). Calculation of the camber is a

somewhat complicated process. It requires a reasonable estimate of the concrete’s

modulus of elasticity, as the concrete continues to cure even after the prestress has

been applied. It also requires a knowledge of the rate of shrinkage and creep

deformation that take place as the concrete ages. For example, a typical 8 in.-

thick hollow core deck, 20–25 ft long, may exhibit a ¾ in. camber at the time of its

erection. In order to eliminate midspan humps from the finished structure, engineers

may use only 1½ in. topping at the center of the span and 2¼ in. at the supports, or

some similar combination, to make the finished floor as flat as possible.

Another popular precast and prestressed building element is the double tee,
which is shown in Figure 9.11. These are also standard elements, although some

manufacturers may make them in only one width, or may not provide them in

depths beyond a certain dimension.

Double tees are quite light; the top slab is typically 2 in. thick only at the outer

edges. They are very economical for covering large spans (spans of 100 ft or more

are not uncommon). Such long elements, however, are difficult to transport in a

tight urban environment. Double tees are rather flexible, so their camber or deflec-

tion under load can be significant, especially on longer spans. So the designer must

carefully plan the interface of double tees with other building elements. A double

tee on an 80 or 90 ft span element may have an initial camber of 3–4 in. (or more),

with perhaps a similar magnitude of deflection under loads. That much movement

requires very careful consideration of details, such as when the design contemplates

a window-wall parallel with the span of a double tee.

Figures 9.12 and 9.13 show some other typical precast and prestressed elements

that are frequently used to support floor elements in building construction. The

shapes shown here are just a few of the many different shapes readily available to

the designer. Figure B9.1 in Appendix B shows prestressed I-Section beams.

2'-0"
4'-0"
5'-0"

12 to 36 in.

4'-0"
8'-0"
10'-0"

Figure 9.11 Double tee section
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9.3.2 Posttensioning

Posttensioning is a technique used to prestress concrete structures on the job site

after the concrete has been cast into the forms and cured. It differs from

pretensioning, which is typically used to manufacture building elements away
from the building site. The posttensioning technique places flexible hollow metal

or plastic tubes into the formwork to form ducts. Tendons are inserted through the

ducts after the concrete has cured. Other techniques place plastic sheeted tendons

into the formwork. The plastic sheet prevents the tendons from bonding with the

cast concrete. The strand or tendon is anchored at one end to a device or plate cast

into the concrete (the “dead” end). Portable hydraulic jacks from the “live” end

provide tensioning. The jack leans against the concrete surface while pulling on the

tendon. A calibrated gage on the stressing jack shows the amount of force in the

tendon, while the elongation of the tendon is also measured to ensure quality

control. After the design force has been reached, the stretched tendon is anchored

to the concrete. Figure B9.2 shows the anchoring of a post-tensioned roof beam, and

Figure B9.3 shows the same beam after the post-tensioning process completed.

The space between the duct and the tendon is pressure grouted in certain

applications. The grouting not only creates a continuous bond between the tendon

and the duct, which is bonded to the concrete, but also provides enhanced corrosion

protection for the tendon. In other applications, the tendons are left ungrouted and

must rely on the continuing performance of the end anchorages throughout the

service life of the structure. These tendons are usually pregreased inside the ducts.

Greasing helps to minimize the frictional losses on curved tendons. (See discussion

later in this chapter.)

Bearing pad

Figure 9.12 Inverted T-beam supporting double tees

Figure 9.13 Inverted T-beam and L-beam supporting hollow core decks
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Posttensioning has one vast advantage over pretensioning: It usually uses curved

tendons. This enables the designer to change the location of the prestressing force

from section to section along the length of the structure.

Figure 9.14 shows a single span beam with the strands draped in a parabolic

form. After tensioning, the eccentricity of the prestressing force to the neutral axis

is zero at the ends and maximum at the center. The moment resulting from the

prestressing causes compression at the bottom and tension at the top. The maximum

of these forces occurs at midspan, as illustrated in Figure 9.14. In fact, the forces

closely balance the effects of the gravity loads on the beam.

Posttensioning also enables designers to use prestressing on continuous spans.

Pretensioned members, because of their straight strands, are used only as simply-

supported single spans, although short cantilevers can also be accommodated by

adding conventional reinforcing. Posttensioning, however, can use draped strands,

as shown in Figure 9.15, to follow the requirements of the bending moments from

the gravity loads. The strands are near the bottom of the section where the bending

moments are positive, and are near the top of the section where the bending

moments are negative.

9.4 Prestressed Concrete Materials

9.4.1 Concrete

Prestressed concretes generally are high-strength concretes with fc
0 ¼ 5,000 to

6,000 psi: These high-strength concretes are better for many reasons. Chief

among these reasons is that these concretes have a smaller amount of shrinkage

and creep, which lessens the loss of prestress. Another reason is that in both pre- and

posttensioning, very highly stressed regions arise in compression at the anchorages;

high-strength concretes are needed to withstand these stresses.

Figure 9.14 Draped strands in a single span beam

Figure 9.15 Draped strands in continuous beams or slabs
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9.4.2 Prestressing Steel

The earliest experiments with prestressing failed mainly because they were

performed with ordinary steels (yield strength in the range of 36–40 ksi). All, or

almost all, of the prestress was lost with the passage of time, due to a series of

contributory reasons. (Loss of prestress in normal applications may amount to

25–35 ksi, or higher.)

The use of very high-strength steel wires helped to solve this problem, as these

wires, even after the considerable prestress losses, retained sufficient stress levels.

Although many proprietary prestressing (mostly post-tensioning) systems use

large-diameter, high-strength bars, most systems employ prestressing strands

manufactured from cold-drawn wires conforming to ASTM A421. Usually six

wires are wound tightly around a seventh (and usually slightly larger-diameter)

wire into a uniform pitch helix, as illustrated in Figure 1.21. The pitch is 12–16

times the diameter of the wires. After manufacture, the strands are put through a

stress-relieving heat treatment to make them conform to the requirements of ASTM

A216, “Standard Specifications for Uncoated 7-Wire Stress-Relieved Strand for

Prestressed Concrete.” They are also prestretched to increase their apparent mod-

ulus of elasticity. The strands may be manufactured in Grade 250 or in Grade

270, the numbers referring to the minimum ultimate strength of the strand in ksi.

Table 9.2 shows the properties of Grade 270 strands.

Figure 9.16 shows a typical stress-strain curve for prestressing strands. The

strands, unlike normal reinforcing steel, do not have a defined yield. They remain

elastic up to about 85% of their ultimate strength. An arbitrary yield point is often

used for specification purposes. ASTM A216 requires a minimum value of 0.85fpu
at 1% extension (or strain), where fpu is the minimum guaranteed ultimate strength.

By this definition, the yield for Grade 270K strand may be taken as

0.85� 270¼ 230 ksi.

9.5 Loss of Prestressing

The final service level stresses in the prestressing strands will be significantly lower

than they were at the time of the initial stressing. The contributory causes for this

prestress loss are numerous. The five major ones are discussed below.

Table 9.2 Properties of grade 270 strands

Nominal diameter
of strand (in.)

Breaking (ultimate)
strength of strand (kip)

Nominal steel area
of strand (in.2)

Nominal weight
of strand (lb/ft)

3/8 23.0 0.085 0.29

7/16 31.0 0.115 0.39

1/2 41.3 0.153 0.52

3/5 58.6 0.217 0.74
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9.5.1 Elastic Shortening of Concrete

When prestress is applied to concrete (i.e., when the prestressing strands are

released in the pretensioning type of application), the concrete shortens due to the

compressive stresses transferred to it. As the concrete shortens, so do the strands

bonded inside the concrete. This shortening lessens the stress in the steel, and

correspondingly lessens the compression on the concrete. How much the concrete

member shortens depends on the concrete’s modulus of elasticity, which in turn

depends on the concrete’s strength at the time the prestress was applied. The higher

the strength of the concrete, the lesser the loss due to elastic shortening. In

posttensioning, however, very little loss is caused by the elastic shortening; as the

stressing and the shortening of the concrete take place simultaneously; so when the

force in the strand is measured, the change in the concrete’s length has already

taken place. (This is not exactly true, because as the tendons are pulled one by one,

each stressed and anchored tendon will lose some of its stress when its neighboring

tendon is stressed).

9.5.2 Shrinkage of Concrete

If the concrete shrinks due to loss of moisture after prestressing, the shrinkage will

shorten the member. Correspondingly, the stretched strands will also shorten by the

Stress

Prestressing strand

Normal reinforcing steel

Strain

Figure 9.16 Stress-strain curve of prestressing strands versus reinforcing steel
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same amount. This shortening leads to a loss of stress in the strand. Nearly 80% of

the shrinkage takes place in the first year of life of the structure. The magnitude of

shrinkage depends on many variables, but it can be estimated to a reasonable degree

of accuracy based on experimental data.

9.5.3 Creep of Concrete

Sustained compression shortens concrete over time. Creep, therefore, is a time-

dependent deformation. The magnitude of creep depends on many variables. The

most important of these are the strength of the concrete, the age of concrete at the

time of prestressing, and the average compressive stress in the concrete.

9.5.4 Relaxation of the Prestressing Steel

By definition, relaxation is the change in stress in a material held at a constant

strain. This phenomenon is a very complex, time-dependent characteristic of

prestressing wires and strands that are subject to high stresses. Relaxation contrib-

utes less than shrinkage or creep of concrete to the total sum of the losses, but it still

must be considered.

9.5.5 Friction Losses in Curved Tendons

Friction loss occurs only in posttensioning. Figures 9.14 and 9.15 show typical

paths of curved tendons. Sometimes posttensioned flat plates use tendons that curve

in the horizontal direction to accommodate floor openings or ducts. As a result,

when a tendon is pulled from one end, it leans against the duct. Figure 9.17

illustrates the problem.

If the tendon is pulled from the right, P2 will be less than P1. The difference will

be the loss due to the frictional resistance at the contact surfaces. The loss depends

on the radius of curvature and the friction coefficient between the tendon and the

duct. Sharper curves and larger friction coefficients will result in larger loss of

prestress. In other words, the force in the tendon at locations away from the live end

P2

P1

Figure 9.17 Friction between the tendon and the duct in posttensioning
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will be less than that measured at the stressing jack. In addition to the intentional

curving of the ducts, an unintentional curving also takes place during the concreting

operation. This is referred to as wobble. The so-called wobble (or wobble friction)

coefficient accounts for this curving, but is a rather vague value. In the past, the

ACI Code used to recommend a value between 0.0003 and 0.0020 for the wobble

coefficient of 7-wire pre-greased strands, and 0.05 to 0.15 for their curvature

friction coefficient. Values of the wobble and curvature friction coefficients to be

used for the particular types of prestressing reinforcement and ducts should be

obtained from the manufacturers of the tendons.

Equation (9.1) gives the formula for calculating frictional losses:

Ppx ¼ Ppje
� K‘pxþμpαpxð Þ ð9:1Þ

where

K¼ Wobble friction coefficient per foot of tendon

‘px¼ Distance in feet from jacking end of prestressing steel element to the point under

consideration (point x)

μp¼ Post-tensioning curvature friction coefficient

αpx¼ The total angular change in radians of the tendon profile from the jacking end to the point

x

Ppj¼ Prestressing force at jacking end in pounds

Ppx¼ Prestressing force evaluated at distance ‘px from the jacking end in pounds

Example 9.1 Figure 9.18 shows a curved tendon between two inflection points in

an 8 in.-thick slab. The inflection points are 15 ft apart. Between these two points

the tendon rises 2.75 in. Assume K¼ 0.001 and μp¼ 0.10. Find the prestress loss

within these two points.

Solution We use the given data to calculate the radius of curvature, which is

122.8 ft. The value of αpx is then equal to 7� ¼ 0.122 radians. Substituting these

values into Equation (9.1) we obtain the prestress loss due to friction between the

two points as a function of the prestressing force.

15 ft

8 in.

Figure 9.18 Part of a posttensioned slab for Example 9.1
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Ppx ¼ Ppje
� 0:001�15þ 0:10� 0:122ð Þ

Ppx ¼ Ppj � 0:9731

This means that the loss of force along the curve is 2.69%. In multiple curves the

losses will combine, and may become very significant depending on the number of

spans.

Several techniques can be used to mitigate the frictional losses. One of them is to

stress the tendons from both ends. After the tendon has been stressed from the “live”

end, that end is anchored and the tendon is restressed by pulling from the former

“dead” end. Other techniques involve stressing very long tendons one section at a

time, coupling the next section to the already stressed segment.

9.5.6 Total Losses

Calculating the total losses of prestress is a very complex problem. Even with the

best available research information, we can obtain only approximate values. The

values of the parameters that influence the loss from any of the major sources are

only approximate ones. The values listed in Table 9.3 quite closely approximate the

true average prestressing losses (at least in building construction).

For typical 270K strands that are initially stressed to the ACI Code-

recommended value of 0.7fpu for post-tensioning applications and 0.8fpu for

pretensioning applications, a good estimate of losses from volumetric changes for

average conditions (not including friction losses) is 18–20% for pretensioning, and

15–16% for posttensioning. This translates to the average loss values shown in

Table 9.3.

9.6 Ultimate Strength

Prestressed elements are designed to limit stresses at service load conditions. The

ACI Code, however, also requires that prestressed elements satisfy ultimate
strength requirements as well.

The ultimate moment strength is calculated using equations similar to those used

with ordinary reinforcement. But these familiar equations substitute a calculated

(somewhat fictitious) yield value for fy in the calculations. This yield value, fps, can
be calculated using Equations in Section 20.3.2 of the ACI Code.

Table 9.3 Average prestressing losses

fpu (ksi) Initial prestress (ksi) Loss (ksi) (w/o friction) Remnant (ksi)

Pretensioning 270 216 40–42 175

Posttensioning 270 189 28–30 160
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This introductory chapter on prestressing includes only the formulae that deal

with unbonded tendons. The reader should consult the ACI Code for further

information on the ultimate strength calculations for bonded tendons.

Thus, Equation (9.2) (ACI Code Section 20.3.2.4.1) can be used to calculate the

yield strength for members with unbonded tendons and with a span/depth ratio of

35 or less:

fps ¼ fse þ 10,000þ fc
0

100ρp
ð9:2Þ

and Equation (9.3) (ACI Code Section 20.3.2.4.1) is applicable for members with

unbonded tendons and with a span/depth ratio greater than 35:

fps ¼ fse þ 10,000þ fc
0

300ρp
ð9:3Þ

where

fse the effective stress in the tendons after losses in psi

fc
0 the specified compressive strength of the concrete in psi

ρp
the ratio of the prestressed reinforcement,

Aps

bdp
Aps the area of the prestressing steel

dp the distance from the compression edge to the centroid of the prestressing tendons

If the design uses unbonded tendons, the ACI Code (Sections 7.6.2.3 and 9.6.2.3)

require the addition of a minimum amount of bonded normal reinforcement. This

minimum amount is given below:

As ¼ 0:004Act

where Act is the area of the concrete section between the tension face and the

centroid of the gross concrete section.

The ACI Code also permits the use of nonprestressed reinforcing to help with the

required ultimate strength. The detailed discussion of this subject is beyond the

scope of this text.

9.7 The Concept of Load Balancing

In the simple numerical examples given in Section 9.1, the analyses of prestressed

sections were conducted by finding a sufficiently large concentric, or eccentric,

prestressing force that eliminated, or greatly reduced, unwanted large tensile
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stresses from the applied loads. This procedure is sometimes referred to as super-
position (i.e., adding axial compressive stresses to the ones caused by flexure).

In posttensioning there is a much more easily visualized method of analysis. The

load balancing method, introduced by T. Y. Lin in 1963, is the most widely used

and most powerful analytical tool for the design of prestressed structures. This

method provides prestressing by using a system of stressed tendons selected to

impose loads on the element in opposition to the acting gravity loads; hence, the

name load balancing method.
This concept is illustrated in Figure 9.19. If the path of the tendon is a parabola,

its effect, after stressed on the simple span beam, is equivalent to an upward acting

uniform load. The balancing loads, wbal, can be calculated using simple statics as

follows. The moment caused by the horizontal component of the prestressing force,

as shown in Figure 9.19b, is (P cosϕ)δ. This prestress moment must balance the

moment caused by acting loads. Mathematically this is expressed as:

P cosϕð Þδ ffi Pδ ¼ wbal‘
2

8

Thus

P ¼ wbal‘
2

8 δ
ð9:4Þ

where δ is the sag of the tendon.

A balanced beam theoretically has uniform compression, f¼P/A, throughout.
The balanced load, wbal, can be equal to the acting loads, or only a part of the load

the designer wants to balance. This is normally the case when a certain amount of

tension is permitted at service load levels.

P sin P sin 

P cos P cos 

P P

Acting loads (w)

Balancing loads (wbal)

wbal

P sin P sin 

P cos 

P 

P cos 

P 

a

b

Figure 9.19 (a) Balancing uniform load, (b) free body diagram of the tendon
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The loads on the beam do not have to be uniformly distributed in order to apply

the load balancing concept. This is illustrated in Figures 9.20 and 9.21. If we use

similar notations for the loading conditions shown in Figures 9.20 and 9.21 and

change the tendon’s path from a parabola to those shown, the balancing forces for

the midspan point load and one-third span point load conditions are P ¼ Fbal‘
4δ

and P ¼ Fbal‘
3δ , respectively. We can easily extend the load balancing concept to

continuous spans as well as to flat plates or flat slabs. The detailed discussion of the

intricacies involved, however, are beyond the scope of this text.

Example 9.2 The 30 ft-long, 12 in.� 16 in. simply-supported beam shown in

Figure 9.22 will support a superimposed distributed load of 400 lb/ft. A single

parabolic tendon is used to posttension the beam. Determine the required force in the

tendon using the load balancing method. Use fc
0 ¼ 5,000 psi, and fci

0 ¼ 3,750 psi

and the unit weight of the concrete is 150 pcf.

Solution For efficiency select the largest sag permitted by the beam section,

δ¼ 6 in.¼ 0.5 ft. The self-weight of the beam is:

wsw ¼ 150� 12� 16

144
¼ 200 lb=ft

To balance all the dead loads and one-half the live loads, wbal is

F

Fbal

Acting load

Balancing load

P P

Figure 9.20 Balancing a concentrated load at the center of the span

F

Fbal Fbal

Acting loads

Balancing loads

P 

F

P

Figure 9.21 Balancing two equal loads at the third points of the span
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wbal ¼ 200 þ 1

2
� 400 ¼ 400 lb=ft

and from Equation (9.4)

P ¼ wbal‘
2

8δ
¼ 0:4 kip=ftð Þ � 302

8� 0:5ftð Þ ¼ 90 kip

Only the self-weight of the beam acts on the beam at the time of the transfer of

the prestressing force. Hence, the upward loads from the prestressing tendon and

the self-weight of the beam yield a net result of 200 lb/ft upward. So we calculate

the initial stresses due to prestress at midspan as follows:

M ¼ 0:2� 302

8
¼ 22:5 ft-kip

The elastic section modulus of the beam’s cross section is:

Sm ¼ bh2

6
¼ 12� 162

6
¼ 512 in3

and the area is A¼ 12� 16¼ 192 in2.

f ¼ M

Sm
¼ 22:5� 12,000

512
¼ 527 psi

tension at the top and compression at the bottom. (The net difference of wbal and the

self-weight acts upward.)

From the 90 kip axial compression load at the time of transfer of the prestress

(transferred at the anchorages at the ends):

w  400 lb/ft

6 in.

b  12 in.30'-0"

h  16 in.

Figure 9.22 Elevation and section of the beam in Example 9.2

9.7 The Concept of Load Balancing 585



f ¼ P

A
¼ 90� 1,000

192
¼ 469 psi compressionð Þ

Combining the axial compression (469 psi) and the flexural stresses due to the

net 200 lb/ft upward load, the initial stresses at midspan are:

ftop ¼ 469� 527 ¼ �58 psi tensionð Þ
fbottom ¼ 469þ 527 ¼ 996 psi compressionð Þ

Because these resulting stresses at the time of the load transfer are less than the

ACI Code (Sections 24.5.3.2 and 24.5.4.1) permits:

3
ffiffiffiffiffiffi
fci
0p
¼ 3

ffiffiffiffiffiffiffiffiffiffiffi
3,750

p
¼ 184 psi tensionð Þ

and

0:6 fci
0 ¼ 2,250 psi compressionð Þ

respectively. The stress values at the time of transfer are acceptable.

From the 400 lb/ft¼ 0.4 kip/ft superimposed load:

MS:I: ¼ 0:4� 302

8
¼ 45ft-kip

f ¼ M

Sm
¼ 45� 12,000

512
¼ 1,055 psi

compression at the top and tension at the bottom. Combining these stresses due to

total live load with the initial stresses gives us:

ftop ¼ �58þ 1,055 ¼ 997 psi compressionð Þ
fbottom ¼ 997� 1,055 ¼ �58 psi tensionð Þ

Now check the stress after long-term losses have taken place.

Assume long-term prestressing losses of 15%.

The final remaining prestressing force is only:

Pfinal ¼ 0:85� 90,000 ¼ 76,500 lb

and the adjusted upward-acting balancing load is:

wbal ¼ 8Pδ
‘2

¼ 8� 76,500� 0:5

302
¼ 340 lb=ft

rather than the full 400 lb/ft that was first used.
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The net difference between the downward-acting gravity loads (self-weight of

the beam plus superimposed loads) and the upward-acting balancing loads is:

200þ 400� 340 ¼ 260 lb=ft downwardð Þ

The moment caused by this load is:

Mnet ¼ 0:26� 302

8
¼ 29:25ft-kip

This moment causes compression at the top and tension at the bottom. These

stresses, combined with the compression stresses from the remaining

posttensioning force, will give the final stresses:

ftop ¼
76,500

192
þ 29:25� 12,000

512
¼ 1,084 psi compressionð Þ

fbottom ¼ 76,500

192
� 29:25� 12,000

512
¼ �287 psi tensionð Þ

These stresses are lower than those permitted by the ACI Code (Sections 24.5.2.1

and 24.5.4.1) for service load stage.

0:45 fc
0 ¼ 0:45� 5,000 ¼ 2,250 psi compression > 1,084 psi

7:5
ffiffiffiffi
fc
0p ¼ 7:5

ffiffiffiffiffiffiffiffiffiffiffi
5,000

p ¼ 530 psi tension > 287 psi

Hence, the selected amount of prestressing is satisfactory.

Problems

9.1. A plain concrete beam has a width of 14 in. and a total depth of 24 in., and is

simply supported with a span of 24 ft. What is the maximum tensile stress

acting on the beam due to its weight?

9.2. The beam of Problem 9.1 is prestressed with a straight tendon at the centroid of

the section to produce a prestressing force of 200 kip.

1. What will be the maximum stresses on the beam at midspan (a) at the top,

and (b) at the bottom?

2. How much uniformly distributed load may be placed on the beam if no

tension is permitted in the beam?

9.3. Assume that the straight prestressing tendon of Problem 9.2 is placed 4 in.

from the bottom of the beam.

1. What are the maximum stresses on the beam at midspan (a) at the top, and

(b) at the bottom, when only the beam’s self-weight acts?

2. How much uniformly distributed load may be placed on the beam if 424 psi

maximum tension is permitted?
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9.4. The rectangular prestressed beam (16 in.� 32 in.) shown below is subject to a

total dead and live load of 2.2 kip/ft (including the beam weight). The

parabolic tendon will have a sag of 10 in., as shown, to provide an upward

balancing load of 1.6 kip/ft.

1. Calculate the required final prestressing force (after losses).

2. Calculate the final stresses in the beam at midspan and at the ends (a) at the

top of the section, and (b) at the bottom of the section.

w  2.2 kip/ft

wbal  1.6 kip/ft

 10 in.

60'-0"

Self-Experiments

In this self-experiment, you will study the behavior of prestressed and

posttensioned beams. Record all the details of the tests and include photos showing

different stages of the experiments in your report.

Experiment 1

In this experiment we study the behavior of prestressed beams using a styrofoam

beam. Place the beam between two supports. Apply a predetermined load (a few

pounds) on the beam and record the magnitude of the beam deflection.

Make a hole at the bottom of the beam and pass a few plastic strings through

it. Anchor the strings at one end. Pull the strings from the other side and anchor

them as shown in Figure SE 9.1. Place the beam on the same supports and apply the

same load. Determine how much the beam deflects. Compare the results with those

of the previous test.

P

A

A
A-A

Figure SE 9.1 Prestressing a styrofoam beam

588 9 Overview of Prestressed Concrete



Experiment 2

In this experiment, we study the behavior of prestressed beams using concrete

models. Cast two concrete beams of the same size. Reinforce one beam with regular

wires, and thread the ends of the wire for the other. Before placing concrete for the

prestressed beam, pull the wires from the one side as shown in Figure SE 9.2.

Compare the behavior of the two beams by placing them on two supports and

gradually loading them. Which one deflects more? Why? Discuss your

observations.

Experiment 3

Here we use a styrofoam beam similar to that of Experiment 1 to study the behavior

of posttensioned beams. Make a hole of the same size as that of Experiment 1 on the

side of the beam using a hot wire. The hole should have a curved shape, as shown in

Figure SE 9.3. Pass a few plastic strings through this hole, anchor them to the beam

from one end, and pull and anchor to the other end. Now place the beam on the two

supports and apply the same load as in Experiment 1. Record the beam deflection at

the midspan. Compare the results with those of Experiment 1. Which case resulted

in less deflection?

Experiment 4

This experiment involves the use of a posttensioned concrete beam. As in Exper-

iment 2, cast two beams. One will use regular wire, and the other will be

posttensioned. For the posttensioned beam, place a plastic tube inside the beam

a b

P

Figure SE 9.2 (a) Reinforced concrete beam, (b) prestressed concrete beam

P

Figure SE 9.3 Posttensioned styrofoam beam
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and cast the concrete. After the concrete is set (72 hours), insert steel wires,

anchor them to the beam from one end, and pull and anchor to the other end

(Figure SE 9.4). Place the two beams on the two supports and gradually load

them. Compare their behavior. Which one deflects more? Why? Any other

observations?

a b

Figure SE 9.4 (a) Reinforced concrete beam, (b) posttensioned concrete beam
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Chapter 10

Metric System in Reinforced Concrete Design
and Construction

10.1 Introduction

Efforts to change the U.S. measurement units to the metric system have been under

way for quite a while. This chapter briefly discusses this matter as it relates to

reinforced concrete structure design and construction. We present a few examples

using this system of units so that you will better understand how to make the

conversions.

10.2 Brief History of Metric System Adoption
in the United States

Historically, the United States has used the British system of measurements. Most

other countries, however, use variations of the metric system. To conform with the

rest of the world, and to increase the international competitiveness, productivity,

and quality of U.S. industry, the U.S. Congress enacted the Metric Conversion Act

of 1975. A version of the metric system called Le Système International d’Unites
(International System of Units), or the SI system, was adopted. Furthermore, in

1988, the U.S. Congress passed theOmnibus Trade and Competitiveness Act, which
resulted in the formation of the Construction Metrication Council. This council is
part of the National Institute of Building Sciences (NIBS) located in Washington,

DC. The Council has published documents on Construction Metrication, which
provide the latest efforts on system conversions. You can obtain a copy of these

documents from the NIBS Web site (www.nibs.org).

The American Concrete Institute has published an equivalent metric version of

the ACI Code since 1983. The current metric version of the ACI code is ACI

318M-14 (“M” stands for metric). Adopting the metric system has two major

ramifications: (1) using metric units for structural calculations, and (2) changing
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the physical sizes of products based on the metric system of units. The first task can

be accomplished with relative simplicity, as this chapter will show. But the man-

ufacture of construction material for concrete structures, in particular reinforcing

bars, has been one of the major obstacles in the adoption of the SI system of units.

To prevent the costly maintenance of two different inventories of steel rein-

forcement (in British and SI units), the producers of reinforcing bars adopted a soft
metric conversion in 1997. This conversion allows mills to produce reinforcing bars

in the customary British unit sizes, but to designate them with their equivalent

metric values instead of multiples of 100 mm2 as required in the hard metric

conversion. As a result, nearly all reinforcing bars currently produced are marked

with the soft metric equivalent sizes. Table 10.1 shows the equivalent soft metric

bar size designations for the customary British unit sizes.

10.3 Conversion to SI Units

A familiarity with the SI units is required to convert British units to their equivalent

SI units. Table 10.2 shows the main SI units along with the most common prefixes

used in the design of building structures.

Two important quantities that we need to understand well are mass and force.
The SI unit of mass is the kilogram, kg, which is used as the unit of force in other

versions of the metric system. The SI unit used for force is the newton, which is

equal to 1 kg-m/s2. Force is equal to mass (m) multiplied by the gravitational

acceleration (g). Thus,

F ¼ m� g

F ¼ 1:0 kgð Þ 9:80665 m=s2ð Þ
F ¼ 9:80665 kg-m=s2 � 9:81newtons Nð Þ

Therefore, a one-kilogram mass generates 9.81 newtons (N) of force.

Table 10.1 Equivalent soft

metric designation for rebars Bar size
Equivalent soft

metric designation

#3 #10

#4 #13

#5 #16

#6 #19

#7 #22

#8 #25

#9 #29

#10 #32

#11 #36

#14 #43

#18 #57
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The British units of pound-mass (lbm) and pound-force (lbf) are also defined.

These are related to each other as follows:

F ¼ m� g

lbf ¼ lbmð Þ 32:174 ft=s2ð Þ
lbf ¼ 32:174 lbm-ft=s2 � 32:2 lbm-ft=s2

The relationship between lbm and kg is:

1 lbm ¼ 0:45359 kg � 0:454 kg

The relationship between ft and m is:

1 ft ¼ 0:3048 m

Therefore, substituting:

l lbf ¼ 32:174 0:45359ð Þ 0:3048ð Þ kg-m=s2

1 lbf ¼ 4:448 kg-m=s2

1 lbf ¼ 4:448 N

Note that weight is defined in units of mass. To use weight as load we need to

consider the gravitational acceleration of 9.81 m/s2. The following is an important

conversion:

1
lbf

ft3
¼ 4:448 N

0:3048ð Þ3m3
¼ 157:1 N=m3

This is in units of weight. In the SI units, however, it is defined in units of mass.

Therefore:

Table 10.2 Principal SI units

and the common prefixes
Main SI units

Quantity Unit Symbol (expression)

Length Meter m

Mass Kilogram kg

Time Second s

Force Newton N (kg-m/s2)

Stress/pressure Pascal Pa (N/m2)

Prefix SI prefixes symbol Value

Micro μ 10�6

Milli m 10�3

Kilo k 103

Mega M 106
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1
lbm

ft3
¼ 0:45359 kg

0:3048 mð Þ3 ¼ 16:02 kg=m3

For example, the unit mass of concrete (normal weight) is:

150 lbm=ft3 ¼ 150 16:02ð Þ ¼ 2,400 kg=m3

Table 10.3 shows the complete set of conversion factors between the SI and

the British systems of units. The following examples solve problems posed by

examples in previous chapters using the equivalent SI units. Since we must use the

soft metric reinforcing bar sizes, Table 10.4 shows their designations along with

their properties.

Table 10.3 Conversion factors between the SI and the British system of units

Unit Multiply By To get:

Length inch (in.) 25.4 millimeter (mm)

foot (ft) 0.3048 meter (m)

millimeter (mm) 0.03937 inch (in.)

meter (m) 3.281 foot (ft)

Area square inch (in.2) 645.2 square millimeter (mm2)

square foot (ft2) 0.0929 square meter (m2)

square millimeter (mm2) 0.00155 square inch (in.2)

square meter (m2) 10.764 square foot (ft2)

Volume cubic inch (in.3) 16,387 cubic millimeter (mm3)

cubic foot (ft3) 0.028317 cubic meter (m3)

cubic millimeter (mm3) 0.000061024 cubic inch (in.3)

cubic meter (m3) 35.315 cubic foot (ft3)

Mass pound-mass (lbm) 0.454 kilogram (kg)

kilogram (kg) 2.205 pound

Density pound per cubic foot

(lb/ft3)

16.02 kilogram per cubic meter

(kg/m3)

kilogram per cubic meter

(kg/m3)

0.06243 pound per cubic foot

(lb/ft3)

Force pound-force (lbf) 4.448 newton (N)

kip 4,448 newton (N)

pound per foot (lb/ft) 14.594 newton per meter (N/m)

kip per foot (kip/ft) 14.594 kilonewton per meter

(kN/m)

newton (N) 0.2248 pound-force (lbf)

newton (N) 0.0002248 kip

newton per meter (N/m) 0.06852 pound per foot (lb/ft)

kilonewton per meter

(kN/m)

0.06852 kip per foot (kip/ft)

Moment of
inertia

inch4 (in.4) 416,231 millimeter4 (mm4)

millimeter4 (mm4) 0.000002403 inch4 (in.4)

(continued)
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Example 10.1 (SI Version of Example 1.2)A 75 mm� 150 mm, 2.70 m-long plain

concrete beam was simply supported at its ends and tested to determine the modulus

of rupture of the concrete. Two concentrated loads, P, were placed at the third

points. The beam failed at P¼ 670 N. The specified compressive strength of the

concrete is fc
0 ¼ 28 MPa: The concrete weight (mass) is 2,400 kg/m3 (normal

weight). Determine the modulus of rupture of the concrete using (a) the results of

the test, and (b) the ACI Code approximate equation.

Table 10.3 (continued)

Unit Multiply By To get:

Bending
moment

pound-inch (lb-in.) 0.113 newton-meter (N-m)

pound-foot (lb-ft) 1.356 newton-meter (N-m)

kip-inch (kip-in.) 0.113 kilonewton-meter (kN-m)

kip-foot (kip-ft) 1.356 kilonewton-meter (kN-m)

newton-meter (N-m) 8.851 pound-inch (lb-in.)

newton-meter (N-m) 0.738 pound-foot (lb-ft)

kilonewton-meter (kN-m) 8.851 kip-inch (kip-in.)

kilonewton-meter (kN-m) 0.738 kip-foot (kip-ft)

Pressure,
stress

pound per square inch (psi) 6,895 pascal (Pa)

kip per square inch (ksi) 6,895 kilopascal (kPa)

6.895 megapascal (MPa)

pound per square foot (psf) 47.88 pascal (Pa)

kip per square foot (ksf) 47.88 kilopascal (kPa)

pascal (Pa) 0.000145 pound per square inch

(psi)

kilopascal (kPa) 0.14503 pound per square inch

(psi)

megapascal (MPa) 0.14503 kip per square inch (ksi)

pascal (Pa) 0.020886 pound per square foot

(psf)

Table 10.4 ASTM standard metric reinforcing bars

Bar size designation

Nominal dimensions

Area (mm2) Weight (kg/m) Diameter (mm)

#10 71 0.560 9.5

#13 129 0.994 12.7

#16 199 1.522 15.9

#19 284 2.235 19.1

#22 387 3.042 22.2

#25 510 3.973 25.4

#29 645 5.060 28.7

#32 819 6.404 32.3

#36 1,006 7.907 35.8

#43 1,452 11.38 43.0

#57 2,581 20.24 57.3
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Solution

(a) Test results

Determine the loads acting on the beam shown in Figure 10.1:

w ¼ 2,400ð Þ 75ð Þ 150ð Þ
1,000ð Þ 1,000ð Þ ¼ 27:0 kg=m� 9:81 m=s2 ¼ 265 N=m

Mtotal ¼ w‘2

8
þ P‘

3

Mtotal ¼ 265 2:70ð Þ2
8

þ 670 2:70ð Þ
3

Mtotal ¼ 242þ 603 ¼ 845 N-m ¼ 845,000 N-mm

The maximum tensile stress at the bottom of the beam ( fr) is:

fr ¼
Mc

I
¼ M

Sm

Sm ¼ bh2

6
¼ 75 150ð Þ2

6
¼ 281,250 mm3

fr ¼
M

Sm
¼ 845� 1,000

281,250
¼ 3:00 N=mm2

¼ 3:00� 106 N=m2 ¼ 3:00 MPa

(b) ACI approximate equation

From Equation 19.2.3.1 of ACI 318M-14:

λ ¼ 1:0 normal weight concreteð Þ
fr ¼ 0:70λ

ffiffiffiffi
fc
0p

fr ¼ 0:70 1:0ð Þ ffiffiffiffiffi
28

p ¼ 3:70 MPa

P = 670 N P = 670 N
w = 265 N/m

0.90 m 0.90 m 0.90 m

2.70 m

Figure 10.1 Example 10.1
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Example 10.2 (SI Version of Example 2.8) Calculate MR for the reinforced con-

crete section shown in Figure 10.2. Use fy¼ 420 MPa, and fc
0 ¼ 28 MPa:

As¼ 6 #32¼ 4,914 mm2.

Solution

Step 1.

ρ ¼ As

bd
¼ 4,914

305� 795
¼ 0:0203

From Table A2.4:

ρmin ¼ 0:0033 < 0:0203 ∴ ok

From Table A2.3:

ρmax ¼ 0:0207 > 0:0203 ∴ ok

Step 2.

a ¼ As fy
0:85fc

0b
¼ 4,914 420ð Þ

0:85� 28� 305
¼ 284 mm

Step 3.

c ¼ a

β1
¼ 284

0:85
¼ 334 mm

Step 4.

c

dt
¼ 334

825
¼ 0:405 > 0:375

6 #32

b 305 mm

dt 825 mmd 795 mm

Figure 10.2 Sketch of Example 10.2
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Because 0.405> 0.375, the section is in the transition zone:

ϕ ¼ A2 þ B2

c

dt

ϕ ¼ 0:233þ 0:25

0:405
ϕ ¼ 0:850

Step 5.

2 2N/mm (MPa)mm mm

284(0.850)(4,914)(420) 795
2 2

− = −s y
aMR =

MR = 1,145,556,594 N-mm/106 = 1,146 kN-m 

A f dφ

Example 10.3 (SI Version of Example 4.2) Determine the spacing of #10 stirrups

at the critical section for a reinforced concrete beam with bw¼ 380 mm,

h¼ 610 mm, and Vu ¼ 270 kN: Use fc
0 ¼ 21MPa, and fyt¼ 420 MPa. Concrete is

normal weight.

Solution
dest ¼ h� 65 ¼ 610� 65 ¼ 545 mm

Using Equation 22.5.5.1 of ACI 318M-14:

λ ¼ 1:0 normalweight concreteð Þ

Vc ¼ λ
ffiffiffiffi
fc
0p

6
bwd

Vc ¼ 1:0ð Þ ffiffiffiffiffi
21

p

6
380ð Þ 545ð Þ

Vc ¼ 158,175 N ¼ 158:2 kN

The shear force to be resisted by the stirrups at the critical section, Vs; is:

Vs ¼ Vu
ϕ

� Vc

Vs ¼ 270

0:75
� 158:2

Vs ¼ 201:8 kN

So the required spacing of the bars is:
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s ¼ Avfytd

Vs

s ¼ 2� 71ð Þ 420ð Þ 545ð Þ
201:8� 1,000

¼ 161 mm

Use s¼ 160 mm.

Example 10.4 (SI Version of Example 5.4) Design a short square tied column to

carry an axial dead load of 1,300 kN, a floor live load of 800 kN and a roof live load

of 320 kN. Assume that the applied moments on the column are negligible. Use

fc
0 ¼ 28 MPa, fy¼ 420 MPa, and a concrete clear cover of 40 mm.

Solution

Step 1. The factored load, Pu, is:

1:83PLr ¼ 1:83 320ð Þ ¼ 585:6 kN < PL ¼ 800 kN, therefore,

Pu ¼ 1:2PD þ 1:6PL þ 0:5PLr
Pu ¼ 1:2ð1,300Þ þ 1:6 800ð Þ þ 0:5 320ð Þ
Pu ¼ 3,000 kN

Step 2. Assuming ρg¼ 0.03, the required area of column, Ag, is:

Ag ¼ Pu

0:8ϕ 0:85fc
0 1� ρg
� �

þ fyρg
h i

Ag ¼ 3,000� 1,000

0:8 0:65ð Þ 0:85 28ð Þ 1� 0:03ð Þ þ 420 0:03ð Þ½ 	
Ag ¼ 161,667 mm2

Step 3. The column size, h, is:

h ¼ ffiffiffiffiffi
Ag

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
161,667

p

h ¼ 402 mm ∴ Use h ¼ 400 mm

Therefore, the column is 400� 400 mm, and the column gross area, Ag, is:

Ag ¼ 400� 400 ¼ 160,000 mm2

Step 4. The required area of reinforcement, Ast, is:

3

33

2

Conversion from MPa
to kPa

0.8

0.85

3,000 0.8 0.65(0.85 28 10 160,000)

0.8 0.65(420 10 0.85 28 10 )

4,950 mm

−

−−

−
=

−

− × × × ×=
× × − × ×

=

gcu
st

y c

st

P f A
A

f f

A

φ(0.85       )
0.8φ( )
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Step 5. Using Table 10.4, select 8 #29 bars (As¼ 8� 645¼ 5,160 mm2).

Step 6. Using #10 for the ties, the maximum spacing, smax, (ACI Code, Sections

10.7.6.1.2 and 25.7.2.1) is:

smax ¼ min 16db, 48dt, bminf g
smax ¼ min 16 28:7ð Þ, 48 9:5ð Þ, 400f g
smax ¼ min 459, 456, 400f g
smax ¼ 400mm

Therefore, the ties are #10 @ 400 mm.
Use Figure 5.12 to check the arrangement of the ties. Determine the clear

space between the longitudinal bars:

Cover #10 Ties #29 Bars

400 − 2(40) − 2(9.5) − 3(28.7)
Clear space =

2
Clear space = 107 mm < 150 mm

Therefore, one tie per set is enough, as shown in Figure 10.3.

Example 10.5 (SI Version of Example 7.1) A 300 mm load-bearing CMU wall

supports an outdoor canopy. The dead load is 150 kN/m (including the wall weight)

and the roof live load is 75 kN/m. Design the plain concrete footing shown in

Figure 10.4 to support this wall. The compressive strength of the concrete is

21 MPa, and the net bearing capacity of the soil is 150 kPa. The frost line is at

1.20 m from the outside grade. Concrete is normal weight.

400 mm

8 #29

#10 @ 400 mm

400 mm

Figure 10.3 Final design of Example 10.4
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Solution

Step 1. Determine the footing width (b).

wT ¼ wD þ wLr ¼ 150þ 75 ¼ 225 kN=m

kN/m

kPa = kN/m2

Approximate footing width (b)=

225
1.50 m

150

T

a

w

q

b

= =

\ = 1.5 m

Step 2. Estimate the footing thickness (h).

h ¼ b� t

2
¼ 1:5� 0:30

2
¼ 0:60 m

∴ h ¼ 0:60 m 600 mmð Þ

b

Block wall

1.20 m

300 mm

Figure 10.4 Sketch of Example 10.5
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Step 3. Calculate and check the moment.

wu ¼ 1:2wD þ 1:6wLr

wu ¼ 1:2 150ð Þ þ 1:6 75ð Þ ¼ 300 kN=m

qu ¼
wu

b

qu ¼
300

1:5
¼ 200 kN=m2 kPað Þ

The distance from the edge of the footing to the critical section for moment

(D) is:

D ¼ b� t

2
þ t

4

D ¼ 1:5� 1,000� 300

2
þ 300

4

D ¼ 675 mm

Mu ¼ qu
D2

2
¼ 200ð Þ

675

1,000

� �2

2

Mu ¼ 45:6 kN-m

d ¼ h� 50 ¼ 600� 50 ¼ 550 mm

Considering a 1 m (1,000 mm) strip of footing:

Sm ¼ bd2

6

Sm ¼ 1,000 550ð Þ2
6

¼ 50:42� 106 mm3

The nominal resisting moment, Mn, (ACI 318M-14 Equation 14.5.2.1a) is:

λ ¼ 1:0 normal weight concreteð Þ

Mn ¼ 5

12

� �
λ
ffiffiffiffi
fc
0p
Sm

Mn ¼ 5

12
1:0ð Þ

ffiffiffiffiffi
21

p
50:42� 106
� �

Mn ¼ 96:3� 106 N-mm=106 ¼ 96:3 kN-m

MR ¼ ϕMn ¼ 0:60 ð96:3Þ
MR ¼ 57:8 kN-m > 45:6 kN-m ∴ok

Figure 10.5 shows the final design of this footing.

602 10 Metric System in Reinforced Concrete Design and Construction



Problems

In the following problems assume concrete is normal weight unless noted
otherwise.

10.1 (SI version of Problem 1.7) Draw the bending moment and shear force dia-

grams for a 300 mm� 600 mm concrete beam made of lightweight concrete

with a unit weight (mass) of 1,800 kg/m3 and subjected to a uniformly

distributed load of 15 kN/m. Assume that the beam is simply-supported and

has a 3.0 m span.

10.2 (SI version of Problem 1.10) Determine the maximum span for a 200 mm

� 300 mm simply-supported plain concrete beam constructed of normal-

weight concrete with a unit weight (mass) of 2,400 kg/m3 and loaded by a

uniformly distributed load of 30 kN/m just before it fails. The specified

compressive strength of the concrete is 28 MPa. Use the ACI Code–

recommended value for the modulus of rupture.

10.3 (SI version of Problem 2.7) The rectangular reinforced concrete beam shown

below is subjected to a dead load moment of 250 kN-m and a live load moment

of 125 kN-m. Determine whether this beam is adequate for the applied

moment using the Method I. Use fc
0 ¼ 28 MPa and fy¼ 420 MPa. The

stirrups are #10 and the cover is 40 mm.

1.50 m

600 mm

600 mm

300 mm

Figure 10.5 Final design of Example 10.5
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4 #29

300 mm

750 mm

10.4 (SI version of Problem 2.11) Determine the moment capacity, MR, of the

reinforced concrete section shown below if it is subjected to a negative

moment. Use the Method I. The stirrups are #10 and the cover is 40 mm.

Use fc
0 ¼ 28 MPa and fy¼ 420 MPa.

4 #32

330 mm

710 mm

10.5 (SI version Problem 4.2) A beam is subjected to a uniformly distributed load and

has a maximum shear of 270 kN at the face of its supports. The beam clear span

is 9.0 m, bw¼ 300 mm, and d¼ 600 mm. Use fc
0 ¼ 28 MPa, and fyt¼ 420 MPa.

Determine the shear at the critical section. Determine the spacing of #10 stirrups

at the critical section.

10.6 (SI version of Problem 4.5) The shear force at the critical section, Vu,
of a reinforced concrete beam is 265 kN. If the beam has bw¼ 360 mm,

fc
0 ¼ 21 MPa, and fyt¼ 420 MPa, what is the required effective depth, d,
such that the minimum spacing of #10 stirrups is 230 mm?
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10.7 (SI version of Problem 5.4) The square reinforced concrete tied column

shown below is subjected to a dead load of 900 kN and a roof live load of

1,000 kN. Determine whether this column is adequate. The clear cover is

40mm and the load eccentricity is negligible. Use fc
0 ¼ 28 MPa and

fy¼ 420 MPa. Checking the ties is not required.

#10 @ 350 mm

8 #25

400 mm

400 mm

10.8 (SI version of Problem 5.8) Design a square tied reinforced concrete column

subjected to a dead load of 1,100 kN, a floor live load of 1,000 kN, and a

roof live load of 675 kN. The moments due to the loads are negligible. Use

fc
0 ¼ 28 MPa; fy¼ 420 MPa, and 40 mm clear cover.

10.9 (SI version of Problem 7.1) Design a plain concrete wall footing to support a

300 mm thick concrete wall. The dead load, including the weight of wall, is

70 kN/m, and the roof live load is 90 kN/m. The bearing capacity of the soil

is 120 kPa, and fc
0 ¼ 21 MPa:

10.10 (SI version of Problem 7.3) Rework Problem 10.9 for a reinforced concrete

wall footing. Use fy¼ 420 MPa.
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Appendix A
Tables and Diagrams

Table A1.1 Mechanical properties of steel reinforcing bars

Type of steel Grade fy (ksi) ey

Carbon, A615 40 40 0.00138

60 60 0.00207

75 75 0.00259

80 80 0.00276

Low alloy, A706 60 60 0.00207

80 80 0.00276

Stainless, A955 60 60 0.00207

75 75 0.00259

Rail, A996 50 50 0.00172

60 60 0.00207

Axle, A996 40 40 0.00138

60 60 0.00207

Low carbon chromium, A1035 100 100 0.00345

120 120 0.00414

Table A1.2 Steel bar sizes

Bar size #3 #4 #5 #6 #7 #8 #9 #10 #11 #14 #18

Diameter (in.) 0.375 0.500 0.625 0.750 0.875 1.000 1.128 1.270 1.410 1.693 2.257

Area (in2) 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56 2.25 4.00
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Table A2.1 ACI approximate design moments and shears for beams and one-way slabs

Positive
moment

End spans

Discontinuous end unrestrained wu‘
2
n/11

Discontinuous end integral with support wu‘
2
n/14

Interior spans wu‘
2
n/16

Negative
moment

At exterior face of the first interior support

Two spans wu‘
2
n/9

More than two spans wu‘
2
n/10

At other faces of interior supports wu‘
2
n/11

At the face of all supports for SLABS with spans not exceeding

10 ft; and BEAMS where ratio of sum of column stiffnesses to

beam stiffness exceeds 8 at each end of the span

wu‘
2
n/12

At interior face of exterior support for members built integrally

with supports

Where support is a spandrel beam wu‘
2
n/24

Where support is a column wu‘
2
n/16

Shear In end members at the face of the first interior support 1.15wu‘n/2

At face of all other supports wu‘n/2

wu n

2

wu n
2

11
(End unrestrained)

Spandrel beam

Column

(End integral with
support)

(Spandrel beam)

(Column)

(Two spans)

(Others)

(Two spans)

(Others)

1.15wu n

2

wu n
2

24

wu n

2
wu n

2

wu n
2

16

(Slabs, n   10',
3 or more spans)

(Slabs, n   10',
3 or more spans)

(Slabs, n   10',
3 or more spans)

wu n
2

9
wu n

2

9

wu n
2

10
wu n

2 2

11

wu n
2

11
wu n

2

11

wu n
2

12
wu n

2

12

wu n
2

11

wu n
2

12

wu n

11

wu n
2

12
wu n

2

12
wu n

2

12

wu n
2

14
wu n

2

16
wu n

2

16

wu n

(Mu)

(Vu)

wu

2
wu n

2
wu n

2

n n n
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Table A2.2a Values of A1 and B1 for commonly used reinforcing steels

fy (psi) εty A1 B1

40,000 0.00138 0.555 69.1

60,000 0.00207 0.473 85.3

75,000 0.00259 0.381 103.7

Table A2.2b Values of A2 and B2 for commonly used reinforcing steels

fy (psi) dt/cb cb/dt A2 B2

40,000 1.460 0.685 0.345 0.208

60,000 1.690 0.592 0.233 0.250

75,000 1.863 0.537 0.067 0.312

Table A2.3 ρmax and ρtc for common grades of steel and compressive

strength of concrete (single layer of steel, i.e., d¼ dt)

fy (psi) f 0c¼ 3,000 psi f 0c¼ 4,000 psi f 0c¼ 5,000 psi ϕ
ρmax (εt¼ 0.004)

40,000 0.0232 0.0310 0.0364 0.83

60,000 0.0155 0.0207 0.0243 0.81

75,000 0.0124 0.0165 0.0194 0.80

ρtc (εt¼ 0.005)

40,000 0.0203 0.0270 0.0318 0.90

60,000 0.0135 0.0180 0.0212 0.90

75,000 0.0108 0.0144 0.0169 0.90

Note: For multiple layers of reinforcements, multiply the table values by
dt
d

Table A2.4 Minimum steel ratio (ρmin)

fy (psi)
ρmin

f 0c¼ 3,000 psi f 0c¼ 4,000 psi f 0c¼ 5,000 psi f 0c¼ 6,000 psi

40,000 0.0050 0.0050 0.0053 0.0058

60,000 0.0033 0.0033 0.0035 0.0039

75,000 0.0027 0.0027 0.0028 0.0031
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Table A2.5a Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 3,000 psi,

fy¼ 40,000 psi (for beams ρmin¼ 0.005)

ρ R ρ R ρ R ρ R ρ R ϕ ρ R ϕ
0.001 36 0.0051 176 0.0092 307 0.0133 429 0.0174 541 0.0215 643 0.87

0.0011 39 0.0052 180 0.0093 310 0.0134 432 0.0175 544 0.0216 646 0.87

0.0012 43 0.0053 183 0.0094 313 0.0135 435 0.0176 546 0.0217 648 0.86

0.0013 46 0.0054 186 0.0095 317 0.0136 437 0.0177 549 0.0218 651 0.86

0.0014 50 0.0055 189 0.0096 320 0.0137 440 0.0178 551 0.0219 653 0.86

0.0015 53 0.0056 193 0.0097 323 0.0138 443 0.0179 554 0.022 655 0.86

0.0016 57 0.0057 196 0.0098 326 0.0139 446 0.018 557 0.0221 658 0.86

0.0017 60 0.0058 199 0.0099 329 0.014 449 0.0181 559 0.0222 660 0.85

0.0018 64 0.0059 203 0.01 332 0.0141 451 0.0182 562 0.0223 662 0.85

0.0019 67 0.006 206 0.0101 335 0.0142 454 0.0183 564 0.0224 665 0.85

0.002 71 0.0061 209 0.0102 338 0.0143 457 0.0184 567 0.0225 667 0.85

0.0021 74 0.0062 212 0.0103 341 0.0144 460 0.0185 569 0.0226 669 0.84

0.0022 78 0.0063 216 0.0104 344 0.0145 463 0.0186 572 0.0227 672 0.84

0.0023 81 0.0064 219 0.0105 347 0.0146 465 0.0187 574 0.0228 674 0.84

0.0024 85 0.0065 222 0.0106 350 0.0147 468 0.0188 577 0.0229 676 0.84

0.0025 88 0.0066 225 0.0107 353 0.0148 471 0.0189 580 0.023 679 0.84

0.0026 92 0.0067 229 0.0108 356 0.0149 474 0.019 582 0.0231 681 0.83

0.0027 95 0.0068 232 0.0109 359 0.015 476 0.0191 585 0.0232 683 0.83

0.0028 99 0.0069 235 0.011 362 0.0151 479 0.0192 587

0.0029 102 0.007 238 0.0111 365 0.0152 482 0.0193 590

0.003 105 0.0071 241 0.0112 368 0.0153 485 0.0194 592

0.0031 109 0.0072 245 0.0113 371 0.0154 487 0.0195 595

0.0032 112 0.0073 248 0.0114 374 0.0155 490 0.0196 597

0.0033 116 0.0074 251 0.0115 377 0.0156 493 0.0197 600

0.0034 119 0.0075 254 0.0116 380 0.0157 496 0.0198 602

0.0035 123 0.0076 257 0.0117 383 0.0158 498 0.0199 605

0.0036 126 0.0077 260 0.0118 385 0.0159 501 0.02 607

0.0037 129 0.0078 264 0.0119 388 0.016 504 0.0201 610

0.0038 133 0.0079 267 0.012 391 0.0161 506 0.0202 612

0.0039 136 0.008 270 0.0121 394 0.0162 509 0.0203 614 ρtc
0.004 139 0.0081 273 0.0122 397 0.0163 512 0.0204 617 0.90

0.0041 143 0.0082 276 0.0123 400 0.0164 514 0.0205 619 0.90

0.0042 146 0.0083 279 0.0124 403 0.0165 517 0.0206 622 0.89

0.0043 150 0.0084 282 0.0125 406 0.0166 520 0.0207 624 0.89

0.0044 153 0.0085 286 0.0126 409 0.0167 522 0.0208 627 0.89

0.0045 156 0.0086 289 0.0127 412 0.0168 525 0.0209 629 0.88

0.0046 160 0.0087 292 0.0128 415 0.0169 528 0.021 631 0.88

0.0047 163 0.0088 295 0.0129 417 0.017 530 0.0211 634 0.88

0.0048 166 0.0089 298 0.013 420 0.0171 533 0.0212 636 0.88

0.0049 170 0.009 301 0.0131 423 0.0172 536 0.0213 639 0.87

0.005 173 0.0091 304 0.0132 426 0.0173 538 0.0214 641 0.87
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Table A2.5b Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 4,000 psi,

fy¼ 40,000 psi (for beams ρmin¼ 0.005)

ρ R ρ R ρ R ρ R ρ R

0.001 36 0.0051 178 0.0092 313 0.0133 441 0.0174 562

0.0011 39 0.0052 181 0.0093 316 0.0134 444 0.0175 565

0.0012 43 0.0053 185 0.0094 320 0.0135 447 0.0176 568

0.0013 46 0.0054 188 0.0095 323 0.0136 450 0.0177 571

0.0014 50 0.0055 192 0.0096 326 0.0137 453 0.0178 574

0.0015 54 0.0056 195 0.0097 329 0.0138 456 0.0179 577

0.0016 57 0.0057 198 0.0098 332 0.0139 459 0.018 579

0.0017 61 0.0058 202 0.0099 336 0.014 462 0.0181 582

0.0018 64 0.0059 205 0.01 339 0.0141 465 0.0182 585

0.0019 68 0.006 208 0.0101 342 0.0142 468 0.0183 588

0.002 71 0.0061 212 0.0102 345 0.0143 471 0.0184 591

0.0021 75 0.0062 215 0.0103 348 0.0144 474 0.0185 594

0.0022 78 0.0063 218 0.0104 351 0.0145 477 0.0186 596

0.0023 82 0.0064 222 0.0105 355 0.0146 480 0.0187 599

0.0024 85 0.0065 225 0.0106 358 0.0147 483 0.0188 602

0.0025 89 0.0066 228 0.0107 361 0.0148 486 0.0189 605

0.0026 92 0.0067 232 0.0108 364 0.0149 489 0.019 608

0.0027 96 0.0068 235 0.0109 367 0.015 492 0.0191 610

0.0028 99 0.0069 238 0.011 370 0.0151 495 0.0192 613

0.0029 103 0.007 242 0.0111 374 0.0152 498 0.0193 616

0.003 106 0.0071 245 0.0112 377 0.0153 501 0.0194 619

0.0031 110 0.0072 248 0.0113 380 0.0154 504 0.0195 621

0.0032 113 0.0073 252 0.0114 383 0.0155 507 0.0196 624

0.0033 116 0.0074 255 0.0115 386 0.0156 510 0.0197 627

0.0034 120 0.0075 258 0.0116 389 0.0157 513 0.0198 630

0.0035 123 0.0076 261 0.0117 392 0.0158 516 0.0199 633

0.0036 127 0.0077 265 0.0118 395 0.0159 519 0.02 635

0.0037 130 0.0078 268 0.0119 398 0.016 522 0.0201 638

0.0038 134 0.0079 271 0.012 402 0.0161 525 0.0202 641

0.0039 137 0.008 274 0.0121 405 0.0162 528 0.0203 644

0.004 141 0.0081 278 0.0122 408 0.0163 531 0.0204 646

0.0041 144 0.0082 281 0.0123 411 0.0164 533 0.0205 649

0.0042 147 0.0083 284 0.0124 414 0.0165 536 0.0206 652

0.0043 151 0.0084 287 0.0125 417 0.0166 539 0.0207 654

0.0044 154 0.0085 291 0.0126 420 0.0167 542 0.0208 657

0.0045 158 0.0086 294 0.0127 423 0.0168 545 0.0209 660

0.0046 161 0.0087 297 0.0128 426 0.0169 548 0.021 663

0.0047 165 0.0088 300 0.0129 429 0.017 551 0.0211 665

0.0048 168 0.0089 304 0.013 432 0.0171 554 0.0212 668

0.0049 171 0.009 307 0.0131 435 0.0172 557 0.0213 671

0.005 175 0.0091 310 0.0132 438 0.0173 559 0.0214 673

(continued)
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Table A2.5b (continued)

ρ R ρ R ϕ ρ R ϕ
0.0215 676 0.0256 783 0.0297 835 0.85

0.0216 679 0.0257 785 0.0298 835 0.85

0.0217 681 0.0258 788 0.0299 836 0.85

0.0218 684 0.0259 790 0.03 837 0.85

0.0219 687 0.026 793 0.0301 837 0.84

0.022 690 0.0261 795 0.0302 838 0.84

0.0221 692 0.0262 798 0.0303 838 0.84

0.0222 695 0.0263 800 0.0304 839 0.84

0.0223 697 0.0264 803 0.0305 839 0.84

0.0224 700 0.0265 805 0.0306 840 0.84

0.0225 703 0.0266 808 0.0307 840 0.84

0.0226 705 0.0267 810 0.0308 841 0.83

0.0227 708 0.0268 813 0.0309 841 0.83

0.0228 711 0.0269 815 0.031 842 0.83

0.0229 713 0.027 818 ρtc
0.023 716 0.0271 820 0.90

0.0231 719 0.0272 821 0.90

0.0232 721 0.0273 821 0.90

0.0233 724 0.0274 822 0.89

0.0234 726 0.0275 822 0.89

0.0235 729 0.0276 823 0.89

0.0236 732 0.0277 824 0.89

0.0237 734 0.0278 824 0.89

0.0238 737 0.0279 825 0.88

0.0239 739 0.028 825 0.88

0.024 742 0.0281 826 0.88

0.0241 745 0.0282 826 0.88

0.0242 747 0.0283 827 0.88

0.0243 750 0.0284 828 0.87

0.0244 752 0.0285 828 0.87

0.0245 755 0.0286 829 0.87

0.0246 757 0.0287 829 0.87

0.0247 760 0.0288 830 0.87

0.0248 763 0.0289 830 0.87

0.0249 765 0.029 831 0.86

0.025 768 0.0291 832 0.86

0.0251 770 0.0292 832 0.86

0.0252 773 0.0293 833 0.86

0.0253 775 0.0294 833 0.86

0.0254 778 0.0295 834 0.85

0.0255 780 0.0296 834 0.85
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Table A2.5c Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 5,000 psi,

fy¼ 40,000 psi (for beams ρmin¼ 0.0053)

ρ R ρ R ρ R ρ R ρ R

0.001 36 0.0051 179 0.0092 317 0.0133 449 0.0174 575

0.0011 39 0.0052 183 0.0093 320 0.0134 452 0.0175 578

0.0012 43 0.0053 186 0.0094 323 0.0135 455 0.0176 581

0.0013 47 0.0054 189 0.0095 327 0.0136 458 0.0177 584

0.0014 50 0.0055 193 0.0096 330 0.0137 461 0.0178 587

0.0015 54 0.0056 196 0.0097 333 0.0138 465 0.0179 590

0.0016 57 0.0057 200 0.0098 337 0.0139 468 0.018 593

0.0017 61 0.0058 203 0.0099 340 0.014 471 0.0181 596

0.0018 64 0.0059 207 0.01 343 0.0141 474 0.0182 599

0.0019 68 0.006 210 0.0101 346 0.0142 477 0.0183 602

0.002 71 0.0061 213 0.0102 350 0.0143 480 0.0184 605

0.0021 75 0.0062 217 0.0103 353 0.0144 483 0.0185 608

0.0022 78 0.0063 220 0.0104 356 0.0145 486 0.0186 611

0.0023 82 0.0064 223 0.0105 359 0.0146 489 0.0187 614

0.0024 85 0.0065 227 0.0106 363 0.0147 493 0.0188 617

0.0025 89 0.0066 230 0.0107 366 0.0148 496 0.0189 620

0.0026 92 0.0067 234 0.0108 369 0.0149 499 0.019 623

0.0027 96 0.0068 237 0.0109 372 0.015 502 0.0191 626

0.0028 99 0.0069 240 0.011 376 0.0151 505 0.0192 629

0.0029 103 0.007 244 0.0111 379 0.0152 508 0.0193 632

0.003 106 0.0071 247 0.0112 382 0.0153 511 0.0194 635

0.0031 110 0.0072 250 0.0113 385 0.0154 514 0.0195 638

0.0032 113 0.0073 254 0.0114 388 0.0155 517 0.0196 641

0.0033 117 0.0074 257 0.0115 392 0.0156 520 0.0197 643

0.0034 120 0.0075 260 0.0116 395 0.0157 523 0.0198 646

0.0035 124 0.0076 264 0.0117 398 0.0158 527 0.0199 649

0.0036 127 0.0077 267 0.0118 401 0.0159 530 0.02 652

0.0037 131 0.0078 270 0.0119 404 0.016 533 0.0201 655

0.0038 134 0.0079 274 0.012 408 0.0161 536 0.0202 658

0.0039 138 0.008 277 0.0121 411 0.0162 539 0.0203 661

0.004 141 0.0081 280 0.0122 414 0.0163 542 0.0204 664

0.0041 145 0.0082 284 0.0123 417 0.0164 545 0.0205 667

0.0042 148 0.0083 287 0.0124 420 0.0165 548 0.0206 670

0.0043 152 0.0084 290 0.0125 424 0.0166 551 0.0207 673

0.0044 155 0.0085 294 0.0126 427 0.0167 554 0.0208 676

0.0045 159 0.0086 297 0.0127 430 0.0168 557 0.0209 678

0.0046 162 0.0087 300 0.0128 433 0.0169 560 0.021 681

0.0047 165 0.0088 304 0.0129 436 0.017 563 0.0211 684

0.0048 169 0.0089 307 0.013 439 0.0171 566 0.0212 687

0.0049 172 0.009 310 0.0131 443 0.0172 569 0.0213 690

0.005 176 0.0091 314 0.0132 446 0.0173 572 0.0214 693

(continued)
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Table A2.5c (continued)

ρ R ρ R ρ R ϕ ρ R ϕ
0.0215 696 0.0256 811 0.0297 920 0.0338 987 0.87

0.0216 699 0.0257 813 0.0298 922 0.0339 988 0.87

0.0217 701 0.0258 816 0.0299 925 0.034 989 0.87

0.0218 704 0.0259 819 0.03 928 0.0341 989 0.86

0.0219 707 0.026 821 0.0301 930 0.0342 990 0.86

0.022 710 0.0261 824 0.0302 933 0.0343 991 0.86

0.0221 713 0.0262 827 0.0303 935 0.0344 991 0.86

0.0222 716 0.0263 830 0.0304 938 0.0345 992 0.86

0.0223 719 0.0264 832 0.0305 940 0.0346 992 0.86

0.0224 721 0.0265 835 0.0306 943 0.0347 993 0.86

0.0225 724 0.0266 838 0.0307 946 0.0348 994 0.85

0.0226 727 0.0267 840 0.0308 948 0.0349 994 0.85

0.0227 730 0.0268 843 0.0309 951 0.035 995 0.85

0.0228 733 0.0269 846 0.031 953 0.0351 995 0.85

0.0229 736 0.027 848 0.0311 956 0.0352 996 0.85

0.023 738 0.0271 851 0.0312 958 0.0353 997 0.85

0.0231 741 0.0272 854 0.0313 961 0.0354 997 0.84

0.0232 744 0.0273 857 0.0314 963 0.0355 998 0.84

0.0233 747 0.0274 859 0.0315 966 0.0356 998 0.84

0.0234 750 0.0275 862 0.0316 968 0.0357 999 0.84

0.0235 752 0.0276 865 0.0317 971 0.0358 1000 0.84

0.0236 755 0.0277 867 0.0318 973 ρtc 0.0359 1000 0.84

0.0237 758 0.0278 870 0.0319 976 0.9 0.036 1001 0.84

0.0238 761 0.0279 873 0.032 976 0.9 0.0361 1001 0.84

0.0239 764 0.028 875 0.0321 977 0.9 0.0362 1002 0.83

0.024 766 0.0281 878 0.0322 977 0.89 0.0363 1002 0.83

0.0241 769 0.0282 880 0.0323 978 0.89 0.0364 1003 0.83

0.0242 772 0.0283 883 0.0324 979 0.89

0.0243 775 0.0284 886 0.0325 979 0.89

0.0244 778 0.0285 888 0.0326 980 0.89

0.0245 780 0.0286 891 0.0327 981 0.89

0.0246 783 0.0287 894 0.0328 981 0.88

0.0247 786 0.0288 896 0.0329 982 0.88

0.0248 789 0.0289 899 0.033 983 0.88

0.0249 791 0.029 902 0.0331 983 0.88

0.025 794 0.0291 904 0.0332 984 0.88

0.0251 797 0.0292 907 0.0333 984 0.88

0.0252 800 0.0293 909 0.0334 985 0.87

0.0253 802 0.0294 912 0.0335 986 0.87

0.0254 805 0.0295 915 0.0336 986 0.87

0.0255 808 0.0296 917 0.0337 987 0.87
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Table A2.6a Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 3,000psi,

fy¼ 60,000 psi (for beams ρmin¼ 0.0033)

ρ R ρ R ρ R ρ R ϕ
0.001 53 0.0051 259 0.0092 443 0.0133 606

0.0011 59 0.0052 264 0.0093 447 0.0134 610

0.0012 64 0.0053 268 0.0094 451 0.0135 613 ρtc
0.0013 69 0.0054 273 0.0095 456 0.0136 615 0.90

0.0014 74 0.0055 278 0.0096 460 0.0137 615 0.89

0.0015 80 0.0056 282 0.0097 464 0.0138 616 0.89

0.0016 85 0.0057 287 0.0098 468 0.0139 616 0.88

0.0017 90 0.0058 292 0.0099 472 0.014 616 0.88

0.0018 95 0.0059 296 0.01 476 0.0141 616 0.87

0.0019 100 0.006 301 0.0101 481 0.0142 616 0.87

0.002 105 0.0061 306 0.0102 485 0.0143 617 0.86

0.0021 111 0.0062 310 0.0103 489 0.0144 617 0.86

0.0022 116 0.0063 315 0.0104 493 0.0145 617 0.86

0.0023 121 0.0064 320 0.0105 497 0.0146 617 0.85

0.0024 126 0.0065 324 0.0106 501 0.0147 617 0.85

0.0025 131 0.0066 329 0.0107 505 0.0148 618 0.84

0.0026 136 0.0067 333 0.0108 509 0.0149 618 0.84

0.0027 141 0.0068 338 0.0109 513 0.015 618 0.83

0.0028 146 0.0069 342 0.011 517 0.0151 618 0.83

0.0029 151 0.007 347 0.0111 521 0.0152 618 0.83

0.003 156 0.0071 351 0.0112 525 0.0153 619 0.82

0.0031 161 0.0072 356 0.0113 529 0.0154 619 0.82

0.0032 166 0.0073 360 0.0114 533 0.0155 619 0.81

0.0033 171 0.0074 365 0.0115 537

0.0034 176 0.0075 369 0.0116 541

0.0035 181 0.0076 374 0.0117 545

0.0036 186 0.0077 378 0.0118 549

0.0037 191 0.0078 383 0.0119 553

0.0038 196 0.0079 387 0.012 557

0.0039 201 0.008 391 0.0121 560

0.004 206 0.0081 396 0.0122 564

0.0041 211 0.0082 400 0.0123 568

0.0042 216 0.0083 404 0.0124 572

0.0043 220 0.0084 409 0.0125 576

0.0044 225 0.0085 413 0.0126 580

0.0045 230 0.0086 417 0.0127 583

0.0046 235 0.0087 422 0.0128 587

0.0047 240 0.0088 426 0.0129 591

0.0048 245 0.0089 430 0.013 595

0.0049 249 0.009 435 0.0131 598

0.005 254 0.0091 439 0.0132 602
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Table A2.6b Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 4,000psi,

fy¼ 60,000 psi (for beams ρmin¼ 0.0033)

ρ R ρ R ρ R ρ R ρ R ϕ
0.001 54 0.0051 263 0.0092 456 0.0133 634 0.0174 795

0.0011 59 0.0052 268 0.0093 461 0.0134 638 0.0175 799

0.0012 64 0.0053 273 0.0094 465 0.0135 642 0.0176 803

0.0013 69 0.0054 278 0.0095 470 0.0136 646 0.0177 807

0.0014 75 0.0055 283 0.0096 474 0.0137 650 0.0178 810

0.0015 80 0.0056 287 0.0097 479 0.0138 654 0.0179 814

0.0016 85 0.0057 292 0.0098 483 0.0139 659 0.018 818 ρtc
0.0017 90 0.0058 297 0.0099 488 0.014 663 0.0181 820 0.90

0.0018 96 0.0059 302 0.01 492 0.0141 667 0.0182 820 0.89

0.0019 101 0.006 307 0.0101 497 0.0142 671 0.0183 820 0.89

0.002 106 0.0061 312 0.0102 501 0.0143 675 0.0184 821 0.89

0.0021 111 0.0062 316 0.0103 506 0.0144 679 0.0185 821 0.88

0.0022 116 0.0063 321 0.0104 510 0.0145 683 0.0186 821 0.88

0.0023 122 0.0064 326 0.0105 514 0.0146 687 0.0187 821 0.88

0.0024 127 0.0065 331 0.0106 519 0.0147 691 0.0188 822 0.87

0.0025 132 0.0066 336 0.0107 523 0.0148 695 0.0189 822 0.87

0.0026 137 0.0067 340 0.0108 528 0.0149 699 0.019 822 0.87

0.0027 142 0.0068 345 0.0109 532 0.015 703 0.0191 822 0.86

0.0028 147 0.0069 350 0.011 536 0.0151 707 0.0192 822 0.86

0.0029 153 0.007 355 0.0111 541 0.0152 711 0.0193 823 0.86

0.003 158 0.0071 359 0.0112 545 0.0153 715 0.0194 823 0.85

0.0031 163 0.0072 364 0.0113 549 0.0154 719 0.0195 823 0.85

0.0032 168 0.0073 369 0.0114 554 0.0155 723 0.0196 823 0.85

0.0033 173 0.0074 374 0.0115 558 0.0156 726 0.0197 823 0.84

0.0034 178 0.0075 378 0.0116 562 0.0157 730 0.0198 824 0.84

0.0035 183 0.0076 383 0.0117 567 0.0158 734 0.0199 824 0.84

0.0036 188 0.0077 388 0.0118 571 0.0159 738 0.02 824 0.83

0.0037 193 0.0078 392 0.0119 575 0.016 742 0.0201 824 0.83

0.0038 198 0.0079 397 0.012 579 0.0161 746 0.0202 824 0.83

0.0039 203 0.008 402 0.0121 584 0.0162 750 0.0203 825 0.82

0.004 208 0.0081 406 0.0122 588 0.0163 754 0.0204 825 0.82

0.0041 213 0.0082 411 0.0123 592 0.0164 757 0.0205 825 0.82

0.0042 218 0.0083 415 0.0124 596 0.0165 761 0.0206 825 0.82

0.0043 223 0.0084 420 0.0125 601 0.0166 765 0.0207 825 0.81

0.0044 228 0.0085 425 0.0126 605 0.0167 769

0.0045 233 0.0086 429 0.0127 609 0.0168 773

0.0046 238 0.0087 434 0.0128 613 0.0169 777

0.0047 243 0.0088 438 0.0129 617 0.017 780

0.0048 248 0.0089 443 0.013 621 0.0171 784

0.0049 253 0.009 447 0.0131 626 0.0172 788

0.005 258 0.0091 452 0.0132 630 0.0173 792
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Table A2.6c Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 5,000psi,

fy¼ 60,000 psi (for beams ρmin¼ 0.0035)

ρ R ρ R ρ R ρ R ρ R ϕ ρ R ϕ
0.001 54 0.0051 265 0.0092 465 0.0133 651 0.0174 824 0.0215 976 0.89

0.0011 59 0.0052 270 0.0093 469 0.0134 655 0.0175 828 0.0216 976 0.89

0.0012 64 0.0053 275 0.0094 474 0.0135 660 0.0176 832 0.0217 977 0.89

0.0013 70 0.0054 280 0.0095 479 0.0136 664 0.0177 836 0.0218 977 0.88

0.0014 75 0.0055 285 0.0096 483 0.0137 668 0.0178 840 0.0219 977 0.88

0.0015 80 0.0056 290 0.0097 488 0.0138 673 0.0179 844 0.022 978 0.88

0.0016 85 0.0057 295 0.0098 493 0.0139 677 0.018 848 0.0221 978 0.87

0.0017 91 0.0058 300 0.0099 497 0.014 681 0.0181 853 0.0222 978 0.87

0.0018 96 0.0059 305 0.01 502 0.0141 686 0.0182 857 0.0223 978 0.87

0.0019 101 0.006 310 0.0101 507 0.0142 690 0.0183 861 0.0224 979 0.86

0.002 106 0.0061 315 0.0102 511 0.0143 694 0.0184 865 0.0225 979 0.86

0.0021 112 0.0062 320 0.0103 516 0.0144 699 0.0185 869 0.0226 979 0.86

0.0022 117 0.0063 325 0.0104 520 0.0145 703 0.0186 873 0.0227 980 0.86

0.0023 122 0.0064 330 0.0105 525 0.0146 707 0.0187 877 0.0228 980 0.85

0.0024 127 0.0065 335 0.0106 530 0.0147 711 0.0188 880 0.0229 980 0.85

0.0025 133 0.0066 340 0.0107 534 0.0148 716 0.0189 884 0.023 980 0.85

0.0026 138 0.0067 345 0.0108 539 0.0149 720 0.019 888 0.0231 981 0.85

0.0027 143 0.0068 350 0.0109 543 0.015 724 0.0191 892 0.0232 981 0.84

0.0028 148 0.0069 354 0.011 548 0.0151 728 0.0192 896 0.0233 981 0.84

0.0029 153 0.007 359 0.0111 552 0.0152 733 0.0193 900 0.0234 981 0.84

0.003 159 0.0071 364 0.0112 557 0.0153 737 0.0194 904 0.0235 982 0.83

0.0031 164 0.0072 369 0.0113 562 0.0154 741 0.0195 908 0.0236 982 0.83

0.0032 169 0.0073 374 0.0114 566 0.0155 745 0.0196 912 0.0237 982 0.83

0.0033 174 0.0074 379 0.0115 571 0.0156 750 0.0197 916 0.0238 982 0.83

0.0034 179 0.0075 384 0.0116 575 0.0157 754 0.0198 920 0.0239 983 0.82

0.0035 184 0.0076 388 0.0117 580 0.0158 758 0.0199 924 0.024 983 0.82

0.0036 189 0.0077 393 0.0118 584 0.0159 762 0.02 928 0.0241 983 0.82

0.0037 195 0.0078 398 0.0119 589 0.016 766 0.0201 931 0.0242 983 0.82

0.0038 200 0.0079 403 0.012 593 0.0161 771 0.0202 935 0.0243 984 0.81

0.0039 205 0.008 408 0.0121 598 0.0162 775 0.0203 939 0.0244 984 0.81

0.004 210 0.0081 412 0.0122 602 0.0163 779 0.0204 943

0.0041 215 0.0082 417 0.0123 607 0.0164 783 0.0205 947

0.0042 220 0.0083 422 0.0124 611 0.0165 787 0.0206 951

0.0043 225 0.0084 427 0.0125 615 0.0166 791 0.0207 954

0.0044 230 0.0085 431 0.0126 620 0.0167 795 0.0208 958

0.0045 235 0.0086 436 0.0127 624 0.0168 800 0.0209 962

0.0046 240 0.0087 441 0.0128 629 0.0169 804 0.021 966

0.0047 245 0.0088 446 0.0129 633 0.017 808 0.0211 970

0.0048 250 0.0089 450 0.013 638 0.0171 812 0.0212 973 ρtc
0.0049 255 0.009 455 0.0131 642 0.0172 816 0.0213 976 0.90

0.005 260 0.0091 460 0.0132 646 0.0173 820 0.0214 976 0.90
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Table A2.7a Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 3,000 psi,

fy¼ 75,000 psi (for beams ρmin¼ 0.0027)

ρ R ρ R ρ R ϕ
0.001 67 0.0051 318 0.0092 537

0.0011 73 0.0052 324 0.0093 542

0.0012 80 0.0053 330 0.0094 547

0.0013 86 0.0054 336 0.0095 552

0.0014 93 0.0055 341 0.0096 557

0.0015 99 0.0056 347 0.0097 561

0.0016 105 0.0057 352 0.0098 566

0.0017 112 0.0058 358 0.0099 571

0.0018 118 0.0059 364 0.01 576

0.0019 125 0.006 369 0.0101 580

0.002 131 0.0061 375 0.0102 585

0.0021 137 0.0062 380 0.0103 590

0.0022 144 0.0063 386 0.0104 595

0.0023 150 0.0064 391 0.0105 599

0.0024 156 0.0065 397 0.0106 604

0.0025 163 0.0066 402 0.0107 609

0.0026 169 0.0067 408 0.0108 613 ρtc
0.0027 175 0.0068 413 0.0109 615 0.90

0.0028 181 0.0069 418 0.011 614 0.89

0.0029 187 0.007 424 0.0111 613 0.88

0.003 194 0.0071 429 0.0112 613 0.87

0.0031 200 0.0072 435 0.0113 612 0.87

0.0032 206 0.0073 440 0.0114 611 0.86

0.0033 212 0.0074 445 0.0115 611 0.85

0.0034 218 0.0075 450 0.0116 610 0.85

0.0035 224 0.0076 456 0.0117 609 0.84

0.0036 230 0.0077 461 0.0118 609 0.83

0.0037 236 0.0078 466 0.0119 608 0.83

0.0038 242 0.0079 471 0.012 608 0.82

0.0039 248 0.008 476 0.0121 607 0.81

0.004 254 0.0081 482 0.0122 606 0.81

0.0041 260 0.0082 487 0.0123 606 0.80

0.0042 266 0.0083 492 0.0124 605 0.80

0.0043 272 0.0084 497

0.0044 278 0.0085 502

0.0045 284 0.0086 507

0.0046 289 0.0087 512

0.0047 295 0.0088 517

0.0048 301 0.0089 522

0.0049 307 0.009 527

0.005 313 0.0091 532
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Table A2.7b Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 4,000 psi,

fy¼ 75,000 psi (for beams ρmin¼ 0.0027)

ρ R ρ R ρ R ρ R ϕ
0.001 67 0.0051 325 0.0092 558 0.0133 766

0.0011 73 0.0052 331 0.0093 563 0.0134 771

0.0012 80 0.0053 337 0.0094 569 0.0135 776

0.0013 86 0.0054 343 0.0095 574 0.0136 780

0.0014 93 0.0055 349 0.0096 579 0.0137 785

0.0015 100 0.0056 355 0.0097 585 0.0138 790

0.0016 106 0.0057 361 0.0098 590 0.0139 794

0.0017 113 0.0058 366 0.0099 595 0.014 799

0.0018 119 0.0059 372 0.01 601 0.0141 804

0.0019 126 0.006 378 0.0101 606 0.0142 808

0.002 132 0.0061 384 0.0102 611 0.0143 813

0.0021 138 0.0062 390 0.0103 616 0.0144 818 ρtc
0.0022 145 0.0063 396 0.0104 621 0.0145 820 0.90

0.0023 151 0.0064 402 0.0105 627 0.0146 819 0.89

0.0024 158 0.0065 407 0.0106 632 0.0147 818 0.89

0.0025 164 0.0066 413 0.0107 637 0.0148 818 0.88

0.0026 170 0.0067 419 0.0108 642 0.0149 817 0.87

0.0027 177 0.0068 425 0.0109 647 0.015 816 0.87

0.0028 183 0.0069 430 0.011 652 0.0151 816 0.86

0.0029 189 0.007 436 0.0111 658 0.0152 815 0.86

0.003 196 0.0071 442 0.0112 663 0.0153 815 0.85

0.0031 202 0.0072 447 0.0113 668 0.0154 814 0.85

0.0032 208 0.0073 453 0.0114 673 0.0155 813 0.84

0.0033 215 0.0074 459 0.0115 678 0.0156 813 0.84

0.0034 221 0.0075 464 0.0116 683 0.0157 812 0.83

0.0035 227 0.0076 470 0.0117 688 0.0158 811 0.83

0.0036 233 0.0077 476 0.0118 693 0.0159 811 0.82

0.0037 240 0.0078 481 0.0119 698 0.016 810 0.82

0.0038 246 0.0079 487 0.012 703 0.0161 809 0.82

0.0039 252 0.008 492 0.0121 708 0.0162 809 0.81

0.004 258 0.0081 498 0.0122 713 0.0163 808 0.81

0.0041 264 0.0082 503 0.0123 718 0.0164 808 0.80

0.0042 270 0.0083 509 0.0124 723 0.0165 807 0.80

0.0043 276 0.0084 514 0.0125 727

0.0044 283 0.0085 520 0.0126 732

0.0045 289 0.0086 525 0.0127 737

0.0046 295 0.0087 531 0.0128 742

0.0047 301 0.0088 536 0.0129 747

0.0048 307 0.0089 542 0.013 752

0.0049 313 0.009 547 0.0131 756

0.005 319 0.0091 553 0.0132 761
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Table A2.7c Resistance coefficient R (in psi) versus reinforcement ratio (ρ); fc0 ¼ 5,000psi,

fy¼ 75,000 psi (for beams ρmin¼ 0.0028)

ρ R ρ R ρ R ρ R ϕ ρ R ϕ
0.001 67 0.0051 329 0.0092 571 0.0133 792 0.0174 973 0.88

0.0011 74 0.0052 335 0.0093 576 0.0134 798 0.0175 973 0.88

0.0012 80 0.0053 341 0.0094 582 0.0135 803 0.0176 972 0.87

0.0013 87 0.0054 347 0.0095 587 0.0136 808 0.0177 971 0.87

0.0014 93 0.0055 353 0.0096 593 0.0137 813 0.0178 971 0.86

0.0015 100 0.0056 359 0.0097 599 0.0138 818 0.0179 970 0.86

0.0016 106 0.0057 365 0.0098 604 0.0139 823 0.018 970 0.85

0.0017 113 0.0058 371 0.0099 610 0.014 828 0.0181 969 0.85

0.0018 120 0.0059 378 0.01 615 0.0141 833 0.0182 969 0.85

0.0019 126 0.006 384 0.0101 621 0.0142 838 0.0183 968 0.84

0.002 133 0.0061 390 0.0102 627 0.0143 843 0.0184 967 0.84

0.0021 139 0.0062 396 0.0103 632 0.0144 848 0.0185 967 0.83

0.0022 146 0.0063 402 0.0104 638 0.0145 854 0.0186 966 0.83

0.0023 152 0.0064 408 0.0105 643 0.0146 859 0.0187 966 0.82

0.0024 159 0.0065 414 0.0106 649 0.0147 864 0.0188 965 0.82

0.0025 165 0.0066 420 0.0107 654 0.0148 869 0.0189 965 0.82

0.0026 171 0.0067 426 0.0108 660 0.0149 874 0.019 964 0.81

0.0027 178 0.0068 431 0.0109 665 0.015 878 0.0191 963 0.81

0.0028 184 0.0069 437 0.011 670 0.0151 883 0.0192 963 0.81

0.0029 191 0.007 443 0.0111 676 0.0152 888 0.0193 962 0.80

0.003 197 0.0071 449 0.0112 681 0.0153 893 0.0194 962 0.80

0.0031 204 0.0072 455 0.0113 687 0.0154 898

0.0032 210 0.0073 461 0.0114 692 0.0155 903

0.0033 216 0.0074 467 0.0115 697 0.0156 908

0.0034 223 0.0075 473 0.0116 703 0.0157 913

0.0035 229 0.0076 479 0.0117 708 0.0158 918

0.0036 235 0.0077 484 0.0118 714 0.0159 923

0.0037 242 0.0078 490 0.0119 719 0.016 928

0.0038 248 0.0079 496 0.012 724 0.0161 932

0.0039 254 0.008 502 0.0121 730 0.0162 937

0.004 260 0.0081 508 0.0122 735 0.0163 942

0.0041 267 0.0082 513 0.0123 740 0.0164 947

0.0042 273 0.0083 519 0.0124 745 0.0165 952

0.0043 279 0.0084 525 0.0125 751 0.0166 956

0.0044 285 0.0085 531 0.0126 756 0.0167 961

0.0045 292 0.0086 536 0.0127 761 0.0168 966

0.0046 298 0.0087 542 0.0128 766 0.0169 971 ρtc
0.0047 304 0.0088 548 0.0129 772 0.017 975 0.90

0.0048 310 0.0089 554 0.013 777 0.0171 975 0.90

0.0049 316 0.009 559 0.0131 782 0.0172 974 0.89

0.005 323 0.0091 565 0.0132 787 0.0173 974 0.89
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Table A2.8 bmin and bmax for reinforced concrete beams (in.)

Number of bars
in single layer

bmin

bmax#3 or #4 #5 #6 #7 #8 #9 #10 #11

2 6.0 6.0 6.5 7.0 7.0 7.5 8.0 8.5 14.0

3 7.5 8.0 8.0 9.0 9.0 10.0 10.5 11.0 24.0

4 9.0 9.5 10.0 10.5 11.0 12.0 13.0 14.0 34.0

5 10.5 11.0 11.5 12.5 13.0 14.5 15.5 17.0 44.0

6 12.0 12.5 13.5 14.5 15.0 16.5 18.0 19.5 54.0

7 13.5 14.5 15.0 16.5 17.0 19.0 20.5 22.5 64.0

8 15.0 16.0 17.0 18.0 19.0 21.0 23.0 25.5 74.0

9 16.5 17.5 18.5 20.0 21.0 23.5 26.0 28.0 84.0

10 18.0 19.0 20.5 22.0 23.0 25.5 28.5 31.0 94.0

Table A2.9 Areas of multiple reinforcing bars (in2)

Number of bars

Bar size

#3 #4 #5 #6 #7 #8 #9 #10 #11

1 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56

2 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12

3 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68

4 0.44 0.80 1.24 1.76 2.40 3.16 4.00 5.08 6.24

5 0.55 1.00 1.55 2.20 3.00 3.95 5.00 6.35 7.80

6 0.66 1.20 1.86 2.64 3.60 4.74 6.00 7.62 9.36

7 0.77 1.40 2.17 3.08 4.20 5.53 7.00 8.89 10.92

8 0.88 1.60 2.48 3.52 4.80 6.32 8.00 10.16 12.48

9 0.99 1.80 2.79 3.96 5.40 7.11 9.00 11.43 14.04

10 1.10 2.00 3.10 4.40 6.00 7.90 10.00 12.70 15.60

11 1.21 2.20 3.41 4.84 6.60 8.69 11.00 13.97 17.16

12 1.32 2.40 3.72 5.28 7.20 9.48 12.00 15.24 18.72

13 1.43 2.60 4.03 5.72 7.80 10.27 13.00 16.51 20.28

14 1.54 2.80 4.34 6.16 8.40 11.06 14.00 17.78 21.84

15 1.65 3.00 4.65 6.60 9.00 11.85 15.00 19.05 23.40

16 1.76 3.20 4.96 7.04 9.60 12.64 16.00 20.32 24.96

17 1.87 3.40 5.27 7.48 10.20 13.43 17.00 21.59 26.52

18 1.98 3.60 5.58 7.92 10.80 14.22 18.00 22.86 28.08

19 2.09 3.80 5.89 8.36 11.40 15.01 19.00 24.13 29.64

20 2.20 4.00 6.20 8.80 12.00 15.80 20.00 25.40 31.20
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Table A2.10 Areas of reinforcement in one-foot-wide sections

Spacing (in.)

Bar sizes

#3 #4 #5 #6 #7 #8 #9 #10 #11

3 0.44 0.80 1.24 1.76 2.40 3.16 4.00 5.08 6.24

4 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68

5 0.26 0.48 0.74 1.06 1.44 1.90 2.40 3.05 3.74

6 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12

7 0.19 0.34 0.53 0.75 1.03 1.35 1.71 2.18 2.67

8 0.17 0.30 0.47 0.66 0.90 1.19 1.50 1.91 2.34

9 0.15 0.27 0.41 0.59 0.80 1.05 1.33 1.69 2.08

10 0.13 0.24 0.37 0.53 0.72 0.95 1.20 1.52 1.87

11 0.12 0.22 0.34 0.48 0.65 0.86 1.09 1.39 1.70

12 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56

13 0.10 0.18 0.29 0.41 0.55 0.73 0.92 1.17 1.44

14 0.09 0.17 0.27 0.38 0.51 0.68 0.86 1.09 1.34

15 0.09 0.16 0.25 0.35 0.48 0.63 0.80 1.02 1.25

16 0.08 0.15 0.23 0.33 0.45 0.59 0.75 0.95 1.17

17 0.08 0.14 0.22 0.31 0.42 0.56 0.71 0.90 1.10

18 0.07 0.13 0.21 0.29 0.40 0.53 0.67 0.85 1.04

Areas of steel are given in square inches for one-foot-wide sections of concrete (slabs, walls,

footings) for various center-to-center spacings of reinforcing bars

622 Appendix A: Tables and Diagrams



Table A3.1 Description of factors used in embedment length formulae

Symbol Name Condition Value

ld
Development

length

As calculated,

but not less than

12 in.

ψt
Reinforcement

location factor

Horizontal reinforcement placed so that more

than 12 in. of fresh concrete is cast in the

member below the development length or

splice

1.3

Other reinforcement 1.0

ψe Coating factor

Epoxy-coated or zinc and epoxy dual-coated

reinforcement with cover less than 3db or
clear spacing less than 6db

1.5

Epoxy-coated or zinc and epoxy dual-coated

reinforcement for all other conditions
1.2

Uncoated or zinc-coated (galvanized)

reinforcement
1.0

ψs

Reinforcement

size factor

#6 and smaller bars and deformed wires 0.8

#7 and larger bars 1.0

λ
Lightweight

aggregate con-

crete factor

When lightweight aggregate concrete is used 0.75

When normal-weight concrete is used
1.0

cb
Spacing or cover

dimension, in.

Use the smaller of either distance from the

center of the bar to the nearest concrete sur-

face, or one-half of the center-to-center

spacing of the bars being developed.

Ktr
Transverse rein-

forcement index

It is permitted to use Ktr¼ 0 as a design

simplification, even if transverse reinforce-

ment is present.

(s¼ spacing of the transverse reinforcement;

and n¼ number of bars being developed or

lap spliced along the plane of splitting).

40Atr

sn

Excess

reinforcement

Reinforcement in a flexural member is in

excess of that required by analysis.

As, required

As, provided

Note: ψt�ψe not to exceed 1.7
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Table A3.2 Simplified expression of development length, ‘d, for bars in tension based on ACI

code Section 25.4.2.2

Conditions
#6 and smaller bars
and deformed wires

#7 and larger
bars

A. Clear spacing of bars or wires being developed or
spliced not less than db, clear cover not less than
db, and stirrups or ties throughout ‘d not less than
the ACI Code minimum; or clear spacing of bars

or wires being developed or lap spliced at least

2db and clear cover at least db

f yψtψe

25λ
ffiffiffiffi
fc
0p

 !
db

f yψtψe

20λ
ffiffiffiffi
fc
0p

 !
db

B. Other cases 3f yψtψe

50λ
ffiffiffiffi
fc
0p

 !
db

3f yψtψe

40λ
ffiffiffiffi
fc
0p

 !
db

Note: The development length used may not be less than 12 in.

Table A3.3 Development length for tension bars (‘d) with fy¼ 60 ksi (ψe¼ψt¼ λ¼ 1.0) [in.]

Bar size

ld (in.)

f 0c¼ 3 ksi f 0c¼ 4 ksi

Condition A Condition B Condition A Condition B

#3 17 25 15 22

#4 22 33 19 29

#5 28 41 24 36

#6 33 50 29 43

#7 48 72 42 63

#8 55 83 48 72

#9 62 93 54 81

#10 70 105 61 91

#11 78 116 67 101

Note: Conditions A and B are based on Table A3.2
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Table A3.4 Factors for development of hooked bars in tension [ACI Section 25.4.3.2]

Symbol Name Condition Value

ψe Coating factor

Epoxy-coated or zinc and epoxy dual-coated

reinforcement
1.2

Uncoated or zinc-coated (galvanized)

reinforcement
1.0

ψc Cover factor

#11 Bar and smaller hooks with side cover (normal

to plane of hook) �2.5 in., and for 90� hook with

cover on bar extension beyond hook �2 in.

0.7

Other 1.0

ψr Confining factor

#11 Bar and smaller 90� hooks:
(1) enclosed along ‘dh within ties or stirrups per-

pendicular to ‘dh at spacing �3db, or
(2) Enclosed along the bar extension beyond hook

including the bend within ties or stirrups per-

pendicular to the hook extension at spacing

�3db
(3) #11 and smaller bars 180� hooks

Enclosed along ‘dh within ties or stirrups per-

pendicular to ‘dh at spacing �3db

0.8

Other 1.0

λ
Lightweight aggre-

gate concrete factor

Lightweight concrete 0.75

Normal weight concrete 1.0

Excess

reinforcement

Reinforcement used by excess of that required by

analysis

As, required

As, provided

Note: The development length used may not be less than the smaller of 8db or 6 in.

Table A3.5 Factors for development of bars in compression [ACI Section 25.4.9.3]

Symbol Name Condition Value

ψr Confining factor

Reinforcement enclosed within one of the

following:

(1) A spiral

(2) A circular continuously wound tie with

db �1/4 in., and pitch �4 in.

(3) #4 Ties spaced �4 in. on center

(4) Hoops spaced �4 in. on center

0.75

Other 1.0

λ
Lightweight aggregate

concrete factor

Lightweight concrete 0.75

Normal-weight concrete 1.0

Excess reinforcement
Reinforcement used in excess of that required

by analysis

As, required

As, provided

Note: The development length used may not be less than 8 in.
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Table A3.6 Development length for compression bars (‘dc) with

fy¼ 60 ksi and various f 0c values (in.) λ ¼ ψ r ¼ 1:0½ 	
Bar size f 0c¼ 3 ksi f 0c¼ 4 ksi f 0c� 5 ksi

#3 9 8 7

#4 11 10 9

#5 14 12 12

#6 17 15 14

#7 20 17 16

#8 22 19 18

#9 25 22 21

#10 28 24 23

#11 31 27 26
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Table A4.1a Values of Vc in kips fc
0 ¼ 3,000psið Þ [d¼ h�2.5 in. (+/�)] (λ¼ 1.0)

f 0c¼ 3,000 psi

h (in.)

bw (in.)

6 8 10 12 14 16 18 20 22 24 26 28 30

10 4.9 6.6 8.2 9.9 11.5 13.1 14.8 16.4 18.1 19.7 21.4 23.0 24.6

12 6.2 8.3 10.4 12.5 14.6 16.7 18.7 20.8 22.9 25.0 27.1 29.1 31.2

14 7.6 10.1 12.6 15.1 17.6 20.2 22.7 25.2 27.7 30.2 32.8 35.3 37.8

16 8.9 11.8 14.8 17.7 20.7 23.7 26.6 29.6 32.5 35.5 38.5 41.4 44.4

18 10.2 13.6 17.0 20.4 23.8 27.2 30.6 34.0 37.4 40.8 44.1 47.5 50.9

20 11.5 15.3 19.2 23.0 26.8 30.7 34.5 38.3 42.2 46.0 49.8 53.7 57.5

22 12.8 17.1 21.4 25.6 29.9 34.2 38.5 42.7 47.0 51.3 55.5 59.8 64.1

24 14.1 18.8 23.6 28.3 33.0 37.7 42.4 47.1 51.8 56.5 61.2 65.9 70.7

26 15.4 20.6 25.7 30.9 36.0 41.2 46.3 51.5 56.6 61.8 66.9 72.1 77.2

28 16.8 22.3 27.9 33.5 39.1 44.7 50.3 55.9 61.5 67.0 72.6 78.2 83.8

30 18.1 24.1 30.1 36.1 42.2 48.2 54.2 60.2 66.3 72.3 78.3 84.3 90.4

32 19.4 25.9 32.3 38.8 45.2 51.7 58.2 64.6 71.1 77.6 84.0 90.5 96.9

34 20.7 27.6 34.5 41.4 48.3 55.2 62.1 69.0 75.9 82.8 89.7 96.6 103.5

36 22.0 29.4 36.7 44.0 51.4 58.7 66.1 73.4 80.7 88.1 95.4 102.8 110.1

38 23.3 31.1 38.9 46.7 54.4 62.2 70.0 77.8 85.6 93.3 101.1 108.9 116.7

40 24.6 32.9 41.1 49.3 57.5 65.7 73.9 82.2 90.4 98.6 106.8 115.0 123.2

42 26.0 34.6 43.3 51.9 60.6 69.2 77.9 86.5 95.2 103.8 112.5 121.2 129.8

Table A4.1b Values of Vc in kips fc
0 ¼ 4,000psið Þ [d¼ h�2.5 in. (+/�)] (λ¼ 1.0)

f 0c¼ 4,000 psi

h (in.)

bw (in.)

6 8 10 12 14 16 18 20 22 24 26 28 30

10 5.7 7.6 9.5 11.4 13.3 15.2 17.1 19.0 20.9 22.8 24.7 26.6 28.5

12 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 31.2 33.6 36.0

14 8.7 11.6 14.5 17.5 20.4 23.3 26.2 29.1 32.0 34.9 37.8 40.7 43.6

16 10.2 13.7 17.1 20.5 23.9 27.3 30.7 34.2 37.6 41.0 44.4 47.8 51.2

18 11.8 15.7 19.6 23.5 27.4 31.4 35.3 39.2 43.1 47.1 51.0 54.9 58.8

20 13.3 17.7 22.1 26.6 31.0 35.4 39.8 44.3 48.7 53.1 57.6 62.0 66.4

22 14.8 19.7 24.7 29.6 34.5 39.5 44.4 49.3 54.3 59.2 64.1 69.1 74.0

24 16.3 21.8 27.2 32.6 38.1 43.5 49.0 54.4 59.8 65.3 70.7 76.1 81.6

26 17.8 23.8 29.7 35.7 41.6 47.6 53.5 59.5 65.4 71.3 77.3 83.2 89.2

28 19.4 25.8 32.3 38.7 45.2 51.6 58.1 64.5 71.0 77.4 83.9 90.3 96.8

30 20.9 27.8 34.8 41.7 48.7 55.7 62.6 69.6 76.5 83.5 90.4 97.4 104.4

32 22.4 29.9 37.3 44.8 52.2 59.7 67.2 74.6 82.1 89.6 97.0 104.5 111.9

34 23.9 31.9 39.8 47.8 55.8 63.8 71.7 79.7 87.7 95.6 103.6 111.6 119.5

36 25.4 33.9 42.4 50.8 59.3 67.8 76.3 84.7 93.2 101.7 110.2 118.6 127.1

38 26.9 35.9 44.9 53.9 62.9 71.8 80.8 89.8 98.8 107.8 116.8 125.7 134.7

40 28.5 37.9 47.4 56.9 66.4 75.9 85.4 94.9 104.4 113.8 123.3 132.8 142.3

42 30.0 40.0 50.0 60.0 69.9 79.9 89.9 99.9 109.9 119.9 129.9 139.9 149.9
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Table A4.1c Values of Vc in kips fc
0 ¼ 5,000psið Þ [d¼ h�2.5 in. (+/�)] (λ¼ 1.0)

f 0c¼ 5,000 psi

h
(in.)

bw (in.)

6 8 10 12 14 16 18 20 22 24 26 28 30

10 6.4 8.5 10.6 12.7 14.8 17.0 19.1 21.2 23.3 25.5 27.6 29.7 31.8

12 8.1 10.7 13.4 16.1 18.8 21.5 24.2 26.9 29.6 32.2 34.9 37.6 40.3

14 9.8 13.0 16.3 19.5 22.8 26.0 29.3 32.5 35.8 39.0 42.3 45.5 48.8

16 11.5 15.3 19.1 22.9 26.7 30.5 34.4 38.2 42.0 45.8 49.6 53.5 57.3

18 13.2 17.5 21.9 26.3 30.7 35.1 39.5 43.8 48.2 52.6 57.0 61.4 65.8

20 14.8 19.8 24.7 29.7 34.6 39.6 44.5 49.5 54.4 59.4 64.3 69.3 74.2

22 16.5 22.1 27.6 33.1 38.6 44.1 49.6 55.2 60.7 66.2 71.7 77.2 82.7

24 18.2 24.3 30.4 36.5 42.6 48.6 54.7 60.8 66.9 73.0 79.1 85.1 91.2

26 19.9 26.6 33.2 39.9 46.5 53.2 59.8 66.5 73.1 79.8 86.4 93.1 99.7

28 21.6 28.8 36.1 43.3 50.5 57.7 64.9 72.1 79.3 86.5 93.8 101.0 108.2

30 23.3 31.1 38.9 46.7 54.4 62.2 70.0 77.8 85.6 93.3 101.1 108.9 116.7

32 25.0 33.4 41.7 50.1 58.4 66.8 75.1 83.4 91.8 100.1 108.5 116.8 125.2

34 26.7 35.6 44.5 53.5 62.4 71.3 80.2 89.1 98.0 106.9 115.8 124.7 133.6

36 28.4 37.9 47.4 56.9 66.3 75.8 85.3 94.8 104.2 113.7 123.2 132.7 142.1

38 30.1 40.2 50.2 60.2 70.3 80.3 90.4 100.4 110.5 120.5 130.5 140.6 150.6

40 31.8 42.4 53.0 63.6 74.2 84.9 95.5 106.1 116.7 127.3 137.9 148.5 159.1

42 33.5 44.7 55.9 67.0 78.2 89.4 100.6 111.7 122.9 134.1 145.2 156.4 167.6

Table A4.2a Values of Vs in kips, with 2 legs of #3 stirrups (fyt¼ 60,000 psi)

#3 Stirrups–2 legs

h (in.)

Spacing s (in.)

2 3 4 5 6 8 10 12 14 16 18

10 49.5 33.0 24.8

12 62.7 41.8 31.4 25.1

14 75.9 50.6 38.0 30.4 25.3

16 89.1 59.4 44.6 35.6 29.7

18 102.3 68.2 51.2 40.9 34.1 25.6

20 115.5 77.0 57.8 46.2 38.5 28.9

22 128.7 85.8 64.4 51.5 42.9 32.2 25.7

24 141.9 94.6 71.0 56.8 47.3 35.5 28.4

26 155.1 103.4 77.6 62.0 51.7 38.8 31.0 25.9

28 168.3 112.2 84.2 67.3 56.1 42.1 33.7 28.1

30 181.5 121.0 90.8 72.6 60.5 45.4 36.3 30.3 25.9

32 194.7 129.8 97.4 77.9 64.9 48.7 38.9 32.5 27.8

34 207.9 138.6 104.0 83.2 69.3 52.0 41.6 34.7 29.7 26.0

36 221.1 147.4 110.6 88.4 73.7 55.3 44.2 36.9 31.6 27.6

38 234.3 156.2 117.2 93.7 78.1 58.6 46.9 39.1 33.5 29.3 26.0

40 247.5 165.0 123.8 99.0 82.5 61.9 49.5 41.3 35.4 30.9 27.5

Note: Multiply table values by 2 for #3 stirrups with 4 legs
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Table A4.2b Values of Vs in kips, with 2 legs of #4 stirrups (fyt¼ 60,000 psi)

#4 Stirrups–2 legs

h (in.)

Spacing s (in.)

2 3 4 5 6 8 10 12 14 16 18

10 90.0 60.0 45.0

12 114.0 76.0 57.0 45.6

14 138.0 92.0 69.0 55.2 46.0

16 162.0 108.0 81.0 64.8 54.0

18 186.0 124.0 93.0 74.4 62.0 46.5

20 210.0 140.0 105.0 84.0 70.0 52.5

22 234.0 156.0 117.0 93.6 78.0 58.5 46.8

24 258.0 172.0 129.0 103.2 86.0 64.5 51.6

26 282.0 188.0 141.0 112.8 94.0 70.5 56.4 47.0

28 306.0 204.0 153.0 122.4 102.0 76.5 61.2 51.0

30 330.0 220.0 165.0 132.0 110.0 82.5 66.0 55.0 47.1

32 354.0 236.0 177.0 141.6 118.0 88.5 70.8 59.0 50.6

34 378.0 252.0 189.0 151.2 126.0 94.5 75.6 63.0 54.0 47.3

36 402.0 268.0 201.0 160.8 134.0 100.5 80.4 67.0 57.4 50.3

38 426.0 284.0 213.0 170.4 142.0 106.5 85.2 71.0 60.9 53.3 47.3

40 450.0 300.0 225.0 180.0 150.0 112.5 90.0 75.0 64.3 56.3 50.0

Note: Multiply table values by 2 for #4 stirrups with 4 legs
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Table A5.1 Maximum number of bars in columns

h h

1.5 in. for #5 to #8

1.5db  for #9 to #11*

1.5 in. for #5 to #8

1.5db  for #9 to #11*

(d�b ¼ diameter of longitudinal bars)

h (in.)

Square tied column Round spiral column

#5 #6 #7 #8 #9 #10 #11 #5 #6 #7 #8 #9 #10 #11

10 8 4 4 4 4 – – 6 – – – – – –

11 8 8 8 4 4 4 4 7 6 – – – – –

12 12 8 8 8 4 4 4 8 7 6 6 – – –

13 12 12 8 8 8 4 4 10 9 8 7 – – –

14 12 12 12 8 8 4 10 9 8 7 – –

15 12 12 8 8 8 12 10 9 8 6 –

16 16 12 12 8 8 12 11 9 7 6

17 16 16 12 12 8 13 12 10 8 7

18 16 16 12 12 14 13 11 9 8

19 20 16 12 12 14 12 10 9

20 20 16 16 12 16 13 11 10

21 20 20 16 12 15 12 11

22 20 16 16 16 13 12

23 20 20 16 17 14 13

24 20 16 18 15 13

25 20 20 16 14

26 20 20 17 15

27 20 18 16

28 20 17

29 24 18

30 24 19

Note: Values are based on 11/2 in. cover, #4 ties or spirals, with clear space of 1
1/2 in. for #5 to #8,

and 1.5 times bar diameter for #9 to #11
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Appendix B
Concrete Structure and Construction Images

Figure B1.1 Boston city Hall, Boston, Massachusetts

© Springer International Publishing Switzerland 2017

M. Setareh, R. Darvas, Concrete Structures, DOI 10.1007/978-3-319-24115-9
643



Figure B1.2 Women Psychiatric Hospital, Chicago, Illinois
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Figure B1.3 Concrete placement by pump

Figure B1.4 Concrete placement by chute and test cylinders in preparation
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Figure B2.1 520 West Washington Street, Naperville, Illinois

Figure B2.2 An exposed

reinforced concrete beam

Courtesy of Professor

Jack Davis, Virginia Tech



Figure B2.3 Beams supporting a one-way slab

Figure B5.1 Lyon Train Station, Lyon, France

Courtesy of Professor Jack Davis, Virginia Tech
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Figure B5.2 Main reinforcements and Ties for a column with 8 bars (see Figure 5.12e)

Figure B5.3 Reinforcements in a reinforced concrete column
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Figure B6.1 A high-rise building with flat plate floor system
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Figure B6.2 Forming for flat slab with drop panels

Figure B6.3 An exposed waffle slab floor system

650 Appendix B: Concrete Structure and Construction Images



Figure B6.4 Construction of a waffle slab floor system

Figure B6.5 Forming of a one-way joist floor
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Figure B6.6 An exposed one-way joist system

Figure B7.1 A large square spread footing under construction

652 Appendix B: Concrete Structure and Construction Images



Figure B8.1 Large wall forming

Courtesy of Mr. Doug Peters PE, President, Christman Constructors, Inc.

Figure B8.2 Column forming
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Figure B8.3 Beam and slab forming

Courtesy of Mr. Doug Peters PE, President, Christman Constructors, Inc.

Figure B9.1 Prestressed I-Section concrete beams

Courtesy of the William G. Godden Collection, NISEE-PEER, University of California, Berkeley
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Figure B9.2 End anchor for a post-tensioned concrete beam

Courtesy of the William G. Godden Collection, NISEE-PEER, University of California, Berkeley

Figure B9.3 Post-tensioned concrete beams

Courtesy of the William G. Godden Collection, NISEE-PEER, University of California, Berkeley
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Appendix C
Standard ACI Notations

a Depth of equivalent rectangular stress block

Ach Cross-sectional area of a structural member measured out-to-out of

transverse reinforcements

Act Area of that part of the cross section between the flexural tension face and

the center of gravity of the gross section

Ag Gross area of concrete section. For a hollow section, Ag is the area of the

concrete only and does not include the area of the void(s)

Aps Area of prestressing steel in flexural tension zone

As Area of nonprestressed longitudinal tension reinforcement

A0
s Area of longitudinal compression reinforcement

As,min Minimum area of flexural reinforcement

Ast Total area of nonprestressed longitudinal reinforcements

Av Area of shear reinforcement within spacing s
Av,min Minimum area of shear reinforcement within spacing s
A1 Loaded area

A2 Area of the lower base of the largest frustum of a pyramid, cone, or tapered

wedge, contained wholly within the support and having for its upper base

the loaded area, and having side slopes of 1 (vertical) and 2 (horizontal)

b Width of the compression face of a member

bo Perimeter of the critical section for shear in slabs and footings

bw Web width, or diameter of a circular section

c Distance from extreme compression fiber to the neutral axis

cb Smaller of (a) the distance from the center of a bar to the nearest concrete

surface, and (b) one-half the center-to-center spacing of the bars being

developed

cc Clear cover of reinforcement

C Cross-sectional constant to define torsional properties of slab and beam

Cc Chemistry coefficient

Cs Concrete setting factor

Cw Unit weight coefficient
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d Distance from extreme compression fiber to the centroid of longitudinal

tension reinforcement

dagg Maximum aggregate size

d 0 Distance from extreme compression fiber to the centroid of longitudinal

compression reinforcement

db Nominal diameter of a bar, wire, or prestressing strand

dp Distance from extreme compression fiber to centroid of prestressing steel

dt Distance from extreme compression fiber to the centroid of the extreme

layer of longitudinal tension steel

D Dead loads, or related internal moments and forces

E Load effects of earthquake, or related internal moments and forces

Ec Modulus of elasticity of concrete

Ecb Modulus of elasticity of beam concrete

Ecs Modulus of elasticity of slab concrete

Es Modulus of elasticity of reinforcement and structural steel

f 0c Specified compressive strength of concrete

f 0ci Specified compressive strength of concrete at time of initial prestress

fct Average splitting tensile strength of lightweight concrete

fps Stress in prestressing steel at nominal flexural strength

fpu Specified tensile strength of prestressing steel

fr Modulus of rupture of concrete

fs Calculated stress in reinforcement at service loads

fse Effective stress in prestressing steel (after allowance for all prestress

losses)

ft Extreme fiber stress in tension in the precompressed tensile zone

calculated at service loads using gross section properties

fy Specified yield strength of reinforcement

fyt Specified yield strength, fy, of transverse reinforcement

F Loads due to weight and pressures of fluids with well-defined densities and

controllable maximum heights, or related internal moments and forces

h Overall thickness or height of member; depth of fluid concrete

H Loads due to weight and pressure of soil, water in soil, or other materials,

or related internal moments and forces

I Moment of inertia of section about the centroidal axis

Ib Moment of inertia of gross section of beam about the centroidal axis

Icr Moment of inertia of cracked section transformed to concrete

Ie Effective moment of inertia for computation of deflection

Ig Moment of inertia of gross concrete section about the centroidal axis,

neglecting reinforcement

Is Moment of inertia of gross section of slab about the centroidal axis defined

for calculating αf and βt
k Effective length factor for compression members

Ktr Transverse reinforcement index
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‘ Span length of beam or one-way slab, clear projection of cantilever

‘n Length of clear span measured face-to-face of supports

‘u Unsupported length of a compression member

‘1 Length of span in the direction that moments are being determined,

measured center-to-center of supports

‘2 Length of span in the direction perpendicular to ‘1, measured center-to-

center of supports

L Live loads, or related internal moments and forces

Lr Roof live load, or related internal moments and forces

Ma Maximum unfactored moment in a member at the stage deflection is

computed

Mcr Cracking moment

Mn Nominal flexural strength at section

Mo Total factored static moment

Mu Factored moment at section

M1 Smaller factored end moment on a compression member; taken as positive

if member is bent in single curvature, and negative if bent in double

curvature

M2 Larger factored end moment on a compression member, always positive

Nu Factored axial force normal to a cross section occurring simultaneously

with Vu or Tu; taken as positive for compression and negative for tension

Pb Nominal axial strength at balanced strain conditions

Pn Nominal axial strength of cross section

Pn,max Maximum allowable value of Pn
Po Nominal axial strength at zero eccentricity

Pu Factored axial force; taken as positive for compression and negative for

tension

qu Factored load per unit area

r Radius of gyration of cross section of a compression member

R Rain load, or related internal moments and forces; Rate of replacement

s Center-to-center spacing of items, such as longitudinal reinforcement,

transverse reinforcement, prestressing tendons, wires, or anchors

S Snow load, or related internal moments and forces

Sm Elastic section modulus

t Wall thickness of a hollow section

T Cumulative effect of temperature, creep, shrinkage, differential

settlement, and shrinkage-compensating concrete

U Strength required to resist factored loads or related internal moments and

forces

vn Nominal shear stress

Vc Nominal shear strength provided by concrete

Vn Nominal shear strength

Vs Nominal shear strength provided by shear reinforcement
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Vu Factored shear force at section

wc Unit weight of concrete

wu Factored load per unit length of beam or one-way slab

W Wind load, or related internal moments and forces

x Shorter overall dimension of rectangular part of a cross section

y Longer overall dimension of rectangular part of a cross section

yt Distance from the centroidal axis of the gross section, neglecting

reinforcement, to a tension face

αf Ratio of the flexural stiffness of a beam section to the flexural stiffness of a

width of slab bounded laterally by centerlines of adjacent panels (if any)

on each side of the beam

αf1 αf in direction of ‘1
αf2 αf in direction of ‘2
αs Constant used to compute Vc in slabs and footings

β Ratio of long to short dimensions: clear spans for two-way slabs; sides of

column, concentrated load, or reaction area

βt Ratio of the torsional stiffness of an edge beam section to the flexural

stiffness of a width of slab equal to the span length of the beam, center-to-

center of supports

β1 Factor relating the depth of the equivalent rectangular compressive stress

block to the neutral axis depth

γs Factor used to determine the portion of reinforcement located in the center

band of a footing

εt Net tensile strain in extreme tension steel at nominal strength, excluding

strains due to effective prestress, creep, shrinkage, and temperature

εty Net tensile yield strain used to define a compression-controlled section

λ Development length modification factor related to the unit weight of the

concrete

λΔ Multiplier for additional deflection due to long-term effects

ξ Time-dependent factor for sustained load

ρ Ratio of As to bd
ρ0 Ratio of A0

s to bd
ρb Ratio of As to bd producing balanced strain conditions

ρg Ratio of Ast to Ag

ρp Ratio of Aps to bdp
ρs Ratio of the volume of spiral reinforcement to the total volume of core

confined by the spiral (measured out-to-out of spirals)

ρw Ratio As to bwd
ψc Factor used to modify development length based on reinforcement cover

ψe Factor used to modify development length based on reinforcement coating

ψr Factor used to modify development length based on reinforcement

confinement
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ψs Factor used to modify development length based on reinforcement size

ψt Factor used to modify development length based on reinforcement

location

ϕ Strength reduction factor

ω Tension reinforcement index
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Index

A
Accelerators, 10

ACI. See American Concrete Institute

ACI Journal, 3

ACI Manual of Standard Practice, 3

Active earth pressure, 475, 499

Admixtures

accelerating, 10

air-entraining, 9, 10, 34

defined, 9

retarding, 10, 520, 563

superplasticizers, 8, 10, 13

Aggregates

coarse, 4–7

fine, 4–6

good gradation, 6

lightweight, 6

Analysis steps

beams and, 53

design, 53

Air, 3, 4, 7–9, 11, 403, 408

Air-entraining admixtures, 9, 10, 34

Allowable bearing soil pressure, 410–411

American Concrete Institute (ACI). See also
Specific ACI Code

51committees, 3

Design Handbook, 334

model codes, 2, 3

standards, 3, 11

Axial compression, 16, 73, 240, 262, 358, 585

Axial force, 48, 235, 318, 358, 569

Axial loads, 55, 75, 263, 278, 282, 285, 286,

295, 298, 303, 310, 316–319, 324,

327, 332, 334–337, 339, 341–344,

362, 364–367, 369, 568

columns subject to, 56, 282, 283, 285, 288,

316, 318, 324, 362, 366

maximum factored, 298, 343, 366

nominal strength, 56

strength, 55, 295, 317–319, 334–337

Axial tension, 262–264, 415

Axially loaded columns, 282, 287

defined, 282

failure, 285

illustrated, 283

load-deformation relationship, 287

strength calculation, 296

B
Backfill

level, 476

sloping, 475, 476

Balanced failure, 67, 71, 72, 77, 318, 323, 327

condition, 67, 318, 323, 327

strain distribution at, 67, 71

Bar spacing

longitudinal, 291

main reinforcement, 119

rectangular reinforced footing,

460–462, 465

reinforced concrete beams, 94

reinforced concrete slabs, 119

shrinkage and temperature

reinforcement, 119

Basement walls. See also Earth

supporting walls

defined, 479

design, 480, 483, 487, 488

reinforced concrete design, 487–489
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Basement walls (cont.)
schematic section, 488

unreinforced concrete design, 480, 483

Battered piles, 415, 416

Beam-girder floor system, 140, 142, 151, 152

Beams, 398–399

Bending

elastic, 60

failure, 62

maximum stress, 62, 567

reinforced concrete beams, 58–65, 71

stress, 62, 282, 317

Bending moment

plain concrete wall footings, 421–428

reinforced concrete beams, 58–65, 71

square spread footings, 436

unreinforced basement wall design, 511

Bernoulli–Navier hypothesis, 60

Bilinear stress-strain diagram, 65, 66

Bleeding, 8, 35

Bond stresses

changes, 217

magnitude, 216, 217

Braced column. See also Columns

defined, 284, 361

illustrated, 285

as one without sidesway, 361

Braced frames, 284, 362

Brackets, 87, 207, 264–274, 283

British system of units, 594, 595

Buckling

column, 358–362

Euler stress, 358, 359

illustrated, 359

Building Code Requirements for Structural

Concrete, 3

Building Officials and Code Administrators

(BOCA), 2

Buttress walls. See also Retaining walls

defined, 496

illustrated, 496

C
Caisson. See Pier foundations
Cantilever retaining walls. See also Retaining

walls

bar development length, 432

heel reinforcement, 508

heel reinforcement bar development

length, 508

illustrated, 495, 496

lateral soil pressure, 499

resisting moment calculation, 414

safety factors, 500

soil pressure under footing, 500

stability analysis, 498

stem reinforcement bar development

length, 507

stem reinforcement design, 503

toe reinforcement, 505

toe reinforcement bar development

length, 508

without heel/toe, 495

Cast-in-place construction, 151, 291, 383, 385

Center-to-center distance, 97

Checker-board pattern loading, 49

Circular columns, 278, 281, 291, 332, 359

Clear cover limit, 289

Coarse aggregates, 4–7

Coarse-grained soils. See also Soils

contents, 404

particle size, 404

Cohesive soil, 404, 408, 412, 417

Column(s)

ACI Code requirements, 288–293, 296

analysis flowchart, 338, 340

axial load capacity, 295, 317, 319, 327, 332,

342, 344

axially loaded, 282, 283, 285, 287, 296,

316, 348

bars, maximum number of, 291, 297, 299,

301, 308

based on length, 285

based on loading, 282–284

based on reinforcement, 277–280

based on shape, 280–281

based on structural system, 284

braced, 284, 285, 360, 361

circular, 278, 281, 289, 291, 300, 314, 332,

356, 359

clear cover limit, 289

composite, 280

design considerations, 294

eccentrically loaded, 282, 283, 316, 317

effective length, 285, 359, 361

factored loads, 301, 302, 378

high-strength material use, 294

isometric view, 320, 409

loads, determining, 308

longitudinal bar spacing limits, 291

longitudinal reinforcements limit, 288

maximum capacity, 286

nominal load capacity, 295

number of bars limit, 289

pedestals, 277, 278

664 Index



punching, 375

shape illustrations, 281

short, 285–287, 294–330, 336–358

size, 294, 302, 308, 310, 315, 347, 349, 350,

353, 354, 356, 360, 376, 378, 599

slender, 285, 358–370

slenderness ratio, 285, 358–362

spiral, 277, 278, 282, 285, 289, 298, 300,

301, 303, 304, 309, 312, 314, 333,

335, 337, 339, 343, 354, 356

spiral reinforcement spacing/amount

limits, 291

square, 278, 285, 291, 303, 310–313, 350,

352, 369, 445, 461, 514, 515, 599

tie spacing limit, 289

tied, 277, 278, 282, 285, 286, 289, 295, 297,

298, 302–305, 309–312, 318, 332,

333, 335, 339, 341, 344, 352, 369,

370, 599

types, 277–285, 316

unbraced, 284, 285, 360–362

Column interaction diagrams

ACI, 330–333

compression-controlled sections, 327

computer-generated, 333

defined, 327

illustrated, 328, 331

maximum capacity, 330, 332

tension-controlled sections, 327

Column size, 379

Column strips

at exterior support, 384

calculating, 384, 386, 402

negative moments, 381, 383–384, 386, 402

negative reinforcements, 386

positive moments, 381, 383

positive reinforcements, 387

Combined footings. See also Footings

defined, 414

designing, 414

illustrated, 414

Composite columns. See also Columns

defined, 280

illustrated, 280

Compression bars, development length, 223,

445, 451

Compression-controlled failure, 73, 74

Compression-controlled sections, 74, 335, 338

Compression reinforcement, strain, 181

Compression splices, 225

Compression steel, 185, 186

doubly-reinforced beams, 176, 177, 200

failure, 199

lateral support, 199, 200

required, calculation, 198

strain, 177, 182, 188, 198, 319, 322,

323, 329

strain levels, determining, 192

stress, 177, 182, 183, 189, 325, 326

Compression stress, 22, 23, 64, 66, 151, 238,

282, 317, 528, 536, 556, 587

Compression zone

centroid, 159, 162

depth calculation, 82, 121, 124, 179

doubly-reinforced beams, 176–199

negative moment regions, 155

T-beam, 152, 155, 167

within flange, 161, 162, 164, 166, 170, 172

Compressive force, 61, 72, 263

Compressive strength, 8, 14, 16–21, 38, 65, 66,

80, 89, 244, 294, 298, 300, 319, 332,

426, 445, 567, 570, 582, 595, 600

Concentric load, 317, 496

Concrete, 460. See also Reinforced concrete

admixtures, 3, 4, 9–10

aggregates, 3, 5

in compression, 1, 16–20, 53, 64, 65, 76,

179, 200, 201, 295, 323, 327, 332

construction overview, 2

creep, 23, 27–28, 201, 288, 576, 579

curing, 10, 11, 14, 38

inelastic behavior, 200

ingredients, 3–10

ingredients illustration, 4

long-term loading, 28

modulus of elasticity, 16, 201, 206, 213,

359, 383, 574, 578

modulus of rupture, 62, 79

portland cement, 4–5

prestressed, 567, 568, 570–574, 576, 577,

579–588, 590

secant modulus, 18–19

short-term loading, 16, 18

shrinkage, 23, 25–27, 288, 576, 578, 579

strength, acceptable, 14

temperature change, 23–24

in tension, 1, 20–22, 28, 100, 217, 241, 582

testing, 11–16, 20

volume changes in, 23–28, 116

water and air, 4, 6–9

Construction joint, 26, 27

Continuous media, 111, 372

Control joints, 27, 480

Corbels

in concurrence with proposed design

model, 267
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Corbels (cont.)
illustrated, 264–266

minimum primary reinforcement, 267

reinforcing required in, 265, 266

Core-cylinder test, 16

Counterfort walls. See also Retaining walls

defined, 495

illustrated, 495, 496

Crack(s)

concrete cover relationship, 96

controlling, 95–97, 247, 487

width, limitation, 95

Cracked section moment of inertia

rectangular section, 205, 207, 211

transformed section concept, 205, 206, 209

T-section, 208

Cracking

moments, 201, 202, 204–212, 214

strains/stresses after, 63

Creep

causes, 28

defined, 28

deflection, 27, 28, 201, 214

deformation, 27, 28, 201, 214, 574, 579

Curing

technique, 10, 26, 573

vibrators, 11

Cylinder test

core, 16

defined, 14–16

field-cured cylinders, 14

illustrated, 14, 15

lab-cured cylinders, 14

results, 14, 15

D
Dead loads, 54. See also Loads

balancing, 584

defined, 39, 49, 519

live load moments combined with, 49, 341

maximum moments due to, 52

one-way slabs, 123

superimposed (SDL), 28, 40, 41, 101, 140,

144, 193, 378, 392, 401, 510

Deep foundations

load transfer, 414, 415, 417

pier, 417

pile, 414, 416, 417

Deflections

applications, 212–214

calculation coefficients, 211

calculation formula, 200

cracked section moment of inertia,

205–211, 214

creep behavior uncertainty, 201

effective moment of inertia, 202–205,

212, 214

inelastic behavior uncertainty, 200

instantaneous, 201, 213–215, 228

of interior bay under load, 374

live load, calculating, 214

long-term, 92, 176, 214–216, 372

maximum permissible, 216

minimum one-way slab thickness, 122

reinforced concrete beams, 200–216

uncertainties, 200, 201, 208

Deformation(s)

creep, 28, 574

joist, 44

three-bay/three-story monolithic

structure, 47

in two-span beam, 45

Deformed bars, 30, 34, 216, 218, 291

Depth. See also Effective depth

beam, 93, 106, 108, 109, 158, 160, 163,

165, 167, 170, 171, 173, 174, 184,

222, 396, 400

compression zone, 82, 121, 124, 158, 162,

179, 189, 198

equivalent stress block, 68, 70, 72, 78, 81,

83, 86, 155, 158, 166, 183, 185, 187

one-way slabs, 92

prestressed concrete, 571, 573, 574

web, 165, 174

Depth of frost penetration

defined, 418

Design aid tables, 86

Design resisting moment

doubly-reinforced beams, 181, 184,

187, 196

L-beam, 163, 170

T-beam, 165, 172

Design strength, 14, 570

Development length

calculation, 218, 219, 221, 228, 472

compression bars, 223, 445

defined, 218

for bars in tension, 218–219

hook terminated bars, 221

tensile bar, 219

tension bars, 220

Diagonal tensile stresses, 239

Diagonal tension, 238, 241, 242, 244, 375

Diagram of maximum moments, 49

Differential settlement, 38, 410, 414
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Direct design method. See also Flat slabs

defined, 381

flexure analysis, 382

plan geometry conformance, 381

Double tees, 571, 574

Doubly-reinforced beams, 179

advantages, 176

analysis, 176–190

analysis illustration, 178, 180

analysis steps, 179, 181–184

compression force, 177

compression reinforcement strain

determination, 181

compression steel, 176, 177, 181, 182, 185,

186, 188, 192, 193, 198, 200

compression zone, 176, 189, 198

compression zone depth, 179, 189, 198

concrete-steel couple, 177

defined, 176

design, 190–199

design illustration, 191

design resisting moment, 181, 184, 187,

190, 196

design steps, 190, 193

equivalent stress block, 183, 185, 187, 188

factored loads, 194

lateral support for compression steel,

199, 200

maximum factored moment, 184, 190, 197

maximum tension-controlled steel ratio,

190, 195

nominal resisting moment, 177, 181, 184,

186, 189

required area of steel, 175, 303, 304

resistance coefficient, 190, 195

steel-steel couple, 177

strain distribution, 185

strain levels, determining, 179

tensile force, 176, 177

total area of steel, 193

Dowel reinforcement

ACI Code, 445

bar length, 450

determining, 442, 459

footings, 443

illustrated, 443

Drop panels

flat slabs with, 373, 374

minimum plan dimension, 391

minimum thickness, 373, 391

total thickness, 392

use of, 390–392

Drying shrinkage, 26, 28

E
Earth pressure

active, 475, 499

at rest, 475

coefficients, 475, 499

defined, 474

distribution, 475

effect of surcharge, 477

equivalent fluid pressure, 477

lateral, 474–479

lateral earth pressure, 474–479

level backfill, no surcharge, 476

magnitude, 475, 495

passive, 475, 495, 497

sloping backfill, 476

Earth supporting walls

basement walls, 474, 479–493

retaining walls, 474, 493–516

Eccentrically loaded columns. See also
Columns

definition, 282

illustrated, 283, 317

Effective depth

L-beams, 171

reinforced concrete beams, 59

reinforced concrete wall footings, 59, 433

T-beams, 172

Effective flange width

calculation, 156, 161, 170, 172

L-beam, 154, 155

T-beam, 154

Effective length

column with sidesway, 361

column without sidesway, 361

defined, 359

Effective moment of inertia

average of values, 202

calculation, 212, 213

comments, 214

defined, 202

T-beams, 213

Elastic bending, 60

Embedment length

defined, 218

Engineered backfill, 420

Epoxy-coated bars, 32

Equivalent fluid pressure, 477

Equivalent frame method, 381

Equivalent stress block

defined, 67

depth, 68

illustrated, 69

true stress block relationship, 68
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Euler buckling stress, 358, 359

Expansion joints, 24, 27

Expansive soil, 420

F
Failure

“balanced”, 67, 71, 72, 77, 318, 323, 327

compression-controlled, 73, 74, 327

modes, 65–67, 71–73, 495

primary cause, 66

simultaneous, 67

tension-controlled, 66, 73, 78

Fine aggregates, 5, 6

Fine-grained soils, 404, 405

Fixity, 44, 46, 48, 360, 361, 384

Flange

defined, 153

effective width, 153–156, 161, 164, 166,

170, 172, 173

neutral axis below, 156

Flat plate floor system

flexure, 375, 380–390

illustrated, 373

interior bay reinforcement design, 385

use, 373, 390–392

Flat slabs. See also Slabs

ACI Code minimum slab thickness, 373

column strips, 381, 383–385

defined, 111

economy, 373

flexure, 380–390

flexure analysis, 382–385

gravity load shear transfer, 375

middle strips, 381, 383–385

moment transfer, 379

plan, 376

recommended minimum thickness, 373

shear periphery, 376–378

shears, 375–380

slab width, 385

with drop panels, 374, 390–392

with drop panels and column capitals, 374

Flexural stiffness, 46, 383, 384

Flexural strength, 57, 58

Flexure

direct design method, 381

flat slabs, 380–390

reinforced concrete beams, 20, 58–65, 79

Floor beams, 41, 151, 258

Floor load, 39, 55, 305, 307, 553, 554

Floor systems

beam-girder, 101, 112, 140, 142, 151, 152

beams and one-way slabs, 398–399

cost, 371, 372

drop panels, 373, 374, 390–392

flat slabs and plates, 372–373

introduction to, 371–372

one-way joists, 395–398

superimposed dead loads, 378, 401

two-way joists with slab band beams, 400

two-way slabs on beams, 381, 399–400

waffle slabs, 392–395

Footings

pressure bulb under, 409

pressure distribution, 408–410,

420–421, 496

rectangular, 418, 438, 460–463, 465, 473

soil failure under, 406–407

square spread, 436–459, 514, 515

wall, 228, 411, 412, 421–437, 479, 496,

497, 510, 605

Force distribution

column, 325, 329

Formwork

accessories, 529–532

design

Adjustment Factors, 526, 528,

529, 536

Reference Design Stresses, 527

design of, 533–537

beam forms, 557–563

column forms, 546–551

slab forms, 550–557

wall forms, 537–545

lateral pressure on, 520–522

loads on, 519–520, 522

materials for, 523–533

section properties, 525, 526

Foundations

adjacent property lines, 418

combined footings, 411, 414, 418

depth of frost penetration, 418

elevations of adjacent footings, 418

expansive soil, 420

isolated spread footing, 413

mat, 411, 414

organic layers, 420

pier, 414, 417, 420

pile, 414–417

placement, 418–420

shallow, 411–414, 418

strap footings, 411, 414

types of, 411–420

wall footings, 412, 421–436, 479, 496

Friction loss, 581
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G
Geometrical proportioning, of beams, 104

Girders, 38, 42, 44, 101, 111–113, 140, 142,

151, 264, 277, 360, 361, 372, 398,

399, 573

Gravity loading, 284

Gravity walls. See also Retaining walls

defined, 495

illustrated, 496

lateral soil pressures, 474, 502

resisting moment calculation, 500

safety factor, 500

soil pressure under footing, 500

stability analysis, 498

Grout key, 573

H
High-range water reducing agents, 8

Hinge support, 43, 44

Hollow core decks

defined, 573

illustrated, 573, 575

shape, 573, 575

Hook

ACI Code standard, 220

bars developed by, 220

bars in compression and, 223

defined, 220

90-degree, 223

illustrated, 220

tension bars terminated in, 220–223

Hooke’s law, 17, 29, 60, 63, 200

Hydration. See also Water

defined, 3, 6

exothermic process, 10

hardening, 7, 8, 10

setting, 7, 9, 10

stages, 7

strength development, 7

I
Influence area, 42, 43

In situ tests, 16

Instantaneous deflections. See also
Deflections

additional deformations, 213, 215

calculations, 228

defined, 201

values, 213, 214

Internal couple

after cracking, 64

components, 205

cracked rectangular section, 205

defined, 62, 69

propagation of, 46–48

on short length reinforced concrete

beam, 237

Internal forces

on a section of, 235, 236

propagation of, 46–48

International Building Code (IBC), 2

International Conference of Building

Officials (ICBO), 2

Isolated spread footing, 413, 414

K
Kilograms (kg), 592–594

L
Lab-cured cylinders, 14

Lateral

earth pressure, 474–479, 483

loads, 39, 283, 284, 347, 361, 399, 415,

486, 522, 538, 544, 563, 573

L-beams. See also T-beams

actual effective depth, 103

analysis illustration, 155–165

analysis steps, 166, 168

compression zone, 154

compression zone centroid, 155

defined, 154

deflection check, 158, 160

depth, 154

design example, 166, 168

design flowchart, 168

design resisting moment, 158

design steps, 166

effective flange width, 154

moment arm calculation, 159

neutral axis location, 155

required area of steel, 155

resistance coefficient, 158

tensile force calculation, 156

total area of steel, 155

total compression force, 154

Linear elements, 111, 371

Line supports, 49, 111

Live loads (LL)

defined, 40, 49

effects, 39, 49, 50

"fickleness”, 49–52

illustrated, 51

negative moments due to, 49

one-way slabs, 111

reduced, determining, 43

reduction factors, 41–43
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Load(s)

assumed, 122

axial, 55, 75, 263, 278, 282, 285, 286, 295,

298, 303, 310, 316–319, 324, 327,

332, 334–336, 339, 341–344, 362,

364–367, 369, 568

column, determining, 299, 308, 414

concentric, 317

dead, 28, 38, 39, 41, 49, 52–55, 106,

110, 123, 139, 140, 142, 143,

165, 193, 196, 213–215, 271,

272, 300, 312, 365, 366, 401,

410, 426, 445, 465, 510, 511,

571, 599, 600, 603, 604

floor, 55, 101, 307

gravity, 39, 151, 347, 380, 414, 475, 519,

520, 576, 583, 587

lateral, 39, 283, 284, 347, 361,

399, 415, 486, 522, 538, 544,

563, 573

live (LL), 28, 39–43, 49–52, 54–58, 80,

101, 122, 123, 125, 127, 130,

139–142, 144, 160, 193, 195, 196,

213–215, 272, 274, 282, 300, 305,

312, 341, 365, 366, 378, 392, 401,

410, 422, 426, 437, 445, 465, 510,

511, 519

one-way slabs, determining, 53, 113

propagation of, 46

service, 54, 57, 58, 96, 200, 201,

207, 208, 212, 366, 398, 570,

581, 583, 587

slab behavior under, 111, 371

superimposed dead (SDL), 40, 101, 140,

193, 378, 392, 401, 510

working, 54, 57, 64, 96, 530

Load balancing

at center of span, 584

concept, 582, 584

equal loads at third points of span, 584

method, 583

uniform load, 583

Load factors, 54, 55, 57, 481, 484

Load-path, 371

Longitudinal bars

diameter of, 278, 290, 291

minimum number, 289

spacing, 290, 291, 297, 299, 308

spacing limits, 289, 291

Long-term deflections

additional, 215

multiplier, 215

Long-term loading, 17

M
Main reinforcement

allowable spacing, 122

defined, 115

deflection control thickness, 119

maximum bar spacing, 118, 119

minimum, 98, 117–119, 132, 166, 506

one-way slabs, 96, 115–119, 132, 144

at supports, 129

Mat Foundation, 411, 412, 414

Maximum beam width (bmax), 96

Maximum bending stress, 22

Metric system. See also SI system

adoption ramifications, 591

ASTM standard reinforcing bars, 595

United States adoption history, 591–592

Middle strips. See also Column strips

calculating, 386, 402

negative reinforcing, 386

positive reinforcing, 387

Minimum reinforcements

bar spacing, 119

concrete cover, 94, 118

main, 118, 132

one-way slabs, 117–119

shrinkage and temperature, 118, 132,

134, 506

Minimum steel ratio, 79–80, 155, 156, 288

Modular ratio, 63, 206

Modulus of elasticity

defined, 18, 20

example, 19, 63

Modulus of rupture, 20, 21, 34, 62, 79, 146,

148, 202, 204, 595, 603

Moment(s)

with ACI Code coefficients, 101, 108,

125, 133

ACI Code design, 53

bending, 34, 55, 59–64, 75, 100, 108, 115,

161, 184, 187, 195, 235, 236, 277,

283, 284, 288, 317, 344, 380, 423,

440, 449, 457, 463, 481, 482, 495,

511, 535, 543, 576, 603

design resisting, 57, 69, 73, 82, 159, 163,

165, 170, 172, 181, 184, 187, 190,

196, 334, 335

diagram of maximum, 49

expression, 69, 222

flat panel bay, 382

maximum bending, 108, 535

maximum, due to dead loads, 52

negative, 47, 49–52, 108, 116, 129, 140,

141, 152, 155, 194, 195, 202, 205,
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381–384, 386, 388–390, 395,

396, 400

nominal resisting, 56, 69, 161, 177, 181,

184, 186, 189, 243, 426, 428,

482, 602

positive, 47, 49, 51, 52, 104, 116, 126, 128,

141, 155, 161, 164, 170, 173, 204,

208, 215, 225, 381, 383, 384, 386,

388, 389, 394, 395, 399, 402

resisting, 80–83, 122, 123, 125, 181, 197,

350, 427, 482, 493, 494, 500–502

Moment capacity, 79, 100, 137–140, 142, 166,

190, 225, 326, 328, 334–336, 339,

396, 604

Moment envelope, 49

N
Negative moment, 47, 49–52, 116, 129, 140,

141, 194, 195, 205, 381–384, 388,

393, 402, 604

Net tensile strain, 72–75, 177, 183, 189, 335

Neutral axis

defined, 75–76

location, 75–77, 81, 83, 121, 162, 179, 182,

183, 185, 188, 192, 206–208, 325,

329, 330

maximum depth, 77

principal tension orientation, 241, 242

T-beams, 155, 156, 208, 211

Nominal load capacity, 295

Nominal moment

calculating, 323, 326

strength, 56, 318

Nominal resisting moment

doubly-reinforced beams, 177, 181

plain concrete wall footings, 428

Nominal strength, 56, 243

Noncohesive soils, 404

Notations, ACI, 288

O
One-way joists. See also Floor systems

ACI Code designation, 395

beam sections, 397

square-/tapered-end pan layouts, 397

standard pans, 396

One-way shear

rectangular footing, 462, 469

square spread footing, 440, 441, 448

One-way slab. See also Slabs

analysis, 53, 120

analysis flowchart, 121

beams and, 95–97, 398–400

beams and girders, 398

behavior, 111, 113, 148

bend direction, 113

compression zone depth calculation,

121, 124

continuous construction reinforcement,

116, 117

crack-control, 95–97

dead and live loads, 127

defined, 37

depth selection, 92–93

design, 115, 132

design flowchart, 99, 105, 121

dimension selection, 92–95

effective depth calculation, 100, 109,

134, 138

factored applied moment, 124

loads calculation, 43, 106

main reinforcement, 96, 115, 120

maximum permitted steel ratio, 120

minimum depth, 92–94, 130

reinforcement, 37, 95, 115–119

reinforcement ratio, 123

reinforcing bars, 37, 94, 96, 116, 120

resistance coefficient calculation, 100,

123, 134

shrinkage and temperature reinforcement,

115, 119, 124, 125, 128, 130, 144

shrinkage and temperature reinforcement

design, 118, 137

simple span reinforcement, 116, 117

span/depth ratio, 92, 397

thickness, 119, 122, 397, 399

thickness selection, 378

Organic layers, 420

Overreinforced sections, 67

Overturning. See also Retaining walls

defined, 493

moment, 493, 494, 499–502, 543

safety against, 494, 500, 503

P
Passive earth pressure, 475, 495, 497

Pedestals, 277, 278

Pier foundations

caissons, 417

defined, 417

illustrated, 417

Pile foundation

battered piles, 415, 416

defined, 414

end-bearing piles, 415
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Pile foundation (cont.)
illustrated, 415, 416

pile layouts, 415, 416

Plain bars, 30

Plain concrete wall footings

ACI Code recommendations, 425, 426

bending moment, 423

design, 421, 422, 424, 426, 428

design flowchart, 424

dimensions, 422, 423, 427

illustrated, 426

moment, 423, 425, 427, 428

nominal resisting moment, 426, 428

pressure on supporting soil, 425

strength reduction factor, 426

thickness, 422, 423, 425–428

width, 421–423, 427

Plastic shrinkage, 25, 26

Point supports, 111, 372, 535

Portland cement

defined, 4

expense, 5

materials, 4, 5

particle size, 5

Positive moment, 49, 51, 52, 104, 116, 126,

141, 155, 161, 164, 170, 173, 204,

208, 215, 225, 402

Posttensioning

advantages, 576

curved tendons, 575

defined, 33, 575

draped strands, 576

load balancing, 583

pretensioning vs., 574
Pound-force (lbf), 593, 594

Pound-mass (lbm), 593, 594

Pressure bulb, 408, 409

Prestressed concrete

advantages, 571

beams, 567, 568, 570, 573, 576,

583–585, 587

concrete, 567, 568, 570–574, 576, 577,

579–588, 590

elastic shortening, 578

friction losses in curved tendons, 579, 580

introduction to, 567–571

load balancing, 582–584, 587

loss of prestressing, 576–578, 580

materials, 577

prestressing steel, 577, 582

shallow depths, 571

shrinkage, 574

span-depth ratios, 571

total losses, 581

ultimate strength, 577, 581, 582

Prestressing, 572, 574

average losses, 581

loss of, 576, 577, 579–581

posttensioning, 572, 574–576

pretensioning, 572–574

process, 572

types, 572, 574–576

Prestressing steel, 33. See also Steel

high-strength wire use, 577

relaxation of, 579

stress-strain curve, 577, 578

Pretensioning

defined, 33, 572

double tees, 574

grout key, 573

hollow core decks, 573

prestressing strands, 572, 578

Principal planes, 240

Principal stress, 240, 241

Principal tensions

orientation above neutral axis, 240, 241

orientation below neutral axis, 241, 242

potential cracks perpendicular to, 241, 242

Propagation

of forces/moments between beams/

columns, 48

of internal forces, 46–48

Proprietary mechanical splices, 225

Punching shear

rectangular footing, 438, 461

P-Δ effects

ACI Code, 362

defined, 362

on columns with sidesway, 362, 364

on columns without sidesway, 362, 363

R
Raft foundation, 412, 414

Rankine theory, 475

Ratio, 312

Reaction forces, 44, 47, 540, 554, 559, 560

Rebound hammer test, 16

Rectangular reinforced footing

bar spacing in long direction, 471, 472

bar spacing in short direction, 472

critical sections, 468, 469, 471

design example, 465

design flowchart, 466

design steps, 460, 466

dowel bars, 465, 473
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long direction reinforcement, 463

one-way shear, 462, 468

reinforcement distribution plan, 465

required area determination, 460, 465

required reinforcement, 463, 464, 469

shear, 467

short direction reinforcement, 464

thickness, 460, 467–469

two-way shear, 461, 468

use, 460

Reinforced concrete

advantages, 37

disadvantages, 38

heavy structural members, 38

integrity, 37, 216

low maintenance, 37

material, 1, 3

resistance to fire/water, 37

shoring/forms requirement, 38

tensile strength, 20, 38

Reinforced concrete basement wall design

architectural requirements, 487

bar spacing, 489

flowchart, 488

maximum moment calculation, 488, 490

reinforcement requirement, 489, 492

steps, 488

thickness, 487–489

vertical reinforcement requirement, 489

Reinforced concrete beams

amount of reinforcement, 98

analysis, 80–92

deflection, 200–216

depth selection, 92–93

design, 98–110

design examples, 101–110

design flowchart, 98, 99

dimension selection, 92–95

economy, 104

effective depth, 59

flexural design, 58–65

geometrical proportioning, 104

materials, 98

maximum bending moment, 108

method I, 80–86

method II, 86–92

minimum bar spacing, 94

minimum depth, 93

minimum steel ratio, 79–80

minimum width, 95

parameters, 80

preliminary weight estimate, 106

recommended depth, 92, 94

required area of steel, 98, 106

section dimensions, 98

shear, 235–241

strain distribution, 60, 61

stress distribution, 60, 61

subject to flexure and shear only, 262

total depth calculation, 106

ultimate strength, 59, 74

width, 94–96

Reinforced concrete structures

ACI Code, 3

continuity, 93

monolithic construction, 93

self-weight, 106

structural design, 38–41

Reinforced concrete wall footings

design, 429, 430, 432

design example, 432, 433, 435, 436

design flowchart, 431

design steps, 429

effective depth, 430

factored pressure, 430

minimum required reinforcement, 435

moment calculation, 432

shear, 429–431

shear strength, 431

thickness, 429

Reinforcement, 72

Reinforcement development, 216–233

Reinforcing bars

center-to-center distance, 97

maximum spacing, 96

multiple layers, minimum space, 94

one-way slabs, 115–119

single layer, minimum space, 94

Reinforcing steel

area requirement calculation, 132

deformed, 30

price, 98

steel bars, 30

WWR, 30

Resistance coefficient

defined, 87

doubly-reinforced beams, 190, 195

one-way slabs, 123

T-beams, 158

Resisting moment

calculating, 69, 80, 83, 122, 123, 159

design, 57, 69, 73, 82, 159, 163, 170, 172,

181, 184, 187, 190, 196, 334, 335

doubly-reinforced beams, 177, 181,

184, 186

L-beam, 159, 161

nominal, 56, 69, 161, 177, 181, 184, 186,

189, 426, 428, 482, 602
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Resisting moment (cont.)
retaining walls, 493, 494

short columns with large eccentricity,

336–347

T-beam, 165, 172

Retaining walls. See also Earth supporting

walls

behavior, 493

buttress, 496

cantilever, 495

counterfort, 495

design, 493

examples, 493, 499

forces on, 493, 494

gravity, 494, 495

overturning moment, 493, 494

resisting moment, 494

safety against overturning, 494

safety against sliding, 495

shear key, 497

stability analysis, 498

types of, 496

vertical soil pressure under, 496

weep hole, 476, 497

Retarders, 10, 521

Roller support, 44

S
Secant modulus, 18, 19

Self weight, 6, 21, 28, 39, 41, 106, 107, 139,

143, 253, 258, 273, 305, 307, 366,

373, 392, 505, 520, 545, 558, 584,

585, 587

Service loads

defined, 54

maximum stress in reinforcement, 96

Settlement, soil

differential, 38, 410, 414

uniform, 25, 410

Shallow foundations. See also Foundations

combined footings, 411

illustrated, 411

isolated spread footing, 413

mat, 411

strap footings, 411

wall footings, 411

Shear(s)

in beams, 241, 274, 275

capacity, 166, 251, 263, 396, 448, 454–456,

461, 462, 468

carried by stirrups, calculating, 253

distribution, 379

duality, 238

factored, 247, 254, 376, 378, 380, 440

flat slabs and plates, 375–380

force, 47, 235, 245, 248, 250, 253, 265, 272,

375, 440, 448, 456, 461, 462, 481,

482, 511, 598, 604

force diagrams, 34, 251, 254, 255, 259,

260, 603

horizontal stress, 237

maximum, 271, 272, 380, 604

punching, 375, 378, 438, 441, 461

rectangular reinforced footing, 461, 462

reinforced concrete wall footings, 428–436

reinforcement design, 242–249, 269

resistance, 243, 244, 407, 429

resolution into diagonal components, 238

square spread footing, 436–459

strength against, 244

strength calculation, 262–264, 402

substituted by diagonal components, 238

total resisting, 247

on unit-size cube within beam, 237

vertical, 238, 244, 275

Shear key, 497, 498, 508

Shear periphery

at corner, 377

critical, 376, 378

defined, 376, 377

lost effective, 377

Shear reinforcement

ACI Code requirements, 245

concept, 242

critical section for stirrup design, 176,

249, 250

defined, 242–249

design, 242–249, 269

design yield strength, 250

stirrup spacing, 176, 246

zone 1, 246

zone 2, 246

zone 3, 246–249

Short columns

defined, 285, 294

failure, 285, 294, 302

Short columns with large eccentricity

analysis flowchart, 338, 340

analysis of compression-controlled

columns, 337

analysis of non-compression controlled

columns, 339–347

analysis with interaction diagrams,

336–347

axial load capacities, 342, 344
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behavior assumption, 353

capacity, 339, 348

convergence determination, 352

design, 347–358

design flowchart, 348, 349, 351

design of compression-controlled columns,

347, 348, 350, 352

design of non-compression-controlled

columns, 349–358

factored loads and moments, 347, 352, 368

interaction diagram selection, 336–347

nondimensional parameters, 357

required area of steel, 349, 352, 353

resisting load and moment, 341

resizing, 350, 357

size, 347, 349–351

size estimation, 353, 354, 356

spirals, 337, 339, 341, 343, 350, 352,

354–356, 358

steel ratio, 337, 342, 343, 345, 350,

352–354, 356–358

strength reduction factor, 337, 345

ties, 339, 341, 342, 344, 346, 350, 352–354

Short columns with small eccentricity

analysis, 294–302

analysis flowchart, 297

analysis steps, 296

axial load strength, 295

balanced failure condition, 318

bar selection, 303, 304

behavior, 285–287

design cost reduction, 302

design flowchart, 304, 311

design steps, 301–316

factored axial loads, 298, 303, 310

load capacity, 295, 299, 302

longitudinal bar spacing, 291

maximum capacity, 286

minimum practical size, 310

nominal load capacity, 295

required area, 303, 304, 307, 308, 310,

312, 313

required area of steel calculation, 303,

304, 310

safety requirement, 289

steel ratio, 288, 291, 292, 296, 298, 299,

301, 304, 308–310, 312, 315

ties, 289, 290, 298–300, 302, 303

under load, 285–287

useful capacity, 302

Short-term loading, 16, 18

Shrinkage

compensating cement, 26

cracks, 26, 27

defined, 25–27

drying, 25, 26

effects mitigation, 26

prestressed concrete, 576, 577, 581

reinforcement, 116–117, 144, 146

setting, 25

Shrinkage and temperature reinforcement

amount of spacing, 122

design, 118, 132, 137

maximum bar spacing, 119

minimum, 130, 435

one-way slabs, 144

Similarity of triangles, 179, 181

Simultaneous failure, 67

SI system. See also Metric system

British system of units conversion, 594

defined, 591

examples, 591

kilogram, 592

prefixes, 592

units, conversion to, 592, 605

Size, minimizing, 95

Slab(s)

in beam girder floor system, 112

behavior under loads, 113–115

dimensions, 111, 116, 371

edge supported, 114

flat, 372–373, 380, 381, 383, 390–392, 584

flat plate, 111, 113, 372–373, 375–381, 383,

402, 584

geometry, 113

load distribution, 114, 399, 400

minimum cover, 118

one-way, 37–149, 151, 372, 397–399, 480

supported by walls, 113

supports, 111, 113, 372, 400

support types, 43, 420

two-way, 111, 113, 148, 372, 381, 399–400

waffle, 392–395, 400–402, 571

Slab bands, 402

Slender columns. See also Columns

braced, 284, 285, 360–362

buckling, 285, 289, 358–362

defined, 358

design complexity, 362

slenderness ratio, 285, 358–362

unbraced, 284, 285, 360–362

Slenderness ratio

defined, 358

effective length, 285, 359

Sliding. See also Retaining walls

defined, 497

resistance, 474, 475, 495, 497

Slump test

defined, 12–13

slump cone, 12
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Soil

allowable bearing pressure, 410, 511

classification, 404

coarse-grained, 403, 405

cohesive, 404, 408, 412, 417, 475

constituents, 408

expansive, 420

failure under footings, 406–407

fine-grained, 404, 405

lateral pressures, 511

noncohesive, 404

settlement, 408–410

Standard Penetration Test (SPT), 404–405

test borings, 404–405

types, 410, 411, 476

vertical pressure under retaining wall,

496, 497

wedge, 407, 474

Soil pressure

allowable bearing, 403, 410–411

lateral, 474, 484, 499, 502

under footing, 420–421

vertical, under retaining walls, 496

Soil pressure under footings

distribution, 420–421

failure, 406–407

Southern Building Code Conference

International (SBCCI), 3

Span/depth ratio, 92, 393, 397, 582

Spiral(s)

clear space between, 302

composition, 277, 278

diameter, 315, 355

maximum pitch, 316

pitch, 293, 305, 312, 315, 316, 356

short columns with large eccentricity, 337,

339, 341, 350, 352, 354–356, 358

steel design, 304, 312

steel ratio, 291, 292, 298, 301, 304,

312, 315

Spiral columns. See also Columns

defined, 304, 312

design steps, 288, 304, 356

failure, 285

gross area calculation, 288, 293, 310,

312, 349

illustrated, 286, 289, 293

minimum number of bars, 289, 304, 312

required area of steel, 303, 304, 308, 312

required column area, 309

size, 312

Spiral reinforcement, spacing/amount

limits, 291

Splices

compression, 225, 445, 459

of reinforcement, 224–233

proprietary mechanical, 225

tension, 218–219, 224

welded, 224, 225

Split-barrel sampler, 405, 406

Square column, 303, 310, 313, 350, 352, 366,

379, 461

Square spread footing. See also Footings

bending moment, 440, 449

critical sections, 438, 439

design, 436–459

design examples, 451, 452

design flowchart, 466

design steps, 437

nominal shear capacity, 454

one-way shear, 440, 441

required area of steel, 438, 439, 442, 450,

463, 464

required reinforcement, 442, 449, 457,

463, 469

shear, 438–441

shear capacity calculation, 455

size determination, 446, 453

thickness, 438

two-way shear, 438, 440, 441, 447

use, 436, 438, 442, 445, 450

Standard Penetration Test (SPT), 404–406

Steel. See also Reinforcing steel

behavior under stress, 29

compression, 176, 177, 179, 181–186, 189,

190, 192, 193, 198–200, 319, 320,

322, 323, 325, 326, 329, 330

modulus of elasticity, 177, 206

net tensile strain, 72–75, 183, 189, 335

percentage, limitations, 70

prestressing, 580

reinforcing, 24, 26, 28–35, 38, 59, 63–66,

70, 72, 75, 78, 79, 97, 104, 120,

132, 147, 215, 216, 244, 398, 532,

577, 578

spiral, 291, 292, 298, 301, 304, 312, 315

stress-strain diagram, 16, 17, 29, 65, 66

tensile, 60, 62–64, 75, 96, 239, 329,

424, 426

Steel bars

deformed, 29

epoxy-coated, 219, 229

identification, 31

mechanical properties, 30

plain, 30

sizes, 31
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Steel ratio

balanced, 71–72

calculation, 70, 72, 120, 123, 165, 432

defined, 70

design, 104, 356

minimum, 79–80, 155, 156, 288

short columns, 350

short columns with large eccentricity,

336–358

spiral, 291, 292, 298, 301, 304, 312, 315

T-beam, 155

Stirrups. See also Shear reinforcement

closed, 246, 266, 380

design flowchart, 252

design procedure, 251–261

design zones, 246, 250–261

floor beam, 258

horizontal, 270

layout illustration, 261

minimum amount, 245, 260

number of legs of, 251

shear resistance, 250, 259

size, limiting, 250

spacing, 220, 244, 245, 247, 253,

255–257, 260

spacing, calculating, 246, 247

spacing, maximum, 246, 247

Strain

after cracking, 63

columns, distribution, 325, 328, 329

compression steel, 177, 182, 185, 186, 188,

192, 198, 319, 320, 322, 323, 329

cracked rectangular section, 205

distribution, at failure, 67, 71, 320

doubly-reinforced beams, 177

net tensile, 72–75, 177, 183, 189, 335

tensile steel, 179, 188, 321, 322, 328,

330, 339

ultimate useful, 17, 65, 318, 335

Strain distribution

at balanced failure, 67, 71

doubly-reinforced beams, 177

on reinforced concrete section, 80

Strain hardening, 29, 65

Strap footing, 411, 414, 418

Strength

compressive, 8, 14, 16–21, 38, 65, 66, 80,

294, 298, 300, 319, 332, 426, 445,

567, 570, 582, 595, 600

design, 53–55

need for, 9, 54

nominal, 56

required, 57, 243, 541

ultimate, 17, 33, 54–59, 65, 68, 74, 75,

77–80, 96, 98, 218, 296, 382,

581, 582

useable, 56, 57

Strength reduction factor

defined, 56

obtaining, 89, 345

value, 79, 100, 158

Stress

after cracking, 63

axial compressive, 282, 583

bending, 62, 282, 317, 524, 527–529, 533,

535, 539, 546, 558

bond, 216–218

column, distribution, 325

compression, 16, 64, 66, 151, 282, 295, 317

compression steel, 177, 182, 183, 189, 323,

325, 326, 330

cracked rectangular section, 205

distribution, 60–61, 64, 319

distribution, at failure, 320

Euler buckling, 358, 359

horizontal shear, 237

maximum bending, 22

prestressed beam, 581

principal, 241, 581

steel behavior under, 29–35

tensile, 20, 22, 24, 25, 27, 33, 60, 62, 63, 96,

151, 235, 239, 241, 329, 424, 426,

567, 570, 582, 587, 596

on unit cube, 240, 241

units of, 87

yield, 30, 70, 295, 322

Stress-strain diagram

bilinear, 65, 66

illustrated, 17, 29

zone, 29, 30

Structural design

iterative nature, 39

process, 38–41

Structural stiffness, 46

Structural Welding Code-Reinforcing

Steel, 224

Superimposed dead loads (SDL), 28, 39–41,

59, 101, 140, 144, 193, 378, 392,

401, 510

Superplasticizers, 8, 10, 13

Superposition, 176, 177, 583

Support(s)

absolute conditions, 44

conditions, 44

continuous media, 111

hinge, 43
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Support(s) (cont.)
lateral pressure from, 478, 560

lateral, for compression steel, 199, 200

line, 111, 372

one-way slab, 93, 115

point, 111

roller, 44

slab, 113, 115

Surcharge

by additional backfill height, 478

effect, 477

plain concrete basement wall

design with, 490

pressure, 486

T
T-beams. See also L-beams

actual effective depth, 166, 171, 172

analysis, 155–165

analysis illustration, 155, 160

analysis steps, 156, 158–160

area of steel requirement, 155, 166,

167, 174

calculation of deflections, 208

compression force determination, 156,

158, 159

compression zone beyond bottom of flange,

155, 167

compression zone centroid, 159, 162

compression zone depth, 155, 158, 162,

166, 169

compression zone in flange, 156, 166, 170,

174, 395

compression zone in web, 152, 153, 155,

158, 174

defined, 151–153

deflection check, 163, 165, 170

design, 165–175

design examples, 170, 173

design flowchart, 166, 168, 170

design resisting moment, 159, 163, 165,

170, 172

design steps, 166, 167, 169, 170

effective flange width, 153–156, 161, 164,

166, 170, 172, 173

gross moment of inertia, 202–204

illustrated, 151, 152

inverted, supporting double tees, 574, 575

inverted, supporting hollow core decks,

574, 575

maximum factored moment, 158, 163, 166

minimum area of steel, 155, 156

neutral axis, 155, 159, 162, 179, 208

neutral axis below flange, 155, 156,

210, 211

resistance coefficient, 158, 166, 169,

172, 174

steel ratio calculation, 156, 158, 165

tensile force calculation, 156, 161, 164

total area of steel, 169, 177

transformed section, 205, 206, 209

types of, 151, 156

values of k, 206, 207, 210
web depth, 165, 174

Temperature

change, 23–24, 39, 487

one-way slab reinforcement, 114–119

Tensile bars

development length, 219

terminated in hooks, 220–223

Tensile force

amount of, 63

doubly-reinforced beams, 176–199

for balancing compression force, 176

moments about the location of, 330

Tensile steel

strain, 177, 321, 322, 328, 330,

335, 339

strain, calculating, 181

Tensile stresses, 60, 62–64, 96, 151, 238, 240,

241, 329, 424, 426, 571

Tension bars

anchored to edge angle, 267, 268

development length, 218–219, 223

Tension-controlled failure, 66, 73

Tension-controlled section, 74, 75, 190

Tension splices, 224, 225

Test borings. See also Soils

distribution, 404

sample log, 405

SPT and, 404–405

Testing concrete

at point of delivery, 12

goals, 11

slump test, 13

Tied columns. See also Columns

bars, size/number, 278, 288, 296, 311

defined, 278, 333

design steps, 303

failure, 285

illustrated, 278

minimum number of bars, 289, 303, 311

nominal moment, 318

required area of steel, 303, 310

size determination, 288, 289, 304
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Ties

arrangement, 298, 300, 303, 308, 312, 314,

347, 600

arrangement illustrations, 290

defined, 278, 529

design, 266, 302, 303, 308, 311, 312, 350,

352, 353, 366, 541

short columns with large eccentricity,

336–358

spacing, 220, 289, 298, 303, 308, 311,

540, 541

spacing, maximum, 299, 313, 353

Transition-controlled section, 66, 74, 75,

181, 183

Transition zone, 73–75, 77, 79, 81, 83–85, 87,

88, 122, 159, 335, 337, 345, 346,

350, 598

Tributary area, 42, 305, 307, 555

Two-way joist system, 400. See also Waffle

slabs

Two-way shear

rectangular footing, 438, 461, 468

square spread footing, 436–459

Two-way slabs

on beams, 110, 381, 399–400

design and analysis, 111, 113

load distribution, 114, 400

U
Ultimate strength

beam, 56, 59, 78–80, 98, 296

defined, 29

flexural, 56–58, 73, 77

prestressed concrete, 582

reinforced concrete beams, 58–65

Unbraced columns. See also Columns

as one with sidesway, 361

defined, 284

illustrated, 284, 285

Unbraced frame, 284

Under-reinforced sections, 66

Unified soil classification system (USCS),

404, 405

Uniform Building Code (UBC), 2

Uniform settlement, 410

Unreinforced basement wall design. See also
Basement walls

bending moment, 481, 482

example, 483, 484, 486, 487

factored pressure distribution, 485

flowchart, 483

maximum moment calculation, 481, 482,

484–486, 489

shear force, 481, 482

steps, 480–484, 486, 487

thickness, 482, 485, 487

with surcharge, 481, 482, 484, 486

without surcharge, 481, 482, 484,

485, 512

Useable strength, 56

V
Volume changes

creep, 27–28

shrinkage, 27

temperature change, 23–24

W
Waffle slabs. See also Floor systems; Two-way

joist system

defined, 392

forming pans for, 393

illustrated, 392

negative moment zones

reinforcing, 394

plan view, 394

positive moment zones reinforcing, 394

sizes, 392, 393

structure, 392–395

Wall footings. See also Footings; Shallow

foundations

defined, 412

design strip, 421–437

eccentric pressures under, 497

illustrated, 412, 421

plain concrete, 421–428, 510, 605

reinforced concrete, 412, 421, 428–437,

510, 605

Water. See also Hydration

bleeding, 25

cementitious ratio, 6, 7

importance, 5

minimum amount of, 8, 26

reducing agents, 8

Wedge, soil, 474

Weep hole, 476, 497, 498

Welded splices. See also Splices

compression, 225

tension, 225

Welded wire reinforcements (WWR), 30, 32,

34, 250, 393, 397
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Width

beam, 95–96, 108, 139, 143, 250, 251,

271, 561

cracks, 25, 95, 96, 217, 250

effective flange, 153–156, 161, 164, 166,

170, 172, 173

flat slab, 111

plain concrete wall footings, 421, 422

reinforced concrete sections, 58

Workability, 7–10, 12, 13

Working load, 57, 64, 96

Working stress design (WSD), 54

Y
Yazoo clay, 420

Yielding, 29, 66, 72, 287, 327

Yield stress, 29, 70, 295, 322, 325
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